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JACKKNIFING U-STATISTICS!

By JaMES N. ARVESEN

Purdue University

1. Introduction. Several recent papers have shown the versatility of a rela-
tively new estimation procedure. The jackknife was originally proposed by
Quenouille in [17], and later expanded on by the same author in [18]. Subse-
quently, Tukey [15] proposed the use of it to obtain approximate ¢-statistics to
be used in testing or construction of confidence intervals. Two papers of Miller
[13], and [14] are rigorous justifications of situations where Tukey’s method
proves valid (as well as situations where it is grossly invalid).

Let 6 be an unknown parameter, andlet X;, ---, Xy be N independent, iden-
tically distributed observations from the e¢df Fy . The essence of the jackknife is to
divide the N observations into n groups of k£ observations each (N = nk). Let
6. be the estimate of 8 based on all N observations, and 8,1, ¢ = 1, ---, n,
denote the estimate obtained after deletion of the ¢th group of observations.

Let

(1) 9;=n9n°—(n-1)9’;,_1, i=]_’...,n.
These are called pseudo-values by Tukey. Then the jackknife estimate of 6 is the
average of the §;,7 =1, --- , n,

(2) f=n" Z£‘=1 b;.

When originally proposed, Quenouille considered » = 2, and found that the
technique eliminated the 1/N term from any bias. This result holds for all values
of n, for if

3) E@®.) =0+ a/kn + b/(kn)* + ---
one can show that
(4) E@) =0 —b/'ntmn — 1)] + ---.

Perhaps more importantly, Tukey has proposed that in most instances
b1, -+, b, can be treated as n approximately independent, identically distributed
observations from which an approximate ¢, statistic can be constructed (note
that if Xy, ---, Xy are independent, identically distributed random variables,
then &y, - - - , 6, are interchangeable random variables for each n). Equivalently,
Tukey conjectured that

®) ni@ — 6)/((n — 1)7 201 (8: — 6)")}
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is approximately distributed as a ¢ random variable with n — 1 degrees of
freedom.

One might feel that a reduction of bias as indicated in (4) might be accom-
panied by an increase in the mean square error of the estimate. However, in
[3], Durbin exhibited a class of problems in ratio estimation where this is not the
case. Both the bias and mean square error were shown to decrease under a
reasonable model.

What follows is essentially an application of Tukey’s idea. The original moti-
vation was to obtain robust procedures in Model II ANOVA. However, it was
found this could best be done by studying U-statistics (see Hoeffding [6]), and
functions of several U-statistics. This more general setting leads to other results
as well.

In Section 2, the jackknife technique will be applied to U-statistics and func-
tions of several U-statistics. With suitable regularity conditions, it will be
shown that Miller’s results of [13] can be extended to these cases. In Section 3,
these results are applied to obtaining robust procedures in a one-way Model II
ANOVA layout. Also included are applications to ratio problems, and correla-
tion coefficients. Section 4 considers extensions to two-sample problems. Some
previous work of Cornfield and Tukey [2], and Hooke [7] and [8], dealing with
two-way Model II ANOVA layouts is also examined. It is shown that the jack-
knife procedure can be profitably used in the two-way layout.

2. Jackknifing U-statistics.

(a) Functions of means. In the construction of the jackknife estimate, it is
necessary to divide the original N observations into n groups each containing
elements (N = nk). Temporarily, we will assume & = 1, and hence N = n.

Recall the definition of the jackknife estimate of a parameter as given in the
introduction. Consider the case where 8, is an unbiased estimate of a parameter
8, and ¢ (6,°) is a transformation of the statistic 6,’. Then in general, g (.’) is a
biased estimate of ¢(8) due to the nonlinearity of the transformation. In many
cases, it will be biased of order 1/n. Hence the jackknife might lend itself to con-
sideration in this case.

Letb; = ng(X) — (n — )g(X), X =0 20 X,;, X' = (n — 1) 2 X
fori=1,---,n,0 =n" D> i 0;,and 6 = g(u). Then Miller [13] proved the
following two theorems.

TurorEM 1. Let { X} be a sequence of independent, identically distributed random
variables with mean u and variance 0 < o® < -+ . Let g be a function defined onthe
real line, which in neighborhood of u has a bounded second derivative. Then asn — »,
nt(@ — 0) is asymptotically normally distributed with mean zero and variance
(g’ ()"

TuroreM 2. Let { X} be a sequence of independent, identically distributed random
variables with mean u, variance 0 < o* < + . Let g be a function with a continuous
first derivative near . Then asn— », s = (n — )7 2 0 — 0) —ed” (g ()™

Note the stronger assumption on ¢ in Theorem 1. The unjackknifed estimate
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has an asymptotic normal distribution with only the assumptions on g of Theorem
2. Also note that the stronger assumptions of Theorem 1 yield Tukey’s conjecture
5).

(b) U-statistics. Miller’s two theorems can be extended to the consideration of
U-statistics. Let X;, ---, X, be independent identically distributed random
variables, and f(Xi, -+, X») be an unbiased estimate of some parameter 7,
where m is the smallest number of observations needed to estimate n. Then there
exists a symmetric form of f(X;, ---, Xu), given by

(6) f*(Xl, vy X)) = (m!)_l Eme(Xﬁlr Tty Xﬁm)

where P,, indicates that the sum is over the m! permutations of the subscripts.
Then the U-statistic for the parameter #» can be written in the form

(7) U(XI’ ’Xn) = (Z)_lzcnf*(Xau e ’Xam)
where C, indicates that the summation is over all combinations a1, -+, an of
m integers chosen from 1, - - | n.
A U-statistic is unbiased, and hence,
8) ElUXy, -+, Xu)} = 1.

Let’fc*(xlf ,Ilic) = E{f*(X17 ’XC’XH-I’ ’Xm) | Xy =, - ’Xc =
z.} and let
(9> §C=Var{fc*(X1,-~-,Xc)},c=1,---,m,
$o=0.
Then Hoeffding [6] shows:

TaEOREM 3. Let X1, - -+, X, be tndependent identically distributed real random
variables. If f* (X1, -+, Xu) ts a real-valued symmetric statistic with expectation
n and finite second moment E[f* (X1, -+, Xn) < o, then asn — o, the limiting
distribution of n¥{U — n) is normal with mean zero and variance m’¢; .

As the following theorem indicates, one is also able to obtain a.s. convergence of
U-statistics.

TueorEM 4. Let X1, + -+, X,, --- be independent identically distributed real
random variables. If f* (X1, - -+, Xum) ts a real-valued symmetric statistic with ex-
pectation nand Blf* (X1, -+, Xn)| < »,then U Xy, -+, Xn) —as.1,n 08 N—>0.

Proor. The proof is given in Berk [1], and is given here for future reference.

Let YV, = {Xw, -+, Xw} be the set of order statistics, and let

Fpn = ®(Yn, Xuy1, Xus2, - -+ ) be the o-field generated by Y, , Xoi1, Xnye, -+ .
Letting Z, = E[f* (X1, -+, Xn) | Fu]l = U(Xy, - -+, X,) a.s., one obtains

ElZ,| Spp] = EU*(le w0y X)) | Fap] = Zuia as.

since F, D TFna.Hence {Z,, F,.}isareverse martingale, and by the martingale
convergence theorem, there exists Z,, such that U (X1, - -+ , Xu) = Zn —as.2, Zeo -
» Given ¢ > 0, let

A =[UX1, ---,Xs) > 1 + einfinitely often].
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Since any finite permutation of the sequence X, - -+, Xy, - - - leaves the event A
invariant, by the Hewitt-Savage theorem, P(4) = 0 or 1. Since E(Z,) =
E(Z,) = 1, P(A) = 0. A similar argument works with B = [U (X1, - -, X») <
n — e infinitely often] to yield the result.

