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ASYMPTOTICALLY MOST POWERFUL TESTS IN MARKOV PROCESSES'

By Ricuarp A. JounsoN AND GEOrGE G. Roussas
University of Wisconsin, Madison

1. Introduction and summary. Wald [8] treated the problem of testing
Hy:60 = 6, against one-sided alternatives by giving conditions under which tests
based on the maximum likelihood estimator are asymptotically most powerful.
He defines a sequence of tests {\,} to be an asymptotically most powerful test of
H, against Hy:0 > 6, on level of significance «, if for any other sequence of
tests {w.} of level o

(1.1) lim sup [sup (8w, — &N\, ;0 > 6,0 ®)] =0,

where O is the parameter space. A similar expression holds for testing H, against
Hzig < 6.

Wald’s regularity conditions on the population density are quite strong.
The maximum likelihood estimator, being the value which maximizes the
likelihood funection, is required to be a consistent estimator in the probability
sense and the consistency must be uniform over certain intervals in ©. Also,
his conditions imply that the ecentered and scaled version converges uniformly
in law, over certain intervals in ®, to the standard normal. Wald formulates
tests in terms of the maximum likelihood estimate.

In the present work, we extend Wald’s results in two directions. First, the
regularity conditions are substantially weakened through use of the techniques
of LeCam and the tests need not be based on the maximum likelihood estimate.
Secondly, tests concerning the parameter in the joint distribution of the random
variables involved are shown to be asymptotically most powerful when the
observations arise from a stationary Markov process. In order that an a-level
test exist for any «, it was necessary to consider tests which are possibly ran-
domized.

Section 2 contains the basic assumptions on the Markov process and the pre-
liminary results appear in Section 3. The results through Section 3 hold for a
k-dimensional parameter space and are presented in this general formulation.
The main results are presented as Theorems 4.1 and 4.2 in Section 4. The fol-
lowing section treats the special case of independent identically distributed
random variables. Four examples are presented in Section 6.

In order to avoid unnecessary repetition in this paper, all limits will be taken
as the sequence {n} of positive integers, or a subsequence, converges to infinity.

The present authors hope to be able to report soon on results concerning
k-dimensional parameter versions of the main theorems in this paper.
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2. Notation and assumptions. Set (X, @) = Xi=o(R:, ®;), where (R;, ®;)
= (R, ®) denotes the Borel real line. The parameter space © is assumed to be
an open subset of the k-dimensional Fuclidean space &,. According to Kol-
mogorov’s consistency theorem, a probability measure P, will be induced on @
by a probability distribution pe(-) defined on & and a transition probability
measure ps(-, -) defined on B x ®. For each 6 ¢ ®, the coordinate process
{X.,n = 0}, n an integer, is a Markov process with initial measure p,(-) and
stationary transition measure pg(- , - ).

Let @, denote the o-field induced by the random variables {Xo, X1, - -+, X}
and let P, ¢ denote the restriction of Py to @, . It will be assumed below that the
probability measures { P, ,0 ¢ ©},n = 0, are mutually absolutely continuous. It
follows that the derivatives [dPog/dPos] = q(Xo; 0, 6') and [dPy,e/dP1g) =
q(Xo, X1;0,0") are well defined for every 6, 6" ¢ ©. Also set ¢(X1|Xo,6,0') =
q(Xo, X130, 6')/q(Xo; 0, 9"). For the joint measures P, 4 and P,4, we then
have [dP, ¢ /dP.s] = ¢(Xo; 0, 6') []/~1¢(X;| X;; 6, 6') on a set having P,
measure one for all § ¢ ®. In what follows, discussion will be restricted to that set.

We may write [dPn.O’/dPn,O] = Q(XO 5 0) 0,) H;';‘l d’jz (07 0,)’ where ¢j (0, 0,) =
l[g(X;| Xj—1; 0,01 eachj = 1,2, ---, n. Clearly, fqblz 0, 6')dPy = 1. It will
also prove convenient to introduce the notation f;(8, 6') = [¢(Xj—1, X;; 6,6 )]%
eachj =1,2,---,n.

