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ON FIXED PRECISION ESTIMATION IN TIME SERIES!

By J. R. Buum AND JupAH ROSENBLATT

University of New Mexico and Case Western Reserve University

0. Introduction. To the best of the authors’ knowledge almost all of the work
that has been done until the present on confidence intervals and confidence sets
of fixed precision has either concerned independent (usually identically distrib-
uted) observations, or has been asymptotic in character.

In this paper we treat the problem of fixed length confidence intervals for the
parameters of a discrete m-dependent stationary Gaussian process. Our main
result is somewhat depressing; namely, that if m is unknown (i.e., the possible
distributions consist of all m-dependent such processes for all m) such estimation
is impossible. In fact it is impossible in a rather small subclass of these processes.

In this area there are, however, quite a few surprises. For example, the authors
had conjectured that the main difficulty would arise in attempting to distinguish
a case of independent observations with large mean and small variance from the
case of 0 mean highly correlated observations with large variance. In both cases
one would see a large first observation followed by a number of observations
close by, and it appeared difficult to arrive at a stopping rule in which one
could distinguish these two cases.

Our intuition appeared to be justified when we were able to show (Theorem 1)
that for one class in which independence-large mean-small variance and high
dependence-large variance cases were both included, there is no J-stage scheme
for fixed length confidence interval estimation of the mean whoselast J —1 sample
sizes are determined by differences of values observed in previous stages. Recall
that in Stein’s two sample scheme the second sample size is determined by the
first stage sample variance

Eb (X — X)) = k7 20k (7 ok (X — X))

which is a function of differences. In the general case of a stationary Gaussian
process the variance of the sample mean (the usual estimator of the mean) is a
function of the variances and covariances. We would expect that here too the
actual sample sizes ‘‘should” be functions of previously observed differences,
since sample covariances are also determined by differences. However our intui-
tion does not hold up here, for we show in Theorem 2 that there is a two-stage
scheme (whose second sample size is determined not by differences of 1st sample
size values alone) for this problem.

In the next section we show that this case is really the exception and that if
the nature of the dependence is not sufficiently well known, we are defeated.
Over all, the results of this paper imply that making strong statistical inference
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1022 J. R. BLUM AND JUDAH ROSENBLATT

in stochastic processes is likely to require a rather precise knowledge of the nature
of the dependence of the data being observed. In a sense, when one does not
know how much information per observation will come from successive readings,
one cannot find a stopping rule. (Using “information” nontechnically, we feel
that we obtain the same amount of information per observation in the independ-
ent case, more information from the first observation in dependent cases.)

In the final section we give some sufficient conditions of the nature discussed
in the preceding paragraph permitting a fixed length confidence interval for u
the mean of a Gaussian tail trivial process (which includes the m-dependent
case).

1. A case in which one can distinguish large variance, high correlation from
small variance independence large mean. In this section we assume that

1.1) o, X, Xo, Xy, e

are independent N (0, 1) random variables, that m is an unknown positive
integer, and that ¢ = 0 and p is real, both unknown. We are permitted to ob-
serve as many of the random variables Yy, Y,, - -+ as desired where

(1.2) Yo=p+om XX, ;.

(Though the number of Y ;’s we can observe need not be known in advance of
observing them, the sampling scheme must terminate with probability one under
all possible choices of m, u, o.) As mentioned, it would appear hard to distinguish
the case m = 1, large u, small ¢° (independence) from the case large m, u = 0,
large o°.
(1.3) TuroreMm 1. If J s any given positive integer, there s no J-stage scheme
for observing the process Y1, Y2, - -+ which can yield a fixed length, fixed confidence
interval for u if the sample sizes of stages 2, 3, - - -, J are functions of differences of
Y s observed on previous stages.

Proor. It is apparent that all differences of Y’s can be expressed in terms of

Vo=Yo1—Ye=om X, — om Xpp = om (X, — Xnm).