Theorems 1 and 2 can be extended to U-statistics. First, the following notation

will be helpful:
(10) Ud = )7 20 Kays =+ Xan),s
Ui = () 2ciy £ Xpriy o+ 5 Xomi),
where C, is asin (7) and C%_1 indicates that the summation is over all combina-
tions (81, -+, Bn’) of m integers chosen from (1, ---,¢ — 1,7+ 1, ---,n),
and f*(Xy, -+, Xn)isasin (6). Let g be a real-valued function, and
éno = g(Un0)7 éi—l = g(Ui—l),
(1) b; = nb) — n — 1)y for 5=1,---,mn,
b= n_l Z?=l éi, = g(ﬂ))
sh=(n— 1) 2k (6 — 6).

TuarorEM 5. Let X1, -+, X, be independent, identically distributed random
variables, and let f* (X1, - -+ , Xn) be a real-valued symmetm’c statistic with expecta-
tion n, and finite second moment E[f* (X1, -+« , Xm Y < 4+ . Let g be a function
defined on the real line, which in a nezghborhood of 7 has a bounded second derivative.
Then asn — o n*(é — 8) —¢ 9(0, m*calg’ ()I).

Proor. The proof follows that of Miller [13]. Without loss of generality, let

n =0.Let I = (=34, + 3A), A > 0, be any neighborhood of zero in which g
is bounded. Then, as n — o, U,’ —» 0, and hence

(12) Pr{U e (—A, A)} — 1.

Note that
(13) Una = (m) (n;.l)_lUno )™ 20 n—-l‘f Xy Xagiy ooy X"‘rin—l)
where Zni _, Indicates that the sum is over all combinations of m — 1 integers

(aa’, -+, 1) chosen from (1, ---,2 — 1,241, ---,n). Let ¥; = ™
'Zpi_lf* X, Xayi, ooy Xai_ )y0=1,---,n. First note that for n sufficiently

large, Var Y; < &1 + 1,7 = 1, - -+, n. Then using the fact that the Y’s are a
sequence of interchangeable random variables, and the Chebyshev inequality

(14) Pr{maxigcica {fm¥Y1]/(n —m), -+, [mYu|/(n — m)} > A}

S aPr{mYi/m —m) < A} £’ (6 + 1)/ ((n — m)’A") -0
asn — . From (12), (13) and (14), it follows that
(15) Pr{U,’, Us_1, - -+, Un_y € I simultaneously} — 1.

Also, since if P{E,} — 1, lim P{A,} = lim P{A,E,}, one may tacitly assume
(15) in what follows.
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Next, note that

(16) b: = ng(U.") — (0 — 1)g(Una)

=ng(U.") — (n — 1) {g(U)

+ (U = Ua")g (U) + (Unaa — US)'" (5:)/2)
where £; lies between U, and Us_y,% = 1, - -+, n. Hence,
b =n"D 00

gUS) — (0 — 1™ i (Ua — Ua')g (US)
— (= Un™ 2 g ) (Una — UL)/2
gU) — (0 — 1) i g (8) (Uaa — Ua')?/2
since n* D iy Uty = U,’. Rewriting (17),

(17)

I

Il

(18) n'(0—0) =n}(g(U.") —g(0)) = (n— 1)n™* 3oiag” (£) (Uaa = Un')'/2.

For U, ¢ I, g(UY) = ¢g(0) + U.’-¢'(¢) where .E lies between U,’ and 0.
Asymptotically U, is 91(0, m*:1) by Theorem 3, and ¢ (¢) —» ¢ (0) (with £
defined arbitrarily if U,’ ¢ I). By Slutsky’s theorem, the first term on the right
of (18) is 9L (0, m*t1 (g (0))?). Applying Slutsky’s theorem again, one only need

show that

(19) (n — 10 2 g" (&) (Una — Ua')/2 -2 0.

Consider the expression

(n— 1) 20 (Uhoy — UL’

(20) = (n — 1){ 2k (Una) — n(U)Y
= (= D) X { il Kty s Kani W Ky o5 X))
- n(:b)—22f*(Xa1 y " Xam)f*(Xﬂl y T Xﬁm)]
where D _; is over all combinations (o, -+ -, am.i) of m integers from (1, - -,
t— 1,2+ 1, ---, n) and all combinations (8:’, -+, Bx") of m integers from
,--+-,i—1,i4+1,---,n),and > is over all combinations (a1, - - - , @n) of m
integers from (1, - -+, n) and all combinations (81, - -, Bx) of m integers from
(1) Tty n)
Collecting terms, (20) becomes,
(m— D{ (W) 2060 (v — 2m +¢) 2o f* Xy, -+, Xan)
f (Xﬁl y * T Xﬂm) - n(':‘)_z Z:LO Zc f*(Xa17 ) Xam)
(21) 'f*(Xﬂl7 e Xﬁm)}
= (n— D
?=0 (cn -m ) ZO {f*(Xal y 7X<!m)f*(Xﬁl y " ,Xﬂm)}
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where Zc indicates that the sum is over all combinations (a1, -+, am) of m
integers from (1, ---, n) and all combinations (81, - -+, Bm) of m integers from
1, - -+, n) having exactly ¢ common members.

Let

(22) U, = (g)_l(ﬁ;z - :’z.::n _lZf*(Xaly e 7Xac’Xﬁl’ e 7Xﬂm-c)
'f*(Xa17 7X¢07X‘71’ Tty X‘Ym—c)

where Z is over all disjoint sets (a1, -, @), Br, “**, Bmc)y (Y1, *** 5 Vmee)
of distinet integers chosen from (1, ---, n). Note that U, is a U-statistic with
symmetric kernel

*
K (X¢!17 e ’X¢07Xl317 e ’Xﬂm-c7X1, "'7X‘/m-o)
(2m—c) -1 * :
= (c(mi”c)'(:ﬂt—C)) anf (Xan"';Xac:Xﬁn"'7Xl3m—c)
k
-f (Xau"':Xao:Xvn"’,Xm-c)

whose expected value is ¢, and where D _p, indicates the sum over all of the
(o ey im—cy) POssible permutations of (a1, -« , de, By =+ » Brmoo, Y1y = * 5 Yroco)
that are not permutations only within the sets (a1, - -+, @), (B1, ***, Bmsc), OF

(v1, **+, ¥m—c). Note that U, can also be expressed in the form
(23) U, = (21:—0)_1
'Zczm—c K*(Xau Tty Xac ) Xﬂl s " Xﬂm—c ’ X‘n; ] X'Ym—c)

where D ,.._, indicates that the summation is over all combinations of (2m — ¢)
integers (a1, ***, @, B, ***, Bmecy, Y15 *** 5 Ym—e) chosen from (1, ---, n).
Since by assumption E (f* (X1, --+, Xm))* < «, use of Theorem 4 shows that
U, — ¢. a.s. and hence

(24) Us—p§e a8 n— o,
Hence substituting (22) into (21), and using (24), one obtains
(25) (= 1) (Ui — U = (0 — Dn™ (%)
e (e — m) () () (BEMU, —p miy as m— w.