We now state the main assumptions.

Assumprions. (A1) For each 6 ¢ ®, the Markov process {X,, n = 0} is
stationary and metrically transitive (ergodic). (See, e.g., p. 460 [1]).

(A2) The probability measures {P.;, 0 ¢ O}, n = 0, are mutually absolutely,
continuous.

(A3) (i) For every 0 ¢ O, the random function ¢; (9, 8') is differentiable in
quadratic mean (q.m.) with respect to 6" at (6, ) when P, is employed. (See,
e.g., p. 470 [4], orp. 39 [2]). (ii) Let ¢1 (8) denote the derivative in q.m. of ¢; (8,6")
with respect to 6" at (6, 6). Then ¢;(0) is @ % C-measurable, where € denotes
the o-field of Borel subsets of ©.

Let T'(8) be the covariance function defined by I'(8) = 48&{¢:1(8) -1 (0)},
where ¢’ is the transpose of ¢; .

(A4) For every 6 ¢ @, the random function f; (8, 6') is continuous in P, -
probability at (0, 8) as 8" — 6.

From (A2), it follows that for an arbitrary but fixed 8 ¢ ® and 6, ¢ ©,n = 1, 2,
cooy [dPre,/APns) = q(Xo; 6, 0,) H}”:l ¢ (0, 6,) is well-defined except on a
Py-null set forall 8’ ¢ ©. Disregarding this null set, we define the random variable
A[Pn,en 3 Pn.@] by

A[P,4, 5 Pugl = log [dPys,/dPns = log [¢(Xo; 0, 0.) TLi= 670, 6.)].

3. Preliminaries. We proceed by first recalling some known results.
Turorem 3.1. Let h,, h € &, where h, — h. Under assumptions (A1) — (A3)
(i) and (A4),

AP osnm-172 3 Prgl — h'A,(8) — —A(h, 0)
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in P, g-probability, where A (h, 8) = LT (O)h = 28&h'$:(0)] and A,(0) =
207} 3751 64 0).

This is a restatement of Theorem 4.1.1, page 980, of [5]. This result enables us to
obtain the limiting distribution of [P, ¢45,n-% ; Pn,] under P, .

TrEOREM 3.2. Under the conditions of Theorem 3.1,

L[A.(0) | Pyl — N(0,T(6))
and consequently,
S{A[P,.04h,n-4; Pl | Puo} — N (=T (0)h, KT (0)1).

This is Theorem 3.2. in [5], p. 984.

Next, we note that our main assumptions allow us to conclude that certain
sequences of measures are contiguous. (For the definition of this concept, see
p. 41 [2]).

Lemma 3.1. Under the conditions of Theorem 3.1, the sequences of measures
{Pno} and {P,on,n~3} are contiguous.

Proor. According to Theorem 3.2, {A[P, o1t ; Prel| Pne} converges to
N (—1KT (0)h, K'T(8)h). Denote this limit by £(x). Then gexp (x)] =
@r) 7% [Zoexp [— (& — 6%/2)*/26"|dz = 1, where o equals KT (0)k > 0.
By Theorem 2.1, page 40, of [2], this result is equivalent to the statement that
the sequence of measures {P, ¢} and {P, es,.—1} are contiguous. The case where
h = 0 is covered by Proposition 3.1 below.

The random variables A[Py o142~ ; Py, » = 0, also have a limiting distribu-
tion under the moving measures.

TreorREM 3.3. Under the conditions of Theorem 3.1,

LS{A[Py othn=3 3 Paol | Paoripn—1} — N GR'T 0)h, KT (9)h).

This is Theorem 2 of [7].

Although the results contained in the following two lemmas are known, there
is no convenient reference.

Lemma 3.2. Let {Y.,} and {Z,} be two sequences of random variables satisfying

lim £[Y, | Q] = lim £[Z.|Q] = N (4, o*), @ > 0.