Given any positive integer & and any real ¢* > 0, choose ¢ and m so that Vi,
.-+, Vi are independent N (0, c*) by letting 20m™* = ¢* and m > k. Now when

Vi, Vs, -+ are independent N (0, ¢*), for any given J-stage sampling scheme,
givene, - -+, es € (0,1) we can find by, b2, - -+, by such that if Ny, Nz, -+ , N,
are the sample sizes for the various stages,
PNi=b)z1—a,
PN b |[Ni1=bh) 21— e,
P(N; 2bs[NiZb, - ,Nya Sbsa) 21— e

(Proof is inductive—to see the first step, note that if for all b
P(Nz éblNl Sb]) < 1 — €,
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then P(N; < o [Ny < b)) £ 1 — e, contradicting the definition of a J-stage

scheme for J = 2.) Hence
PWNi+ - +N;,fbi+ - +bj))zQ—@a) - (1 —e)

If we now choose e, -+, e;sothat (1 — &) -+ (1 — ¢)isnear L and k > by
+ ... 4 by, we can guarantee that with high probability N, + -+ + N,
< b+ -+ 4+ by = By, still retaining the freedom to choose ¢ and m as large
as desired, with om™ = ¢*27%. Thus if m > B, (the value which under the
sampling scheme is a high probability upper bound for sample size when the
differences are independent N (0,¢*)), then a total sample size exceeding By is
not likely. All we now need to show is that the sample size needed for given
length and confidence estimation of u goes to « with ¢ where o* > 01is fixed and
m! = 2% /o™, To see this, note that any procedure which can be carried out using

Yi,Y, — Y1, .-+, Yp, — Vg, can certainly be accomplished using
Q=p+om? X,
Qz = O'm_%Xz s

—21
QB_]'—]- = aom TXBJ—I )

Qz* = Gm—%Xz—-m,

* —3
QBJ—]. = om XB,—l—m-

For m large enough (m > B;) all of these random variables are independent.
Further, @., -+, Qs,41, Q. -+, Qﬁ,_l can only give us information about
om”? since their distribution is completely determined by om™? for m > Bjy.
Thus for m > B; we may dispense with @, -+, @5,-1, Q. -, Q:,_l if we
assume om ! = ¢*27* known. But Var @ = ¢°, and since there is no restriction
on ¢® from above, it follows from Dantzig’s work [3], that we cannot obtain a
fixed length confidence interval based on @, for u, even assuming om™? known.

Hence we cannot obtain such an interval from Qi, Q, -+, Qs1, Q2
-, Q3,1 and a fortiors from Yy, Y, — Yy, -++ , ¥y, — Yy, ie, from the
J-stage sample Y1, Y5, -+, Yp,. This proves the asserted result. Q.E.D.

Though the authors have not pursued the subject (due to the next theorem),
it is not implausible to conjecture that there is a purely sequential sampling
scheme based on the differences V1, Vs, --- since we should be able to wait
long enough to see some dependence between the differences.

(1.4) TuroreMm 2. There is a procedure requiring only two stages of observation,
the first stage consisting of Y1, Y. for fized length confidence interval estimation of
pin (1.2).

Proor. From the results of [2] it is seen that we can obtain a 1 — «/4 prob-
ability upper bound, ¢4/s , for o (of the form ka4 Y1|). Further since Vi =Y, — Y=
om? (X; — Xi_m) is normal with mean 0 and variance 2s°m ™", from it we can
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obtain a 1 — /4 probability positive lower bound, v, for 2¢"m™", unless
Y, — Y, = 0. This special case may be easily disposed of as follows: ¥ — Y; = 0
happens with nonzero probability if and only if ¢ = 0, and in this case with
probability 1 we have Y1 = u. Thus, when Y, — Y7 = 0 we terminate sampling
and assert with 100% confidence that g = Y;. For the remaining cases
Y1 — Y, # 0, we may combine our previous results to see that with probability
at least 1 — «/2,

2 -1 __
m é 20'0(/4'70(/4 = Ma/2-

But clearly once we know an upper bound M, for m with probability 1 — «/2,
with this probability we can obtain independent observations each with variance
less than ¢®. Thus with probability at least 1 — 3a/4 we can obtain independent
observations with variance less than ¢2/s . From such observations we can decide
on a sample size which will yield a 1 — /4, I length confidence interval for u.
Combining all the stages together yields a 1 — «, [ length confidence interval
for u as asserted. Q.E.D.