If (15) holds, |g” (¢)| < M,4 =1, -+ ,nforsome 0 < M < + . Since (25)
holds, the n™* term makes (19) —» 0 with or without U,’, Us_y, -+, Uty eI
(¢: arbitrary if U,*, Uk_y £ I). Hence the result follows.

TaeorEM 6. Let Xy, ---, X, be independent, identically distributed random
variables, and f* (X1, - -+, Xn) o real-valued symmetric statistic with expectation
n, and finite second moment E{[f* (Xy, -, X.)]"} < + . Let g be a function de-
Jined on the real line, which in a neighborhood of n has a continuous first derivative.
Then, asm — @, s;" = [g' (1)'m’t1.

" Proor. The proof essentially follows that of Theorem 2. Assume 7 = 0 with-
out loss of generality. Again one can show that (15) holds. In this case g (Uy—1) =
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g(‘UnO) ~ (Ui — U (rs) fors = 1, -+, n where 7; lies between U," and
U1 . Hence
s¢ = —1)" 2 i —0) = (0 — 1) i @ — 620)

where
oy = n" Dt 0y,

s = (m—1) Z;;l (Q(Ui—l) - Z?=1 Q(Ui—l))z
(n = 1) 2 (Unma = Ua)g (1) — 07 2 (Uha — U)g (1))
(n—1) 2 {((Una — U)g 0) + (Una — UL (G () — ¢'(0))
— 07 2 (U = U)g (o))’
[ O (n — 1) 2oi (Unea — UL’
+ (n— 1) 2 { (U — UL) (G (r) — ¢7(0))
— 0 2t (Uh — UL (¢ (r5) — ¢ (@)} + X — product term.

The first term above, [¢' (0)*(n — 1) Do Uiy — UL =5 [¢ )"t by
(25). Hence the proof is complete if the second term can beshown —; 0, sincethen
the X-product will —7 0 by the Cauchy-Schwarz inequality. Let h(z) = ¢ (z)
— ¢'(0), then if it can be shown that

(26) (m—1) 2ty (Ui — U (h(r:)) —=p0 as n— oo,

I

I

the second term will —5 0. Since ¢’ is continuous near zero, for ¢ > 0 there exists
Ac > Osuch [h(x)| < eforxz eI = (—Ac, Ac). For U, Uny, +++, Un_ie I, ,

@7) (n— 1) X (Uhy — UL (R (7))
<ém—1) 2k (Ui — UL —p ém¥.

Since e is arbitrary, the left side —» 0, and the result follows.

Recall it has been assumed in the grouping N = nk, that & = 1. The above
proofs can be repeated with only slight modifications if n» — o with & > 1.
Hence Tukey’s conjecture, (5), holds in this case, and

@ —0)/((n — 1) 20 (B — 6)°)?

has an asymptotic standard normal distribution as n — . The case where n
remains finite when N — o remains to be shown. The notation is as in (11), ex-
cept Usy = ("7 e, f* (Xgy, 5 Xp,i) where C,1 indicates the

summation is over all combinations 8", ---, 8.’ of m integers chosen from
1, -+, ¢ — 1k, k+1, -+, N.

TurorEM 7. Let X1, -+, Xy be N independent identically distributed random
variables, and let f* (X1, -+, Xn) be a real-valued symmetric statistic with expecta-

“tion n, and finite second moment E[f* Xy, -+, Xm)I' < + . Let g be a function
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defined on the real line, which in a neighborhood of n has a continuous first derivative.
Then as N — «,

nt6 — 0)/s; =g ta,

where t,_1 denotes the Student-t distribution with (n — 1) degrees of freedom.
Proor. Assume n = 2; the proof extends with slight modification for finite n.
Also without loss of generality let n = O.
Then

b= 29(U") — g(U1") = g(Us") + &
b = 29(UY) — g(U) = g(U1') + &
where & = & = 2g(Us’) — g(Ui") — g(UY"). But 6; = 0,(1),7 = 1, 2, since
Var (8;) — (5 (0))* Var QU — Uy* — Ui*) = (4'(0))" (4 Var (U’)
+ Var (U) + Var (U?) — 4 Cov (U, Ul') — 4 Cov (UY, UY")).

But
Var (Us)) = (m)7 226 () e ),
Var (U) = Var (U?) = &)™ 2w @) ES™)e., and
Cov (U, Ui') = Cov (UY, Uf) = GG~ e GO Gt

Comblmng the above expressions with Chebyshev’s inequality, 6; = 0,(1),
=1,

Hence, 61, 6, tend to be independent 9t (0, m ’t1(¢' (0))*) random variables as
N — . Applying Theorem 5 in Mann-Wald [12], one obtains the desired result.

Note the weaker assumptions on the function g (-) than in Theorem 5. In all
the following results, we will assume in the grouping N = nk that £ = 1, and
hence N = n. One could repeat the above argument and obtain convergence to a
¢ distribution in the case where n remains finite.

(c) Functions of several U-statistics. It is possible to generalize Theorems 5 and

6 to vector U-statistics. To this end, assume X, - -+, X, are n independent,
identically distributed random vectors of p components Let U®, -, U be
such that

(28) | U(j)= (”':L])—IZ f*(j)(Xal;""X‘!m ), j: , s, 4,

where C,, as in (7), and f* ? is a real-valued symmetric kernel based on m; ob-
servations, and is an unbiased estimate of 7 @ Tet g be a real-valued function of
g arguments, and

(29) b = g(U®, -, U?)
051 = (U(l)z .- fgi))

G —1y—1 % () d
where f?i) = n ]) Z n—lf G (XBI )t ’Xﬂ:ni)
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and i1, (B, -+, Bm;) asin (10),
b = nb) — (n — 1)05s, i=1-,n.

b =n""D 10,
0=g@® -, 09,
s = (n—1)7 2ia (6 — 6)" and
ge =0 ®, -, 190t ® | om0y,
gor = 391, -, 19) /0t Pt P | (v ety

fork,I1=1,---,q.

TrHEOREM 8. Let X1, ---, X, be z'ndependent identically distributed random
vectors of p components. Let f* @ (X1, , Xm;) be a real-valued symmetrw statstic
with expectatum 7P and finite second moment E[f* D (Xy, - Xm])] < 4+,
j=1,---,q. Let g be a real-valued function defined on R*, whzch ma nezghborhood
of (n (1) <o, 1?) has bounded second partial derivatives. Then, as n — o,
n* (0 — 0) 18 asymptotzcally normally distributed with mean zero and variance

Dt 2 damim;gigi &1 P where
e O = Cov (¥ Xy, e, Xo), LXKy, o0, X))

Proor. Extending (15), one can readily show for any interval I; containing
7, in which ¢ has bounded second partial derivatives, that

(30) Pr{U® U, ..., UY &I, simultaneously} — 1
forj =1, ---,q. Also,
0 =ng(U®, -, U?) = (n — 1)g(UZ, ---,U2)
(31) =ngU®, -, UP) - (o — D{gW®, ---,U?)
+ X4 (UG — U D)y,
+ 200 2 (U = UPYUR — UP)ganlt:)/2)

where §; indicates that the partial derivative is evaluated on the line segment be-
tween (U®, -, U9) and (UL, ---, ULR). Hence

(32) é = 'n_l Zi=l 0;
=gU®, -, U?) — (0 — 17" 2ojea { D20er 2ok g (80)
(U = UPYUR - U®)/2).
Rewriting (32), one obtains
n%é—'e)=n%(g(U(1)v"')U(Q)) g(’]a) "‘,ﬂ(q)))
(33) — (v — 1) i {2 2o g (8:) (U — UY)
(U(k) U(k) )/2} .
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When the events described in (30) hold,
gU®, -, UP) =gan®, - ,1n9) + X1 U — 7 P)g;8)

where £ is some point on the line segment between (U ", ---, U @) and (n ©,
-, 71?). Combining Hoeffding’s Theorem 7.1 [6], and the multivariate form of
Slutsky’s theorem,

30 (UD — 0 P)gi(8) —g R0, 201 2oty mamugigass )

asn — .
Returning to (33), using Slutsky’s theorem it only remains to show that

(34) (n—1)n ZLI {Z?AI Z%=1 giw (£5) (U‘(jz) - U (ﬁ)
(U™, — U®)/2} —p0.