For a fized a with 0 < a < 1, let the sequences of real numbers {c,} and {d,} be
defined as the sup over numbers ¢ and d satisfying 1 — a = P[Y, < ¢|Q] and
1 — a = P[Z, < d| Q)] respectively. Then, lim c, s finite and lim (¢, — d,) = 0.

Proor. Since lim P[Y, = y|Q] = ®[(y — u)/c], it follows that the con-
vergence is uniform in y & R. Consequently, ¢, converges to u + o£., where &,
is the upper a-th quantile of ®. The same argument applied to {Z,} yields
lim (¢, — d,) = 0.

Lemma 3.3. Let {Y.}, {Z.}, {c.} and {d.} be defined as in Lemma 3.2. Assume
that lim £[Y, | Q,] = lim £[Z, | Q.] = N (4, ¢*), ¢ > 0. Then

PlY, = Clen]'—P[Z = dlen]'—?()
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Proor. Clearly, P[Y, < y|Q,] and P[Z, < y|Q.] converge to ®[(y — u)/o]
uniformly in y € R. Thus, |P[Y, < ¢.| Q] — PlZ, < d.| Q.| < |P[Y. £ ¢a| Q.
— ®(ca — W/oll + |PlZy = du|Qu] — @[(dn — w)/0]l + [®[(cs — n)/a]l —
®[(d, — p)/0]|. Repeating the argument of Lemma 3.2 for the sequences of
cdf’s P[Y, £ ¢, | Q.] and P[Z, < d.|@.] determined by the moving measures,
we obtain the desired result.

The following result was presented without proof by LeCam [3].

Prorosition 3.1. Let P and @ be two probability measures on a o-field Q.
Let Z be the logarithm of the likelihood ratio of @ relative to P. For every ¢ > 0,

IP—Q =201 —¢°)+2P[Z] > |,

where || || s the norm associated with convergence in variation.
Proor. Set B = [f — g > 0] where f and g are the densities of P and @,
respectively, with respect to P 4+ Q. Then

P — @Qll = 2sup (IP(4) — Q(4)[; Aea) = 2[P(B) — Q(B)].

Set D = [|Z| > ¢] and note that P(B) — Q(B) = P(BnD) — Q(BnD) +
P(Bn D) —Q(BnD°) < P(D)+ P(BnD°) — [snp:é’ dP. On D°, we have
—e = Z = e and consequently P(Bn D°) — [znpe¢® dP = 1 — ¢ . The proof
is complete.

4. Main results. Although the preceding developments are for a k-dimen-
sional parameter space, to obtain asymptotically most powerful one-sided tests,
we restrict ourselves to the case k = 1 or equivalently it is assumed that © is
an open subset of B. The quantity A,(f) is then a real-valued random variable
with asymptotic variance o”(8) where o°(8) = 48 | $(8)[.

Let 6, ¢ ® and define the sequence of critical functions {¢.} by

on(Xo, X1, -+, Xn) = 1, if A (80) > ¥,
4.1) = ., if A(80) = ¥,
=0, otherwise,

where the sequences {¢,*} and {v,} are determined by the requirement &, = o
O<a<l).

We require one further assumption.

(A5) Let {6.} be a sequence of elements of @ with 8, > 6, for each n. The
condition lim n*(8, — 6o) = « implies that A,(6) — « in P, -probability.

TuaeorEM 4.1. Under assumptions (Al)—(A5), the test ¢. defined by (4.1) s
asymptotically most powerful for testing Ho:0 = 6o against the alternative
H,:60 > 00,08@.

Proor. Let {¢,} be defined by (4.1) and let {w.} be any other sequence of
a-level tests. Assume, for contradiction, that the right hand side of (1.1) takes
the value & > 0. Then there exist sequences {n'} < {n} and {6,} with 6, ¢ ®
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and 6, > 6 for all n’, satisfying
(4:.2) lim (Sgn,wn, _— gonl¢n,) = 8.

