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THE LOOSE SUBORDINATION OF DIFFERENTIAL PROCESSES TO
BROWNIAN MOTION!
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1. Introduction. Our terminology is, in general, that of [6].

A differential process {X (t)/t € [0, = )} is a stochastic process with stationary,
independent increments that is continuous in law and satisfies the initial con-
dition P[X (0) = 0] = 1. We shall assume that our processes are separable and
have sample paths that are almost surely right-continuous. A random time
{Y (T)} is a nonnegative differential process with sample paths that are almost
surely nondecreasing.

Every differential process is an infinitely divisible process. That is the charac-
teristic functions are of the form

(L.1) Jxy (u) = exp {tfx (u)},

where Yx(u) = dyzu — oxu’/2 + [Zs (™ — 1 —sux/(1 + %)) dMx(x)-vx, ox,
and M x are the Lévy parameters uniquely associated with the infinitely divisible
random variable X (1). The Lévy spectral function Mx is nondecreasing on
(— e, 0) and on (0, « ), is asymptotically zero (Mx(—®) = 0 = Mx(+=)),
and satisfies the integrability condition

JA+ [fddMx() < .

The Lévy spectral function for a random time vanishes on the negative half-
axis and satisfies the stronger integrability condition

[HizdMy(z) < .

Consequently, the characteristic functions for a random time can be written in
the form

(1.2) fren(w) = exp {T (tyvu + [5 (€™ — 1) dM+(=))},

where vy = 0 is the trend term of the random time.

A standard Brownian motion {W (¢)} is a separable differential process with-
sample paths that are almost surely continuous and such that £(W ()) =
9(0, t). Any random time { Y (7')} independent of the standard Brownian motion
is loosely subordinate in the sense that there exists a random time (loose sub-
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ordinator) {S(T)} such that W(S(T)) = Y (T) almost surely. In particular,
S(T) = (Y (T)) = inf {{/W(t) = Y (T)} would be such a loose subordinator.
The random variable 7 (Y (T')) is the first time of hitting the random variable
Y (T'). We would like to extend this concept of loose subordination to more general
differential processes than the random times.

The following result due to A. V. Skorokhod (page 163 of [5]) seemed very
suggestive. Suppose X1, - -+, X, are independent random variables (satisfying
certain conditions) that are independent of {W (¢) }. Then there exist independent
nonnegative random variables 71, - - - , 7, such that

W), Win + 1) — W(n), -+, W(Z;Z;l Tk) — W(Zl?;llﬁc)

are independent and
£(W(Zi=1 Tk) - W(Zi;i Tk)) = £(Xj)) .7 = 1, e, e

One might feel that if the X} are increments of a differential process {X (T')},
the 7; behave in the manner that would be expected of the corresponding incre-
ments of a loose subordinator. If our intuition was correet in this instance, we
could use the Daniel-Kolmogorov Theorem (as in Section 7.4 of [6], where the
existence of a Brownian motion is proved ) to generate a random time equivalent
to the loose subordinator.

Unfortunately, neither the Skorokhod variables nor the first hitting times
satisfy the necessary consistency requirements. In particular, if {S(T')} is to be a
nonnegative process with stationary, independent increments it should be true
that

P[S(2T) = 0] = P[S(T) = 0, S(2T) — S(T) = 0] = P[S(T) = Of.

But suppose {X (T')} is a symmetric Poisson process; i.e., X (T') has distribution
@1 (T) — @ (T), where @ (T') and ®.(T) are independent Poisson random vari-
ables with parameter T'. Then if 7 (X (T')) is either the Skorokhod variable or the
first hitting time corresponding to the singleton X (T')

Plr(X(T)) = 0] = PIX(T) = 0]
=L+ 20 T/ ().
We see that
Plr(X(T)) =0F <" "
and

Plr(X(2T)) = 0] > ¢ (1 + 4T + 4T*).