However, when the events of (30) hold, |gix(¢:)| < M,2=1, -+ ,n;5,k=1,--+,q
for some 0 < M < + . But (25) shows that (n — l)n %M Ez_l > (U Uy

U @Y/2 —5 0, and the cross product terms can be handled by the Cauchy-
Schwarz inequality. Hence (34) holds.

TaEOREM 9. Let Xy, -+, X, be mdependent, identically dustributed random
vectors of p components Let f + (X1, ++ -, Xn) be a real~valued symmetric statistic
with expectatzon 7 ), and finite second moment E[f* & Xy, -, ij)]2
< A4 w,7=1,---,q. Let g be a real-valued function deﬁned on RY which in a
netghborhood of (17 <1) e, (q)) has continuous first partial derivatives. Then as
n — 00

s¢ = [t 2 mim;gigs &1 ).

Proor. As in the previous theorem, one can show the events of (30) hold for
intervals {I;}%; about (7, ---, 7?) in which g has continuous first partial
derivatives. Then if (30) holds,

g(US, -, U8) =gU®, -+, U®) + 80 (UL — UP)g;(r0)

where 7; lies between (U ®, -+, U @) and (UL, ---, UL ). Hence,
392 = (n— 1)—1 Z:’L—l 6 — 9) =(n-—1) Zi=1 (0n_1 —b,)
=m—1)2m @UY, -, UQ) =0 g%, -, ULQ))

I

(n—1) > (Zu( “2 - “’)g,-(n)
— 7 i 2t (U — U D)gi(me)):
(n—1) 2 Zu (UL —UPygs+ 280 (U = U D)
gi(re) — g5) — 0 2k 2t (UG — U D) (g5(me) — gi))?
n—1) 2t 2t b (US — UYWL — UP)gsn
+ (= 1) 2 {28 (U8 — UP)(gi(re) — g5) — 0
i 28 (U — U D) (g;(r) — )} + X — produet term.

(35)

Il

Il
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Analogous to expressions (20), (21), it can be readily shown that
(n—1) 230 (U2 —U)UR -U®)
36) = (n— 1) ()7 O )™ 2008 (on — mgmi) 2o f* P Ky, -+, Xam;)
f* ® (Xﬁx y T Xﬁmk) Mjp = min {mj’ ”lk}’j’ k= Ly

where D, indicates that the sum is taken over all combinations (@i, -, am ;)
of m; integers from (1, - - -, n) and all combinations (i, - - - , B, ) of m; integers
chosen from (1, ---, n) having exactly ¢ common members.

Next, let UY? = [() ()G Ze 150 Kag, o5 Xan)) f*®
*(Xpy, vy Xpp,) (there are exactly (m;) (W) (milc ) = (&) (mj—c) (m—) Pairs
of sets (a1, =, am;), (B1, * -+, Bm,) having exactly ¢ common integers). By an
argument analogous to that of (25), :

(37) m— 1) (UD — UPYUR — UPY) —pmym &1 9P,

Moreover, since g is finite, the first term of (35) —p D 0a Dty mim;gi gj ¢1 2.
The remainder of (35) is shown to —» 0 by an argument exactly as that in
Theorem 5.
(d) Non-identically distributed case. Let Xi, ---, X, be independent (not
necessarily identically distributed) random variables, and let * (Xa,, =+, Xapn)
be a symmetric kernel such that E[f*(Xa,, +*, Xen)] = nforall a, -+, om.

Let
UXy, -+, Xa)
= )7 e S Kars s )i Fiprspmee @1y -, @)
=EB{f* X, , X, Xgyy o, Xy ) [ Xn =2, oo, Xo = @)

$or (g, oo,@c)Brye s Bm—ci V12 Ym—c

= Cov {f;k;ﬂlr"'rﬂm——c (Xal y T Xac)’ f:k;’h»'",‘/m—c(Xa] y T Xac)}’

and
Setay, oae) = [(Z:Z) (:rbs::'”)]—l Z Sor(a, ,@e)Byre B i Y100 Ym—sc
where the sum is extended over all disjoint sets {81, *+, Bm—c}, {V1, *** , Ym—oc}
chosen from {1, --- , n} excluding {a1, -, ., and finally {en = (¢ L
Celay, e Where the sum is over all combinations {ai, -+ , a} of ¢ integers
chosen from {1, - -- , n}. Then one can show Var U = (7)™ D et (7)) (n2e Yo -
Let
(38) Moy (X) = Ga) ™ 2 (aypnas (X) = 1),
Where the sum is over all sets (81, - - - , Bwm_1) chosen from the first » integers ex-

cluding the integer ».
TreoreM 10. Let Xy, - -+, X, be n independent random variables, and assume
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Jor some 0 < A <

(39) Blff Koy, +, Xap)* < 4 forall (a, -+, am).
(40) Elh,, (X)) < o for v=1,---,n,
and

(41) limnse D501 B[,y (X)) / (22001 Bl (X)) = 0.

Let g be a function defined on the real line, which in a neighborhood of n has a bounded
second derivative. Let 8, the jackknife estimate of g (n) be defined as in (11). Then if

42) C1n— 81 a8 n— ®, 0<a< +ow,

the distribution of (6 — 0)/ (¢ (n) (Var U)) s asymptotically normal with mean
zero and variance one.

Proor. Without loss of generality, let 7 = 0, and let U,, Uiy, i =1, -+, n
be asin (10). Let I = (—34, 3A), A > 0, be any neighborhood of zero in which
g” is bounded. As n — «, (42) implies that U,’ —» 0, and hence

43) Pr{U, e (—A, A)} — 1.
Let Y = (5)™ 2opi, £5(Xs, Xayi, -+, Xai_,), where D p¢_, indicates
that the sum is over all combinations of m — 1 integers (a1, -, a—m) chosen

from (1, ---,2— 1,7+ 1,---,n),¢=1,---,n. Note Var ¥; < {1y + 1 forn
sufficiently large, ¢ = 1, - - - , n. Hence using the Chebyshev inequality and (42),

Pr {maxici<a {{mY1]/(n — m), -+, [m¥a|/(n — m)}> A}
44) = = Pri{mYy/(n —m) > A}
= m' (i + 1)/ (@ (0 —m)") = m’n (e + 1)/ (8 (0 — m)*) > 0.
Using (13), (43) and (44), one obtains
(45) Pr{U,", Ui, -+, Un e I simultaneously} — 1.