Consider the sequence {n(6,, — 6,)}. Suppose first that it is unbounded.
Then there exists a subsequence {n”} < {n'} with [n"]} (6.» — 60) — . Accord-
ing to (A5), Anr (80) — o in Py -probability and consequently lim &, rpn» =
lim Py, +[A, (B) > cnv] = 1 by Theorem 3.2 and Lemma 3.2 which show that
the ci» are bounded. Thus { (n')}(6.. — 6,)} must be bounded.

If this last sequence is bounded, there exists a subsequence {m} < {n'} such
that lim m!(@, — 6) = ¢ = 0. First consider the case ¢ > 0. Setting
m} (6, — 00) = t, , We write 6, = 0o + twm * where t,, — ¢. Make the identification
Yo = tAn(60), Zm = A[Pmoyripm3 ; Pmig,) + 30 (60), Q = Pp,and cn = lon”
in the statement of Lemma 3.2. We have set o” (o) = 48, |61 (60)|". Also define
the sequence of critical functions {y.} by :

‘l/n (XO) Xl y Tt Xn) = 1’ if A[an90+trm_’} ;Pn,GO] + %tzaz (00) > dn
(4.3) =" i AlPnsgrtet 5 Pag] + 30 (60) = do
= 0, otherwise, ’

where the sequences {d,} and {v,"} are determined by the requirement &y, = a.
Theorem 3.1 together with Lemma 3.1 and Theorem 3.3 give

ce[tAm (oo)l Pm,00+tmm"9] i ]V(tza2 (00), t20'2 (00)).

This result together with Theorem 3.2 verifies that Lemma 3.3 is applicable with
{Yan), {Za}, {cn} and {d,} defined above with @ replaced by Ps,. Using
lim Py [Z = dn] = lim Py, [V = cu] = 0,

(44) lim (&,¢m — 80,¥m) = 0.
Also, since &, ,wnr — &,.¢n tends to §, it follows that
4.5) lim (8,,0m — &,0m) = 8.
From (3.4) and (3.5), we have

(4.6) lim (&,,0m — &0,¥m) = 0.
Therefore, for all sufficiently large m

4.7) 80, ¥m = &,00m — 8/2.

However, for testing Ho:0 = 6, against a specific 6,, > 0, ¥, is most powerful
according to the Neyman-Pearson fundamental lemma. This contradicts
m} (6, — 60) — ¢ > 0.

Finally, suppose the only convergent subsequence satisfies m* (6, — 6o) — ¢ = 0.
Set Zn = A[Pm og+t,m=3 ; Pm.s,]. According to Theorem 3.1, Po,[|Zn| > €] — O for
every ¢ > 0. Applying Proposition 3.1 with @ = P, , P = Png, and Z = Z,,,
it follows that ||Pm,ey — Pum,e,| — 0. Also, the power of the test (4.1) is asymp-
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totically « since
(48) IPm,Go[Qom > cm*] + Ym Pm,ﬁo[ﬂam = cm*]
- m,@,,,[‘Pm > cm*] - ’Yum,G,,,[‘Pm = cm*]l =2 ”Pmy"o - Pm,om”‘

A similar calculation shows that the test (4.3) also has asymptotic power o and
consequently &, om — &,¥n — 0. As above, this is a contradiction to (4.2) since
¥ is most powerful. This concludes the proof.

It is clear from the previous proof that even without assumption (A5), the
test based on A, is locally best.

CoROLLARY 4.1. Under the assumptions (Al)—(A4), the test ¢, defined by (4.1)
s asymptotically locally most powerful.

To test the hypothesis Ho:0 = 6, against the hypothesis Hy:0 < 6, , we need to
modify the last assumption.

(A'5) Let {6,} be asequence of elements of ® withé, < 6 for each n. The con-
dition lim n* (8, — 6,) = — o« implies that A, (f)) — — « in Py, -probability.

Define a sequence of tests {¢, } by

‘Pn,(XO’ X1, , X)) =1, if Aq(6) < cnla
4.9) =), i A.60) = ¢,
=0, otherwise,

where the sequences {c,’} and {v,'} are determined by &, = a for a fixed
a0 < a < 1). .