Thus for T = 1, P[+(X(T)) = 0] < P[+(X(2T)) = 0].
The problem seems to be that the Skorokhod variables and first hitting times
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do not in general reflect the behavior of the {X (7')} sample paths. We shall de-
velop a loose subordination which is valid for exactly those differential processes
whose sample paths are almost surely of bounded variation over [0, 1] (over
every bounded interval). We shall also obtain the Lévy spectral function of the
loose subordinator in terms of the spectral function of the {X (T')} process and
the trend term of the total variation of the {X (T')} process. We conclude by con-
sidering the case when {X (7')} is symmetric stable with characteristic exponent
a¢ (0, 1) and showing that loose subordination does not correspond to sub-
ordination in the sense of Bochner.

2. First hitting times and loose subordination. If X is a random variable inde-
pendent of {W(t)}, we define the first hitting time via

7(X) = inf {t/W(t) = X}.

Theorem 1 and its corollaries are known but we include them for complete-
ness.
TrEOREM 1. For N > 0, the first hitting time has distribution

(A) F.a() = [Zo 2/ @\ [T exp {—y/2\) dy dFx (&) = F.qxp(\).

ProoF. Set X = D imok/2"-I[k/2" = X < (k + 1)/2"] + X k/2™
I[(k—1)/2" < X £k/2"]. Then X,,* T X*and —X,,~ | —X". The continuity
of the Brownian sample paths then implies that 7(X,,) — 7(X) and 7(|X.|)
— 7(|X[) almost surely. Thus F.x,) —> F.x) and F.qx,.;) = F.qx)) . Applying
the reflection principle of Désiré André (Theorem 2 of Section 8.3 in [6]), we see
that forz = 0,

Plr(z) = N = Plsuppn W () 2 2] = (2/@2n\)})-[7 exp {—y*/2\} dy.

The symmetry of the Brownian motion yields the same value for P[r (—z) < \].
Thus, since X is independent of {W ()}, Frx,y \) = Dope—w Plr(k/2™) < A]-
P[Xn = k/2"] = F.qx,,) (\). We conclude by noting that

Frxy () = [Z0 Plr(z) < N dFx,, (z)
= [2% /@)Y [T exp {—y/2\} dy dFx,, (z)

and applying the Helly-Bray Theorem. []

Applying the Helly-Bray Theorem to (A), we obtain

Cororrary 1A. Suppose (X,) and X are random variables independent of
{(W (@)} and Xn —e X. Then 7(X,) —e 7(X).

CoROLLARY 1B. For A > 0

dF.xy(\)

(B) d\

= f_: (|z|/(2m\*)) exp {—2%/2\} dFx(z).

Proor. The Lebesgue Dominated Convergence Theorem allows us to take
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derivatives inside integrals in the following argument. From (A) we see that

= j: [(—1/(27r)\3)*) fi: exp {—y"/2\} d

+ (1/(2m\)Y _/]‘Tyz exp {—vy’/2\} dy] dFx(2).
But integrating by parts, we obtain
1/ @m\")) [T o exp {—y7/2\) dy
= (1/@rN)) (—y exp {—y*/2M | + [T exp { —y/2M)dy
= (1/@m\")}) (|2 exp {—2/2\} + [T exp {—9"/2\} dy). [

This does not imply that F,(x, is absolutely continuous since it will take a jump
of size P[X = 0] at the origin.

We now note that if {X (¢)} is a random time, then {r (X (¢))} has no trend
term. This follows from the Markov property and the observations that (see
pages 25-27 of [3])

(2.1) frw () = exp {(2m) 7 a] [T (€™ — L)y dy}

has no trend term and that the first times of hitting a jump process will form a
jump process.