Again, (45) may be tacitly assumed in what follows.
After expanding terms in a power series, one again obtains the expression
@ —0) = (@U) = g©0) = (v — D 2ima¢" &) (Unea — Un')/2
where £; lies between Us_; and U, ¢ = 1, - -+, n. This can be written to obtain
6) (6 —0)/(q (0)(Var U)) = (4 (0) (Var U )Y { (g (U") — ¢(0))
— (v — L 2t g ) (Ui — ULY/2)
For U.' ¢ I, g(Us') = g(0) + Ud’-g (bu,0), where [go,0] < |Ua’[. By (39),
(40), (41) and Hoeffding’s U-statistic theorem for non-identically distributed
random variables, U,"/ (Var Uno)% is asymptotically normally distributed with

mean zero and variance one. Since g’ ((v,0)/ ¢’ (0) —p 1, the first term on the right
of (46) is asymptotically 9T (0, 1) by Slutsky’s theorem. It remains to show the

second term —p 0.
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Consider the expression
To=(n—1)2 0 (Una — UL
= (0 — 17 ()20 (on — m) X ff Xy -+ s Xap)
T Xy s Ko
where the notation is the same as in (21). Applying (42), one obtains
E(T,) = W, +0n™) > mi, as n— .

Also, E (T, — m*¢1)’ — 0asn — o, using (39), (42) and some messy but straight-
forward algebra. Hence,
(47) T, —pm’i as n— .

When (45) holds, |¢” ()| < M,i =1, .-+, nfor somlaO < M < . This fact
and (47) imply that
(n — 10 i g” (8) (Usa — U’/ 24/ (0) (Var UL}

— Mmgt/ @0y’ (0)) -0 as n— »

using (42). Hence the result follows.

Expression (39) can probably be weakened to some extent. In showing (7),

one needs an extension of Markov’s theorem to U-statistics. Such an extension
seems likely, but is not in the literature.

TueorEM 11. Let Xy, ---, X be a sequence of independent random variables,
and f* (Xay, *++y Xa,) o real-valued symmetric kernel with expectation n for all
{an, -+, am}, and for some 0 < A < =,

48) Elf* Xay, -+ Xan)' < 4 forall ai, -+, am.
Assume (42) holds, and that g s a function defined on the real line, which in a neigh-
borhood of 0 (=g (n)) has a continuous first derivative. Then asn — «,

— g ()P'm’sy (see (11)).

Proor. The proof is identical with that of Theorem 5, except to note that by
47),

m—1) 20 (Uia — U —pm’ty as n— .

Thus with the stronger conditions of Theorem 3, one obtains @ — 0)/
s; = 9(0,1) asn — .

Once more it is possible to geuneralize these results to vector U-statistics. As-

sume Xl, -++, X, are n independent random vectors of p components. Let
U®, ..., U be as defined in the discussion preceding Theorem 6. Let

(¢
g-c"(Jal scag)Bratt Bm—ci V1 Ym—c
(2 € )
(49) = Cov { ;ﬂ’;?"‘vﬁm—c (Xau Xac) f* / .‘Ym—c(Xal y T Xac)}v
: (4,5)
$eit HECIP

— —1 (2,5)
=[(r7ri—z)(m )] ch”oq ca@e)Bratt Bm—ciT10  Ym—c
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where the sum is extended over all disjoint sets {81, - - -, Bm_c}, {vi, ) Ymee
chosen from {1, - - - , n} excluding {1, - -+ , ac}, and ¢57 = (F)™ > Coi(agreerae)
where the sum is over all combinations {a1, ---, a.} of ¢ integers chosen from
{1; ] n} .

THEOREM 12. Let X1 , + o+, Xy, be independent random vectors of p components.
Let f* @ (Xay, *+ ) be a real-valued symmetric statistic with expectatwn 79

Jorall (ar, -, am ),J 1,:--,q. Assume (38)— (41)holdforeachf"‘(” Xy,
Xn;)yj=1,--+,¢q and that

(50) gm0 >0 for i=1,---,q and

oo 50 for 4,5=1,---,q as n— .

Let g be a real-valued function defined on R?, which in a mneighborhood of
n® -, 1?) has bounded second partial derivatives.

Then asn — ©,n (0 — 0) is asymptotwally normally distributed with mean zero
and variance Zl_l > me myogs g; 617

Proor. The proof is the same as that of Theorem 8 (with the slight modifica-
tions of Theorem 10), except that

(n _ 1) 21_1 (J) . U(i))(Uil? _ U(Ic)) —pm; mi {1 (4,k)
because of the extension of assumption (39).

THEOREM 13. Let X 1, *++ , Xn be independent random vectors of p components.
Let f* @ (Xags o0y ) be a real-valued symmetric kernel with expectatwn 7,
forall {ar, - -+ , om}} and] =1,---,q. Also assume that B[f* ® (X, , -+ -, Xa; )]
< 4 for some0 < A < o, andall {far, - ,am}andy =1, ---,q, andthat(50)
holds. Let g be a real-valued function defined on R?, which in a neighborhood of
(n W @) has continuous Jirst partial derivatives. Then as n — o,
8o —p D b1 Dt mi my gi gi 157

Proor. It is the same as for Theorem 9 with the comments to the proof of
Theorem 12.

Once more Tukey’s conjecture is valid with the stronger assumptions of
Theorem 12. Now some applications of these results will be presented.

3. Applications.

(a) Variance component models. The following assumptions are characteristic
of a one-way layout in Model IT analysis of variance:

(51)  Yy=wtates, i=L, L j=1-,J;
where the I + IJ random variables {a:}, {e:;} are completely independent, the
{a:} are 9(0, o4°), the {e;;} are 9 (0, oo°).
If one wishes to test
(52) Ho0 = 04°/00 < 60 vs. Ha:0 > 6,

then the usual F-test is both UMP invariant and UMP unbiased (Lehmann
,[10]). One can also obtain confidence intervals for § = 04’ /o) using this F-
distribution. Spjgtvoll [21] exhibited a test depending on the alternative 6,
which in the unbalanced case is UMP invariant and a maxmin test.
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However, it is well known (Scheffé [20]) that these procedures are not robust
against non-normality, especially of the random effects. More precisely, it can
be shown that even if ¢, is known, non-zero kurtosis of the random effects in-
validates confidence coefficients, and the probability of both types of error in the
testing case. The only exception to this statement is that the probability of type I
is not affected in testing

(563) Hooll =0 vs Haiol > 0.

Two commonly employed procedures to obtain confidence intervals for o,
rely heavily on the assumptions of normality in (51). One is due to Satterthwaite
[19]. The other is due to Bulmer, and is described in detail in Scheffé [20]. Let
the kurtosis of the random effects be defined by v4 = E (a*)/s4* — 3. Thenone
can show that if v, < 0, these two procedures yield actual confidence coefficients
greater than the stated value. Conversely, if v4 > 0, the actual confidence coeffi-
cients will be less than the stated value. Recall if the {a;} are normal random
variables, v4 = 0.

Both of these techniques yield approximate confidence intervals for the variance
component. The jackknife also yields approximate intervals which do not suffer
when the kurtosis is non-zero. To see this, let us return to the model described in
(60). Without the restriction of normality, the following is a reasonable model:

(54) Yif=l"’+ai+eif7 7:=1""7I’ j=1""7J’

where u is some constant and the {a;} are independent random variables with
zero means, variance o,’, and finite fourth moments, the {e;;} are independent
random variables with zero means, variance ¢.’, and finite fourth moments, and
the I + IJ random variables {a.}, {e;;} are independent.

Suppose one wants a confidence interval for o,” and is not willing to assume
normality. Then at least asymptotically, a confidence interval can be obtained
using Theorems 8 and 9. Note that the procedure also enables us to make tests
on o,°. The procedure is asymptotic in the sense that I — o with J infinite.