The following two results are verified in the same manner as Theorem 4.1 and
Corollary 4.1.

THEOREM 4.2. Under assumptions (Al)-(A4) and (A'5), the test defined by
(4.9) 7s asymptotically most powerful for testing Ho:0 = 6o against the alternative
Hy:0 < 6.

CoROLLARY 4.2. Under assumptions (Al)—(A4), the test defined by (4.9) s
asymptotically locally most powerful for testing Ho:0 = 6o against the alternative
H::60 < 6,.

5. Independent identically distributed case. Because of its special interest,
we present the simplified assumptions for the case when the random variables
{X, ,n = 0} are independently distributed as X, where X, has probability density
[dPg 4:/dPo] = q(Xo ;0,8 ) with respect to P .

Condition (A1) is always satisfied and (A4) will be implied by (A3) (i) in the
obvious manner. The simplified assumptions become

(B2) The probability measures {P,,, 0 ¢ ®},n = 0, are mutually absolutely
continuous.

(B3) (i) For every 6 ¢ ©, the random function [¢ (X, ; 6, 6)]* is differentiable in
quadratic mean with respect to 8’ at (9, §) when Py is employed.

(ii) Let ¢1(8) denote the derivative of [¢(Xo; 6, 6')]' with respect to 6" at
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8, 6). Then ¢ is @2 x C-measurable, where @ denotes the s-field of Borel sub-
sets of ©.

It is then the quadratic mean derivative of [¢(Xo ; 6, 6')]* which enters A, in
the statement of assumptions (A5) and (A5).

6. Examples. Four examples are presented. The conditions (A1)-(A4) have
been verified for the first three examples in [6] and it remains to verify assump-
tion (A5) or (A'5). In establishing the differentiability assumption, Vitali’s
theorem has been used. This theorem states that, for » > 0, Y, — Y in the rth
mean if 'and only if Y, — Y in probability and & |Y.|" — & |Y| finite.

In the first two examples, UMP tests exist for each n.

Examxre 1. {X,}, n > 0, are independent with common distribution N (6, 1),
0 & K. Here

An(0n) = 07 300 (X, — 60) = 07 27 (X; — 02) + 0! (0. — 60).
Under P,, the first term is distributed as N(0,1) and consequently
A, (6p) — o (— ) in Py -probability whenever (0, — 6p) — o (— ).

Exampre 2. {X,}, n = 0, are independent with common distribution N (0, 6%),
6 > 0. In this example,

Au®) = 7 2o0m (=00 + 0°X /)
= 00—37'&_% Z?:l (ij - 0n2) + 00_ ’ﬂ% (0n2 —_ 002).
The first term 6, 9,°n > [(X,/6,) — 1] is bounded in Py, -probability ac-
cording to the Berry-Esseen theorem whenever {6,} is bounded. For {6,} un-
bounded and 6, > 6, A, (6o) is stochastically larger than under the alternatives
{6 + w . Thus A, (o) — » (— ) asn? (6, — 6) — o (— ).

ExamrrE 3. {X,}, n = 0, are normally distributed with &X, = 0 and co-
variance function R(m, n) = & (X.X,) = exp[—0|m — n|], 8§ > 0. Set
p = p(0) = exp (—0).

We make use of the following result:

& (Xa X5 Xi,Xs) = 20(0)'4H 5t 4 p(g)ieivtirh

for0 < % £ %2 £ 23 < 4. Setting p(6o) = po and p(6,) = p,, We use the ex-

pression for A, on page 43 of [6] to write
Au(B0) = o1 — p) = (1 + p0" )i (XjaX; — pa)l
+ po[2of (X1 — )] + po[ 2= (X — 1]
-+ (1 + Poz)n(Po - Pn) + Po3 - Po}-
Using the inequality P[|Z| > M] £ M *Var (Z), provided 8Z = 0, and bound-

ing the variance of each of the first three terms, we show that each is bounded in
Py -probability. More precisely,