2. Main nonexistence theorem. In this section, as before, - - X_», X1, Xo,
X1, Xz, -+ will denote a doubly infinite sequence of independent normally
distributed random variables with mean value 0 and variance 1.

Our object here is to show that the class of all m-dependent stationary Gaussian
processes does not admit fixed length fixed confidence intervals for the mean—
even allowing purely sequential sampling schemes (which are assumed to ter-
minate with probability 1).

In order to do this we look at the subclass Y1, Y., - -« defined by

(2.1) Yo=u+X.+Zum
where
(2.2) Loym =0 if m =20
=mtY X, im=12 .
Note that Y;, Y,, --- form a stationary m-dependent Gaussian process. It is
assumed that we can observe any finite number of values of Yy, Y, --- and

that u and m are unknown to the observer. The intuitive reason for our inability
to obtain fixed length confidence intervals for u lies in the fact that for large m
the random variables Z,,» vary only slightly with n. Hence if Z,,,, = 2z it appears
as if Y, are 1id random variables with mean u + 2 and variance 1. The variation
(or complete lack of variation) in Z, ., as n varies that was detectable previously
(and permitted determination of a high probability upper bound for m) is
masked by the changes which are also taking place in the X, term. The technical
difficulty in the proof arises from the fact that any value z of Zi,, has probability
zero; hence use must be made of a set of such possible Z; ,, values. We now proceed
with the rigorous development. Let M be a fixed positive integer and let P um
denote the distribution of ¥y, Y, - -+, Y corresponding to the values p and m
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in (2.1) and let Py u,m. denote the conditional distribution of Y71, Y, , ---, Yy
given Z; , = z (also corresponding to the values p and m in (2.1)).
LemmA 1. For each fixed positive integer M

limme0 SUDPAeB s ,26B,u real IPM,ﬂ,mlz(A) - PM,IH'%O (A)I =0

where By is the class of Borel sets in M dimensional Euclidean space and B is any
fized bounded set of reals.
Proor. It is clear that if we can prove that

limm_m SUPAeBr,2¢B |PM,0,m|z(A) - PM,?-‘,O(A)I =0

then the asserted result follows, since letting

Ay ={(@, -, Zu): (@ + py -, Tu+ pu) e A}
we haVe PM,u,mlz(A) = PM,O,mlz(Au)
and Puuiz0(4) = Puzo(4,).

Hence we may assume u = 0 in the remainder of the proof.
We now make use of the following theorem on the multivariate normal dis-
tribution (see [1], p. 29): :

If (gf(a) is a normally distributed vector, with mean (Z (1)> and covariance
@ @
. (2ZuZ . e el . .
matrix <Eu 212 , then the conditional distribution of Xy given X = =z is
21 «~/22

normal with mean pa) + S0 (Ze) — ne ) and covariance matrix Zy — ZpZ Zu
(provided Z is invertible).

In the case being considered,

Yy B
Xp=| ]  Xo="2in, =

0
Yu o) 0

0

and hence it can be seen that for m > M,

Cu)a =0a+ 1 — |k — 1 m™ + (1 — da)ym™
T = 1, Ce)=1— (k- 1)m™

i
Hence for m > M, the distribution of [ : |given Z, = zis normal with mean
Yu
1
1 — (1/m)
1 — (2/m) 2

1 = (M — 1)/m]
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and covariance matrix whose (Z, k) element is
b+ 1 — e —dm™ 4+ 1 — dg)m™?
2.3) + Q= F—-1mHA - @ —1m™)
=8p — |k —dm™ 4+ & —1m+ @ — 1)m™
—(k—1)G—1m? 4+ 1 — da)m™,

where §; is the Kronecker delta.

Y,
From thisit follows that the densityof | : |given Z1,, = 2z approaches the
Yu
2
normal density with mean z and identity covariance matrix, the approach

4
being uniform for all z in any given bounded set of reals, and over any given
bounded subset of M dimensional Euclidean space. To see this let us denote the
elements of the covariance matrix T' by I';; and denote the cofactors by v:; . Then

I'" = adjT/detT = (y4)"/det T.