Using the notation of Theorems 8 and 9, let

Y,
X1=< 9] i=1)"'71’
(J =17 30 (Y — Vi)

be I independent 2 X 1 vectors. Let f* (X1, X,) = (Y1. — ¥5.)?/2 be a sym-
metric kernel for estimating o,” + o.>/J, with corresponding U-statistic

(55) U® = T - 1) 20 (Ve — VA

Let f*@(Xy) = (J — 1) 25—t (Y1; — Y1.)” be a symmetric kernel for esti-
mating o,’, with corresponding U-statistic,

(56) U® = (I = 1)) Xk X (Viy — Vi)
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Let g(U", U®) = U® — U®/J. Then in forming the jackknife version of
this estimate, one obtains

b= I — 1) 20 (Yo — VL)
b = 2 (Ve — Vo = TS (Vi — V)
(J(J— 1))_1 ‘JI'=1 (ij-— Yk')z’ k = 1, ...’I,

and the jackknife estimate is § = I" D i 6 = ¢4’ the usual estimate. Next,
note that

s = (I — 1) 2k (b — 0)°
I—-1)"20a{ /T —2)) Vi =Y. =T (Ve —Y..)
— I = 1) Y (Vi — Vi)
+ T — D) a2 (Y — Yo
Then, by Theorem 8, I' (0 — 0.°) —¢ 9(0, o) as I — «, with ¢’ = 45 ™V
— 45" /T 4+ ¢ ®P /T with ¢ @ 4,7 = 1, 2 given as in Theorem 8. It is not
necessary to compute o” in order to use Theorem 9, and from Theorem 9, s,” —p o
as I — «. Hence, one can conclude that I%(é — 04)/s, =g (0, 1) as I — oo.

Note that this technique provides asymptotic confidence intervals for variance
components, and yields symmetric intervals. To obtain the more reasonable
intervals skewed to the right, one might want to get a confidence interval for
log o4’

Recall that in the grouping for the jackknife estimate, N = nk, it has been
assumed that £ = 1. As stated before, Theorems 8 and 9 remain valid with arbi-
trary values of £ (with n — « ). However, when k = 1, the preceding paragraph
can be obtained in a more straight forward fashion.

Note that when & = 1, the jackknife estimate of o,” and the unjackknifed
estimate (54), are identical. Moreover,

(58) & = Var (0.°) = J*(Var (MS,) — 2 Cov (M8, MS,) + Var (MS.)),
and one would assume that (58) could be estimated by
(59) =71 = 1) 2ot (G — Z) — (W — W)’
where Zy =J(Yn. — Y..), Z = (J/I) D ia (Vi — Y.),
Wn= =17 25 (Yuy — V), W= (IJ —1)"
5' =1 ZLI Y — Yi.)z-

Note that s,” in (57) is essentially the same as 6* in (59).
These remarks appear to hold whenever the function ¢ of Theorems 8 and 9 is
linear. However, the jackknife seems to make a real contribution if one wants to
»make a test or confidence interval for § = o,2/o,". For now g(U®, U®) =
(U® —U®/J)/U® and the usual estimate is biased. Not only will the jack-

(87)
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knife estimate reduce the bias, but the sum of squares will provide a consistent
estimate of a rather messy quantity.

(b) Jackknifing an admaissible estimate. The above estimates of o 4 all have the
undesirable property that with finite samples, there is positive probability of ob-
taining negative estimates (see Scheffé [20]). Recently, Portnoy [16] has ob-
tained an estimate without this undesirable property. Of more interest is the fact
that under the normal theory model of (51), his estimate is minmax, and ad-
missible, with respect to squared error loss, among all estimates invariant under
the transformation

Yij_>0(Yij+.3; i=1"";Ia ]'=1,"',J,0(,B real numbers.

Let S = §=1 §=1 (Yij - Yi.)z, Sy = JZLl (Yz'. — Y.-)z,
c=IJ+1)2 d=T+1)/2  A=28/(S+ 8,
B(a,b) = T'(a)-T(d)/T(a+ D), I'(a) = [ 2™ dX,

Ii(a,b) = B(a, b)) [3 71 — ) dt,

the incomplete beta integral, and C'(m, n) = (u). Then Portnoy’s estimate can
be expressed in either of the following two equivalent ways:

() 64 = @IS — Is(c —d,d))/ @1 — Ta(c — d,d + 1)))
-8 = Is(c—d—1,d+ 1))/
(c—d—1)Q —Ia(c—d,d+1)))} or
() 6%, = )HS/T +1) — 8/TJ — 1) —2)

4+ (c— 1) (81 + 8:)A %/ (2ed(c — d — 1)H (S1,8))}
where H (S:,8:)
= (S +8)/8)" (1 — Iu(c —d,d+1))8(c —d,d+ 1)
=20 (=1)*C(c — d — 1, k) (So/ (St 4 82))*/ (k + d + 1).

Portnoy proposes his estimate as a point estimate when the normal theory
model of (51) holds. However, under the weaker assumptions of (54), one can
also jackknife his estimate and obtain tests or confidence intervals for o4 The
assumptions of Theorems 8 and 9 are satisfied if o’ > 0.

One might prefer to jackknife Portnoy’s estimate, rather than the standard
estimate, when the possibility of a negative estimate is considerable. Also note
that Portnoy’s estimate is biased, and the jackknife will reduce this bias (at the
expense of losing the admissibility property).

%(c) Unbalanced case. The results of Theorems 10 and 11 can be applied to the
unbalanced one-way layout. Assume

(60) Y'if=/-"+ai+eii’ i=17""17 j=1"",Jf(Jig2)7
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where u is a constant and the {a;} are independent random variables with mean
zero, variance o 4*, and moments of all order, and the {e;;} areindependent random
variables with means zero, variances af, and moments of all order, and the
I + >_i_i J;random variables {a;} and {e;;} are independent.

Y.
Let X = < 1 s 2> ,
(Ji — )7 208 (Vi — Vi)

be I independent 2 X 1 vectors. Let f*© (X, Xay) = [(Yop — Ya, )2
— 0. (Jar + Ja2)]/2 be a symmetric kernel for estimating o4, with correspond-
ing U-“statistic”, U® = (I — 1) 2ty (Yo, — V. — T 205 Jit)el.
Note that U © is not a statistic since it depends on the unknown o.”. This is for
mathematical convenience, and U ® will correct this. Let f*@® (Xa,) =
Jag — 1) 2052 (Yays — Yap.)? — o2 be a symmetiic kernel to estimate zero,
with corresponding U-“statistic,” U® = I'" D1y [(J: — 1) D% (Vi
— Y)Y —¢) Assume K; = I Y iy J; ' > KasI— oo, with0 £ K < &,
since J; = 2,¢ =1, ---, L.

Let g(U®,U®) = U® — KU ® be an estimate of o,”. Note that g (- , - ) is a
statistic, and Theorems 10 and 11 are satisfied if ¢, is non-zero and
max (Jy, --+, Jr) remains finite as I — <. Hence one obtains the result that
I — 04’)/sy —¢ N(0, 1) as I — e, with 6 the jackknife estimate of o,’, and
s,” the sum-of-squares of the pseudo-values.

Note that if I is actually finite as in practice, replace K by K, but do not alter
K; during the jackknifing. In this case

61) 6= —1)" i (Yi —Y.)
— It I 2 205 (Y — Y3 )’/ (Ji — 1),

Tukey [22] shows that there are circumstances in which these weights are to be
preferred over the more standard estimate in which rows are weighted propor-
tionally to the number of elements. The weights in (61) are usually preferred if
o4 is larger than ..