Var (Q_j=1 X/) = Var (Q_j=1 Xi-1) = nf2 + 4p.°(1 — p,°) 7]
and Var i X;X,4) < nfl + p + 40,1 — p,2)71.
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For testing 6 = 6, against 6 > 6 or p = po against p < po, the variances of
—po(1 — p) " Xt (XiX i — p), (1 — po’) 0 200 (X — 1) and
pt (1 — pd) ™ D 1y (X2, — 1) are each bounded by [2 + 4p° (1 — po*) "]
pot (1 — po?)~*. Since nt (po — pn) = € n* (6, — o), the condition nt 6, — 6y) > o
implies that A, — o in Py -probability. A similar argument establishes (A'5)
when p is bounded away from one under the alternative.

Exampir 4. {X,,n = 0} are independent with common probability density,
the double exponential p (z;0) = Lexp[—|c — 0],z ¢ R, 0 ¢ R. Here

$16,6') = exp [} | X2 — 6] — § X2 — O],
Now for each 0 ¢ ©, define the random variables
Z;(0) = — if X; <6,
=0 if X; =09, j=0,1,---
if X;>0,

Then SaZj(B) = 89Z1(0) = 0 and 80Zj2(0) = 89Z12(0) = %, since Pg(Xl < 0) =
Py(X; > 8) = L. Furthermore, it is easily seen that

6.1) E (0,0 + ) — 1] — Z1(0) in Pj-probability as (05 )h — 0.
Next

N

[N

(6.2) 8of k' [¢n (0,0 + k) — 11}* = 2K"[L — & (6, 0 + b)),
where &1 (0,0 + h) = (2 — h)-exp (B/2) if <0
and 81 (0,0 + h) = 32(2 4+ h)-exp (—h/2) if A >0.

For A < 0, the right hand side of (6.2) becomes
2K1 — exp (h/2)] + h'exp (h/2)
= A -+ ——1+1=1 as h—0.
That is, for & < 0, A — 0, we have
6.3) &o{h [ (6,0 + ) — 1}* — §

and a similar expression holds for & > 0, » — 0. Relations (6.1) and (6.3) imply

that ¢1(8) exists and is equal to Z;(6). Since the remaining portions of the as-

sumptions (A1)—(A4) are clearly true, it only remains for us to verify (A5).
With Ps-probability equal to one, we have

$;(0) = Hpmy (X;) — ey (X;) and 4,(0) = 207" 271 6, (0).

Let 0,¢ ©,0, > 6, and nt (0, — 0) — . Since a location parameter is involved,
it is sufficient to consider the case § = 0. Thus,

(6.4) 8,(0) = o7t 27 sgn (X;).
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Now Py [sgn (X1) = 1] = Pg,[X1 > 0] = Po[X1 > —0,] = Py[sgn (X1 +6,) = 1]
so that the Py -distribution of A,(0) is identical to the P,-distribution of
> fsgn (X; + 6,). Consequently,

(6.5) P[0, (0) > M] = P X 2ysgn (X; + 6,) > M]

and we need only estimate the right hand side.
Under P, , the variables sgn (X; + 6,) have mean 1 — ¢ ™ and variance 1.
For each n, set

(66) VYM' = sSgn (XJ + en) -1+ e_on for .7 = 17 27 e, M,

where the Y,; are, for fixed n, independent with &Y,; = 0 and &Y%, = 1. There-
fore

en™ 3 Yoy | Pl — N (0, 1)

by the normal convergence criterion (p. 295 [4]) and hence n* > .7y V,; is
bounded in probability. Clearly,

(6.7) Y hesgn (X, 4 0,) = w7 Y i Vg + 01 — &)

so that the right hand side of (6.5) converges to one if nf (1 — ¢ ™) — «. This
latter condition holds since n*(1 — e¢™) = n%,/2 when 6, < In2 and
nt(1 — e ™) = n}/2 otherwise.

Assumption (A’5) may be verified in an entirely analogous manner.
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