Now let {X (T)} be a differential process, independent of {W (¢)}, and fix
T = 0. Then for any positive integer 7, there exists a nonnegative integer k, such
that k,/2" < T < (kn + 1)/2". Setting 7.” = 0 and applying the strong Markov
property (see Lemma 2, page 166 in [5] and [2]), we obtain independent, identi-
cally distributed random variables

' (T) = inf {t/W (¢ + Zi=ima' (T)) = X (i/2")}, i=1,-,k

such that W (O_%y 7. (T )) = X (k./2") almost surely. It is obvious from the
construction that )i 7,'(T') = 7,(T) 7. Indeed,

m(T) = inf {t/W(t:) = X(@/2"), W) = X (k:/2");0 =6 £ -+ = ty,1 S B

If S(T) = limn.e 72 (T') is almost surely finite for some 7' > 0, we have achieved
a loose subordination of the {X (T')} process. Since random time processes have
sample paths that are almost surely nondecreasing, S(7') = 7(X(T')) almost
surely when {X (T')} is itself a random time.

THaEOREM 2. Suppose there exists To > 0 such that S(To) vs almost surely finite.
Then W (S(T)) = X (T) almost surely and {S(T)} is a random ttme process.

Proor. Assume Ty = 1. Then T' £ 1 implies 7, (T) =< 7.(1) and thus S(T") is
almost surely finite. If & is some positive integer f, g (u) = (fro (w))*. Thus
7. (k) converges in law and S (k) is almost surely finite.
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W (ra(T)) — W(S(T)) almost surely via the continuity of the Brownian
sample paths. At the same time

X (ka/2") = 2251 [X (k/27) — X (kja/27)] —e X (T).

Applying Theorem 1 of Section 5.2 in [6], we see that X (k./2") — X (T') almost
surely. Thus W (S(T')) = X (T') with probability one.

Now suppose that 0 < Ty < T . Then 7,(T2) — 7.(T1) and 7, (T:) are inde-
pendent by construction. Since the 7,° are independent and identically dis-
tributed, we see that 7,(T2) — 7.(T:) has the same distribution as one of
T (Ty — Ty), (T — T1) — 74", or 7 (T2 — T1) + 1", where r,* is another inde-
pendent copy of 7,'. Theorem 1 implies that 7,' —¢ 0 and the obvious limit argu-
ment completes the proof that {S(7')} has stationary, independent incre-
ments. []

TueoreMm 3. Let B(T') be the total variation of the sample path X (¢) over [0, T].
Then LS (T)) = £ (B(T))). That s, the loose subordinator has the same dis-
tribution as the first time of hitting the total variation. Thus S(T) s almost surely
findte if and only if B(T') is almost surely finite.

Proor. For convenience we assume 7' = 1. Then

B.(1) = 2235 |X@#/2") — X (G — 1)/2")| T BQ),

implying that 7(B,(1)) — 7(B(1)) almost surely. The random wvariables
[xX@a/2m|, -+, X@) — X((2* — 1)/2")| are independent and independent of
{W (t)}. The strong Markov property allows us to represent 7 (B, (1)) as a sum
of independent, identically distributed random variables

7(B.(1)) = . *1-,.", where *7,' =0 and
*rad = inf {t/W(t + Yot *rF) = 2oia [X(k/2") — X((k — 1)/2")]}.

From Theorem 1, *r,' = 7(|X(1/2")]) and ' = 7(X(1/2")) have the same
distribution. Thus 7(B. (1)) and 7, (1) have the same distribution. Convergence
in the extended-real sense and convergence in law imply that the limit is almost
surely finite. Thus S (1) is almost surely finite if and only if 7 (B (1)) is almost
surely finite. Brownian sample path properties complete the proof. []