Unfortunately, the most general form of the estimate for o,” which Tukey
describes (arbitrary weights for rows, and for mean squares), does not seem com-
patible with the jackknife technique.

As before, a confidence interval or test for o, /o’ is possible using these methods.
Moreover, the jackknife can be used on nested designs, both in the balanced and
unbalanced cases. The extension is straightforward using the above techniques.

(d) Jackknife applied to ratios and correlation coefficients.

(i) Ratio estimation. Recall the work of Durbin [3] mentioned in the introduc-
tion. The problem he considered is a special case of the following. Consider the
sequence of independent, identically distributed bivariate random variables

62) &Y, -+, G*) where EX =p, VarX =o, EY =750,
' VarY =7, Corr (X,Y) = p,

0<d’,7 < o, —1< p < 1.Suppose one wants a test or confidence interval for
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6 = u/v, and all parameters are unknown. Then use of Theorems 8 and 9 on
g(X, Y) = X/¥ enables one to state that n* § — 0)/s, —¢ 9(0, 1) as n — o
where 0 is the jackknife estimate of 6, and s, as in (11).

(@ii) Correlation coefficients. Consider the sequence of bivariate random vari-
ables presented in (62) without the stipulation that 9 ¥ 0. Suppose one wants a
test or confidence interval for p, the correlation coefficient. Then three U-
statistics enter consideration. They are

U® = m— 1)t Xi— X)(Ys — 7)) with kernel
PG, GY) = (X1 — X)) (V1 — 11)/2,
U® = (n— 1?2k (X — X)* with kernel

I

FEEGH, G) = (X1 — X2)Y/2, . and
U® = @ — 172N (Y:— V)2 with kernel
FO>GY, GY) = (Y1 — Ya)'/2.

Then use of Theorems 8 and 9 on g(U®, U®, U®) = U®/(U®.-U D)}
enables one to state that n! (6 — 0)/s, —¢ 90 (0, 1) asn — o, where § is the jack-
knife estimate of 6, and s, as in (11).

This result was previously obtained by Layard [9]. He also shows that the
standard procedures for tests and confidence intervals on p are not robust against
non-normality when p 5 0.

The jackknife can also be used to obtain asymptotic tests and confidence
intervals for partial and multiple correlation coefficients. The extension of the
above is straightforward.

4, Two-sample problems.

(a) Background. An extension of Hoeffding’s theorem to the two—sample case
is possible. Let X;, - -+, X,, be n; independent, identically distributed random
variables, let Yy, ---, Y,, be n, independent, identically distributed random
variables, and let the X’s and Y’s be independent. Let

f:%(xly crty Ley s Yny "'7yc2)
=E{f*(X1,""Xml;YI;”')Ymg)le=x1)"'7X61 —_—xcl;
Y=y, "'aYCZ = ycz}’

§-0102 = Var {f:‘wz(Xl’ tte ;Xcl > YI, ] Ycz)}) and

02 ’m12§'m + m22 (hm (’IL1/’/L2) )§'01 .

Then the following theorem is proved in Lehmann [11].

Turorem 14. Let f*(Xy, -, X, ; Y1, -+, Yu,) be a real-valued statistic
symmetric in the X’s and symmetric in the Y’s, with expectation n and with finite
Second moment. Let

(63) U =[G 2o S Xars =+ s Xamy3 Yors =+ Vo),
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where Y, ¢ indicates summation over all combinations (a1« + , Gtmy ) from (1, - ,m1)
and all combinations (Br, -« - , Bmy) from (1, + -+ ;n2). Then if ny < ey, andny — «
such that lim (ny/ne) exists, nt (U — 1) —g 9(0, o°).

Again it is possible to obtain an a.s. convergence result.

TuroreM 15. Let f*(X1, +++ ) Xmy; Y1, -++, Yi,) be a real-valued statistic
symmetric in the X’s and symmetric in the Y’s, with expectation n and
Elff(X1, +,Xm ; Y1, +, V)| < w. Let U be the U-statistic defined in (63),
then if ma < ny, U —as.,m as mp— oo,

Proor. The proof of Theorem 4 is readily extended. One only needs to make a
straightforward generalization of the Hewitt-Savage theorem (see Feller [4])
to the two-sample case.

It is possible, in a natural way, to extend the jackknife technique to two-sample
problems. As with the one-sample jackknife, split the. two sets of observations
into groups. Thus suppose one obtains X;, ---, Xy, from the first population,
and Y1, ---, Yy, from the second population. Next, let Ny =n1 k1, Ny =ns ke
(all integers) and split the X’s into 7n; groups of k; observations each, and the
Y’s into n, groups of k, observations each. Let 65, .., be the estimate of 0 based on
all the observations, and let §5,—;.. denote the estimate obtained after deletion of
the ¢th group of X’s,7 = 1, -- -, n1, and let §."7,,_1 denote the estimate obtained
after deletion of the jth group of ¥’s,j7 = 1, -+ -, ny. Next, let
(64) 9,’.. = M 92,1,7,2 - (n1 - l)ézn';—l'., 1 = L, -, m

)

b.; = a8y — (ng — 100, 4, j=1,+-,mg,
and define the jackknife estimate of 8 to be
(65) b= QoMb + 22020.5)/ (ma + m2).
Let1f.. = ' Do 0, and .. = ng ' D 72 0. ;. Then a sum of squares can be
defined by
66) s =m((u@m — 1)) 28 6. —H..)°

+ ey — 1)) D00 (6., — o.)%

The following theorem extends Theorems 8 and 9 to the two-sample case. As
before, only the case where k; = k; = 1 will be considered.
Tueorem 16. Let X1, - -+, Xn, be ny independent identically distributed random

vectors of p components, let Y1, -+, Yy, be ny tndependent identically distributed
random vectors of p components, and let the X’s and Y’s be independent. Let
Xy, o, X a5 Yi, oo, Yup) be a real-valued statistic symmetric n the

X’s and symmetric in the Y’s, with expectation n” and finite second moment for
j=1,-,q Lt UP beasin (63) forj =1, ---,q, and let g be a real-valued
function defined on R%, which in a nighborhood of (n°, --+, n?) has bounded
second partial derivatives. Let the jackknife estimate, 0, be defined as in (64), with
0 mg = g(U®, o, UD). Then if ny < ny, and ny — o such that lim (ny/ns)

extsts, mt (0 — 0) vs asymptotically normally distributed with mean zero and variance.

67) " = liMpw {200 2t g gilmimicls” + (n/na)mimici”})
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where ;51;’,’ = Cov (jfl(f; X1, o0y Xy Yay o0, Yoy, cl(c’;) (X1, -y Xogs
Yi, -, Y,)),and gi,i = 1, --+, qasin (27). In addition, s,” —p o

Proor. Use of Theorem 14, combined with Theorem 8 proves the asymptotic
normality almost immediately. (30) is readily extended, and one only needs to
note that

68) S = (m — 1) X (U . — UP)Y UL, = UP) - clf P milmd,
and
69) SwP = (na — 1) 25 (UL, — UP)YUE; — U) —p cbPmdmd,

where the notation is an obvious extension of (29). This follows from the assump-
tion of finite second moments on f* ¥ (Xy, .-, Xmjr5 Y1, <o+, Yup) and
Theorem 15.

Use of (68), (69), and Theorem 7 proves the consistency of s,’.