Since I' = I — A where A consists of elements all close to 0 when m is large, the
elements of T™" are all close to those of I since v; are all close to 847 and det I‘gis
close to 1.

Ty
For z in any bounded set B and| : |in any bounded set D the vector
37
X1 1
1—-1/m

v=| : -1 P
Tar i—[M—l]/m

lies in some bounded set G and is uniformly close to the vector

1 1
. 1
w=| i |—|. ]z for large m.
ol \1
X1
Hence we see that for | : | ¢ D and z ¢ B the value vT'v lies in some bounded

(37
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set H and is uniformly close to w'w for large m. Since det T' is close to 1 for large

m, from the uniform continuity of the exponential on bounded sets we have the
Y,

asserted uniform approach of the conditional density of

Yu
Now let fu,.,0 denote the M dimensional multivariate normal density with mean
2

and identity covariance matrix, and let far,o0,m. denote the M dimensional

4

multivariate normal density with mean
1
1—1/m
1—2/m 2
1 — M — 1)/m

and covariance matrix whose ¢k element is given by (2.3) (m > M is assumed).
Given ¢ > 0, we may choose an M dimensional interval I so that for all z in the
bounded set B, f 1fu,z0@) du > 1 — ¢/4. From the previous arguments concern-
ing uniform approach of far,0,mi; t0 far,.,0 We see that I can also be chosen so that
forallm > M

Srfuom: @) du > 1 — ¢/4.
We see that for each event 4
|Paomiz(A4) — Puseo(A)| = |[afauomis@) du — [afa0(u) dul
Jalfuoms) — farzo(u)| du
= (Junr + [anze) fsome@) — fueo@)| du

< [ani [fatomie @) — fareo(u)| du + ¢/2.

If we let V (I) denote the M dimensional volume of I, then using the uniform
approach of fir,0,m. 10 fu,.,0 derived before, we may choose m large enough so that
for all z in the arbitrary bounded set B and all % in the bounded M dimensional
interval I,

I\

|fa,0miz () — fareo)| < ¢/2V(I);
it then follows that
(24) IPM,O,mlz(A) - PMJ,O(A)I <e

Thus we have shown that if B is any bounded set of reals, we may choose m
sufficiently large so that for all M dimensional Borel sets A and all z in B (2.4)
holds, concluding the proof. Q.E.D.
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(2.5) TurorREM 3. Let Il > 0 and 0 < a < } be given. Under the condition that

(a) 4 @r) e dt < 1 — 3a,
if Yo = u+ Xu+ Znmas in (2.1) there does not exist a sampling plan which
terminates with probability one for all real w and all m = 0, 1, 2, - - - and which

leads to an 1 length 1 — a confidence interval for u.

Proor. The proof hinges on the following key Liemma: If there is a sampling
scheme whose sample size is denoted by N, which terminates with probability
one for all real x when m = 0, then there exists a bounded set X C [—1, []° having
N (0, 1) measure exceeding 2, and for each positive integer 7 an associated
positive integer b, , such that for all u e X

(2.6) PooN b)) >1—17,

(where the subseript p, 0 refers to the values of u and m oceurring in (2.1)).

Proor or LEmmA. First note that for fixed b, 7, P,,o{ N =< b} is continuous in .
Hence {ue®:P,ofN < b} > 1 — ¢ '} is open, hence measurable, as is
{ne®R:P,ofN = b} <1 — 7 '}. Thus their complements,

(e PN S b} =1 — 4%

and {p e ®:P,o{N < b} = 1 — 7"} are measurable, as are the intersections of all
of the above with any interval. Now choose k. so that

[ @x)T et + [ @r) e P dt = fa

(that this can be done follows from the hypothesis). For the fixed positive
integer ¢, look at the measurable set