TrEOREM 4. Let {X (¢)} be a differential process whose sample paths are almost
surely of bounded variation over [0, 1] and such that -

foey () = exp {t(uy + [T (€™ — 1) dM5(x)}, v Z 0.
Then
fon @) = exp {T [§ (¢™ — 1) dMs(x)},
where the last Lévy spectral function vs given at points of continuity by
Ms(@) = —@v@m)? 4+ [7 2,10 @xy") 7 (exp { —£/2y} dMx(t) dy).
Proor. We first assume that v = 0 and remark that Mz(x) = Mx(x) —
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Mx(—=z) except for at most countably many points. Applying Theorem 3 of
Section 6.5 in [6] and Theorem 3 of this paper, we obtain
Ms(e) = —[2dMs(y) = —litn.s 2" [Z dFsapm (y)
= —limnsw 2" [2 dFrsasom) (¥)-
Corollary 1B implies that the last expression equals
—limasw 2" [7 [5 18] 2ry®) ™ exp { —£/2y} dF e () dy.

The Helly-Bray Theorem and the integrability condition [¢¢dMz(t) < « imply
that this converges to

—[2 [Tl @ry’) Fexp {—E/2y} AM s (t) dy
= — [ [l @ry’) " exp { —/2y} dMx(t) dy.

If v £ 0, the Markov property and observation (2.1) complete our proof. []
Interchanging the order of integration and setting y = £x/N, we obtain the
alternate form

Ms(x) = —2@2rz) (v + [Z [ exp { —N/22} N dMx(t)).

Let us consider an example. Suppose {X (¢)} is a symmetric stable process with
frw@) = exp {—t|u|*}, where a £ (0, 1). It is well known that these are pre-
cisely the symmetric stable processes with sample paths of bounded variation.
Moreover, {B(t)} would have no trend term. The Lévy spectral function of the
stable process is given (see page 330 of [4] and integrate by parts) by

Mx(t) = k/|t]>, t<0;
= —k/t*, t>0,

where k = 1/2T' (1 — ) cos (ra/2). Using the alternate form in Theorem 4, we
obtain

Ms(z) = —4ka2rz)™ [T [oexp {—N/22} " d) dt
= —dka(2rz) [T [T (1/6T) exp {—N'/2x} dt dN
= —dka(2rz)” [T (1/X%) exp {—N\'/2x} dA.
If we set \/2¢ = 3, the last expression becomes

- ay=h —aiz [ v -y 5 _ —2kT(G(1— @) 1
2k (x2%) "z /(; Y e dy = (w22)k o2

Thus the loose subordinator is one-sided stable with characteristic exponent a/2.

If a random time {¥ (7T')} is independent of the standard Brownian motion
{W(t)}, then the superposition {X(T) = W(Y(T))} is again a differential
process. {X (T')} is subordinate to the Brownian motion in the sense of Bochner
and {Y(T)} is the corresponding subordinator. Since the symmetric stable
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process with characteristic exponent o has a subordinator which is one-sided
stable with characteristic exponent «/2, we might suspect that our loose sub-
ordination has simply recaptured the Bochner subordination.

However, it is well known that the characteristic function of the superposition
is given by the Laplace-Stieltjes transformation

fweremy (W) = 2 eV IRY (T)(”).

Thus if the Bochner subordinator corresponding to the symmetric stable process
with characteristic exponent o has Lévy spectral function My (z) = —c/z°,
we may calculate that

e ™" = [T exp (—u'y/2) dFvq) (y)
= exp {c [ [exp (—u’z/2) — 1] a/22 " dy
= exp {—c [¢ v’ exp (—uz/2) (22*) " du}.

If we set u’z/2 = t, the last expression becomes

® ~t - (1 — a/2
exp{—c/; Wdt}= exp{ ¢ lu] 251/2 /)}.

Thus ¢ = 2*/T(1 — a/2) and My(x) = —2*27*?/T (1 — a/2). Comparing
the Bochner and loose subordinators, we obtain

My(z) _ «2°T(1 — a) cos (ra/2) _
Ms(z) TQA — a/2TGA — ) cos (ra/2)

via Legendre’s relation (page 24 of [1]). We conclude that the two subordinators
differ in scale and that loose subordination is apparently a new concept.
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