Ko = {pel[—ka, =) U @ ka]:Puo{N b} > 1 — 3}

We claim that for sufficiently large b (call this value b;), the N (0, 1) measure of
Ky, ; must exceed o — a2 ™. For K, is nondecreasing in b. If as b — 0, &Ky
does not increase to within N (0, 1) measure a2~ """ of $a, the N (0, 1) measure of
[—ke, —1) u (I, k], then because Xs,; is nondecreasing in b there must exist a
set of u values of N (0, 1) measure at least a2~ which are not in &, for any
b. That is, there would exist a set of u’s of N (0, 1) measure at least 2™ guch
that P,ofN £ b} <1 — 4 ‘forallb;i.e. for these u’s P, o{N < »} < 1, a contra-
diction of the assumption that the sampling scheme terminates with probability
one.
Now we let

R = iz Ko,,i

and note that & has N (0, 1) measure exceeding 2, and is bounded. It is easily
seen that (2.6) is satisfied, proving the key lemma.

We now turn to the proof of the theorem. If the theorem were false then there
is a sampling scheme with sample size N which is finite with probability 1 for all
v and m, and a confidence interval of length [ and confidence 1 — « for u based



FIXED PRECISION ESTIMATION IN TIME SERIES 1029

on Yy, -+, Yy ;thatis, there exist functions I,,(y1, - - - , y.) such that
Pim(In(Y1, -+, Yy) —u| £U2)Z1—a forall um
We call the event Iy (Y1, -+, Yx) — 2| < 1/2 “cover 2,” and

v (Y1, -, Yx) — 2 > U/2,
“not cover z.” By the contradiction hypothesis,
2 Pom(not cover 0) = [ Py, (not cover 0 | Zym = 2) dPo m(Gim S 2)
2 [x Pom(cover z | Zim = 2) dPom (Z1m < 2);
since for ze X, not cover 0 O cover z

2 [x {Poym(coverz, N < bi| Zim = 2) dPon(Z1m < 2),
ie.,
2.7) J5% Pom(cover 2, N £ b; | Zym = 2) dPou (Zym < 2) < a.

Now for any given ¢ and any ¢ that is chosen, there exists by Lemma 1 an
integer m (b: , ¢, X) such that if m = m (b:, ¢, &) then for all z ¢ &

|Pom (cover 2, N < bi| Zym = 2) — P,o(coverz, N < b;)| < ¢

(Note that the intersection of “cover 2” with “N < b, is determined by
Yy, -+, Y, making Lemma 1 applicable. Note that we need the full power of
Lemma 1 because this inequality must hold for allz £ X, and “cover 2’ varies
with 2.) Furthermore by (2.6) we have

|P;,0(coverz) — P,o(coverz, N < b;)| = |P,o(coverz, N > b;)| < 7.

Hence forze X, m = m((bi, ¢, K)

|Po,m(cover 2, N < b;| Zym = 2) — P,o(coverz)| < e + 7 .
Thus by (2.7) we have form = m(b;, ¢, X)

Ja[Peo(coverz) — (e + ¢)] dPou(Zim < 2) < a,

ie., form = m(bi, e X)
(2.8) [x P.o(coverz) dPom(Zim < 2) < a4+ (¢ + 5 )Pom Zim e K).
But by assumption we have for all m
(29) [xP.o(coverz) dPom(Zim <2) = (1 — a)Pom(Zime®) = (1 — a)2a.

However for 0 < a < §,a < (1 — a)2a. Since e and 7 can be chosen arbitrarily
(determining of course m (b:, ¢, X ), we see that (2.8) and (2.9) contradict each
other for sufficiently small ¢ + ¢ *. Hence there cannot exist a sampling scheme
which terminates with probability one and which leads to a 1 — a confidence, !
length interval for u, as asserted. Q.E.D.
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Before proceeding to the next section we make some final remarks. First, it
may still be possible to consistently test u = wo versus 4 = w; under (2.1) since
here we know that n™" Y7~ ¥ must settle down to wo or u , and we might wait
to get an estimate of the ‘““drift rate.” What cannot be done is to test u =2 0 versus
=2 w at arbitrary levels.

We note furthermore that this theorem shows that for 0 < a < 3, if
Y. =u+ oldon + 1 — dom)a *|(X. + Znn) where ¢ = 0, the standard devi-
ation of the Y; is also unknown, there are no 1 — « confidence intervals of any
preassigned length for pu.

It is also seen that we cannot with any degree of precision estimate m, the
number of steps after which observations become independent in the class of all
m dependent stationary Gaussian processes. For if we could do so, then following
such estimation we could surely estimate u of (2.1) in a single stage by obtaining
sufficiently many independent observations with variance at most 2, and mean p.
It also appears intuitively that we cannot obtain a fixed length confidence
interval for Var Y, of (2.1); since if we knew Var Y, = 1 we would knowm = 0
and hence could estimate u with fixed precision, while if we knew Var Y, = 2,
then we could wait until n Z,'-Ll (Y — ¥,)? was close enough to 2, the number
of terms needed enabling us to estimate m and thus to estimate p. That is, if we
knew Var Y, it would seem that we could estimate u precisely. We hope to be
able to supply a rigorous proof to support our intuition in a future paper.

The results here have some significance relative to continuous parameter
processes—indicating that in certain cases unless sample spacing is close enough,
fixed precision inference may be impossible. (The authors hope to return to this
topic also in a future paper.)

3. Some sufficient conditions for fixed precision estimation of u where
Yo=n+ 02 m00Xni, 2imai =1

(the sequence --- ,X_;, Xo, X1, - - - consisting of independent N (0, 1) random
variables and the a;’s 1 and ¢ = 0 being unknown). Here we will restrict con-
sideration to the case in which the sequence ao, @1, - -+ is nonincreasing (hence
nonnegative).

(3.1) THEOREM 4. Suppose that {a;}5=o is such that > j~0a; = 1, and for each
positive lower bound for aq, say oo, and each ¢ > 0 we can determine an integer
N (e, ao) satisfying

(3.2) e g2 > 1 — e

Then there exists a two-stage sampling scheme, for a fixed width (1 — a) confidence
interval for u, with only two observations tn the first stage.

Remarks. This theorem includes Theorem 2 of Section 1. It also includes
the Gaussian-Markov case treated in [4]. It also applies to cases such as
a; = ¢;j/(j + 1) where 0 < ¢; = C (with C known, a; nonincreasing,

D imal = 1).
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Proor. We see that E(k ™ D 51 YV,) = &
Var (57 201 Ya) = o'k + 20°% " 2ot (b — q) 22500 05054
< FETA+ 267 T (b — [ im0 0T i0 a3idl’)
by the Schwartz inequality

= K1+ 267 2 (b — @[50 adadl’)
S ETA 4 27 a0k + 26T 2k (b — g)é)
=%k (1 4+ 2N (6, a0)) + " (k — 1)k €.

That is,

(33) Var (5" X5 Y,) S K (1 + 2N (6, a0) )+ o (k — 1)k

As in Section 1, we can obtain a 1 — a/4 probability upper bound % for ¢
based on the first observation Y7 . Now Y, — Y} is normal, mean 0,

Var (Vs — Y1) = 26°(1 — D70 ai0541).

From observing Y, — Y1 we can obtain a 1 — a/4 probability lower bound,
01944 > 0,0nVar (Y, — Y1) (unless Y, = Y1, in which case we assert u = Y1
as in Theorem 2 of Section 1), i.e., with probability at least 1 — /4

207 (1 — D70 Qi0341) = 019,004
Hence
01 £ 1 — 012,6s(20°) 7 S 1 — 012,0n(200n)” =1 — va
with probability at least 1 — «/2. Then
> r0a — D008 = Ya
with probability at least 1 — a/2. Since we assumed the a;’s decreasing, we have
200l — D081 Z Ve,
ie.,
(84) ai = v« with probability at least 1 — /2.

From (3.3), (3.4) and our 1 — «/4 probability bound for > we have with
probability at least 1 — 3a/4,

(3.5) Var (5 251 Y,) S o2k (14 2N (6, 7)) + ok — 1)k

We now choose € so that o2k — l)lc_leé is small, and then choose k so that
o2k (1 4+ 2N (¢, vo)) is small (the total small enough for the variance of a
single normal random variable permitting an [-length 1 — «/4 confidence interval
for its mean ). Combining these, we obtain the desired interval. Q.E.D.
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