(b) Application to ANOVA. The model appropriate to a Model II ANOVA

two-way layout is given by
(70) Yp=wn+ai+b+ci+en, i=1--,1 j=1---,J,
k=1, ---,K

where the {a}, {bj}, {ci;}, and {e;n} are independently normal, with zero means
and respective variances o,°, 05, 045, 0o. The drawbacks of relying too heavily
on the normality have already been discussed in Section 3. Another strong objec-
tion can be raised against the assumptions on the interactions in the above model.
That the interaction c;; between the ¢th factor at the first level and the jth factor
at the second level is independent of the 7th factor or the jth factor is contrary
to the intuitive notion of interaction.

In light of this discussion, a more appropriate model for a Model II ANOVA
two-way layout would be

(71) Y = u+ au) +b@;) + c(ui, us) + eui, v;)
t=1,---,1 J=1-,J, k=1,---,K,

where
@) the us, ¢ = 1, ---, I are an independent sample from some infinite

population,

(i) the vys, j
population, and

(iii) the two populations are independently sampled (u; and v; are independent
for all (¢,7)).
The a(-), b(-), ¢(-, -) represent the two main and interaction random effects;
and the {e(u;, v;)z} form the error variance, while u is the overall mean. Using
@), (ii), and (iii), the following are reasonable additional assumptions. The
{a(u;)}, {b(®;)}, and {e(u;, v;)x} are independent random variables with zero
fneans, respective variances o.’, o5, 0., and finite fourth moments. In addition,
the {c(u;,v;)} are uncorrelated random variables, are uncorrelated with the other

1, ---, J are an independent sample from some infinite
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random variables, have zero mean, variance o%5 , and finite fourth moments. The
{c(us v;)} are also independent of all {e (u;, v;)x}.

Note that this is essentially the model described in Scheffé [20] up to the point
where he makes the assumption of normality. The latter assumption implies in-
dependence of the interactions, a highly suspect assumption as mentioned above.
For example, if the interactions were of the form ¢;; = a;-b;, ¢ =1, -+, J
j=1,---,J, they would satisfy model (71) but not model (70).

The model of (71) was treated by Cornfield and Tukey [2]. They obtained the
expected values of the usual mean squares under (71). Also, Hooke [7] and [8]
studied this model using bipolykays. This technique seems quite difficult to
utilize in practice. Use of the jackknife technique will be shown to adequately
handle the problem.

First note that if no interactions are present in (71), then construction of tests
or confidence intervals for 5" or ¢5°/s," can be accomplished using Theorems 8
and 9. Let

Y.
(I(K — 1)) i1 Q=1 (Yije — Yi5.)
and X, X)) = (Yo — V)22

with corresponding U-statistic,

U® = (J — 1) 20, (Y., — Y.
Let
FPX) = TE-1)" 22k Y — Yi)?

with corresponding U-statistic,
U® = (IJE — 1)) 2ia 25a 205 (Yip — Vi)'

Thenif g(U®, U®) = U® — UP/UIK),J} ¢ — 05") = N(0,0°),88J — o0,
and s, —» o> where § is the jackknife estimate of o5 as in (10), and s,’ is the sum
of squares as in (11). Similar remarks hold for o5 /05

Return to the model described in (71) where interactions are present. In what
follows, U-statistics will be based on the unobservable random effects, however
the U-statistics themselves will be functions of {Y;z}, and hence statistics. Let

T (Uay 5 tay 5 08, 5 08,)

= [e(Uay, V8,) T €(WUay, V8y) — C(WUay, V8,) — €(Uay, V8;). — C(Uay, Vp,)

— €(Uay » V8,)- + C(Uay, 08,) + €(Uay , v8,).1/4

= [(Yasps — Yartr) — (Yeusr. — Ve, )I'/4,

which generates the U-statistic,
U® =[d-1nUJ -1

> Iy (Vi — Ya. — Yo + Y.
Let 5 (a5 08) = (K — 107 2het (eQay, U8 )r — €(thay, 05,).)°
K =125 Yarpy b — Yoy 5.)
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which generates the U-statistic
U® = [IJ(K — 1) 2t 2de1 2ok Vi — Yii)™

Let g(U®, U®) = U ® _ U ®/K be an estimate of ¢%z, and let § be the
jackknife estlmate and s,” the sum of Squares as deﬁned in (66). Then by Theorem
16,ifI < J, I} — o%5) —¢ 9 (0,0°), and s, —po” as ] — =, where o* = 4¢{"”
+ 4 lim (I/J)¢§" (the other terms of (67) are found to be zero)

One should check that 0 < ¢® < + «. Note that

1o (Uay) = [2B (¢ (thay 5 08,) | Uay) + 2055 + 40’ /K]/4.

Hence one needs to assume that E (¢’ (te, , vs,) | s, ) is & random variable with
positive variance. This is a reasonable assumption if one feels that the interac-
tions somehow depend on the factors. Note that this is not the case if the inter-
actions are independent. A similar argument treats {o1 b , and hence the jackknife
works well.

Similar arguments hold if one wishes to estimate ois/ol by g(U®,

(1) /U @ K_l.

To apply this technique to obtain tests or confidence intervals for o5 in (71)
is somewhat more difficult. A natural way would be to let

U(Z)) —

O, uny oo, ur vy, 08,)
= (I Xl (0(s,) + o (i, v5,) + e(us, v5,).)
— I 30 (b (vs,) + cus, vs,) + € (ui, 05,)-)}°/2
= (I X Yigy — T 2010 Vg, }/2,
an I X 2 kernel with U-statistic
U® = (J — 1) D5 (V. — VO

However, it is tacitly assumed in Theorem 16 that the kernel used in construct-
ing the U-statistic is of finite size. The theorem can be extended to consider
kernels like /@ (- ; - ), however the following is a simpler approach.

Let f* (4)(ua1 ) vﬂl) = (:u’ + a(ual) + b(vﬁl) + c(uoq: 1)51) + e(ual’ vﬁl) )

2
a1y -

be a scalar kernel with U-statistic,
U® = )" i 2 Y.
Let
75O ay , Yay 3 08,) = (0 + a(ay) + b(s,) + ¢(tay, v8,) + €Uy 5 08,)-)
(4 a(Uay) + b(s,) + ¢ (ay, v5,) + €(Uay 08,)-)
= Yo, Yy
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be a 2 X 1 kernel with U-statistic,
U® =2(I(I — 1)) Xt 25 Yo Yy
Let  f*© (uay ;05,5 08,) = (u + @(uay) + b@s;) + ¢(tay, v8,) + €(Way, 5,)-)
“(u+ @ (tay) + b(s,) + ¢ (Uay,8,) + €(ay, 5,).)
= Yo, Yo,
be a 1 X 2 kernel with U-statistic,
U® =27 — 1)) 2ia 2t Yis- Yaro.
Let  f* 7 (s » thay 5 Uy 5 08y) = (b + aUay) + b(08,) + c(Uay, 08,) + €(Uay , ¥5,)-)
(bt a(tay) + b@s,) + ey, V85) + €(Uar s V5,)-)
= Y., YVays,
be a 2 X 2 kernel with U-statistic,
U? =4(IT - 1)JJ — 1)) Dt 2ok Yijo Y
Then note that
U =1'v®+ I -1)r'v®-rv®-1q-1)"v?,
and as an estimate of o5,
(72) b= gUO, TP U, U U =U® - UYL

Note that this is the usual estimate (see Scheffé [20]). Then by Theorem 16, if
I <J, 0 — a5’) 52 R0, %), s, —po” as ] — o, with 0 and s,” as in (66).
Moreover one can show that

o = 4&50° + lim (I/7)561.
Again one should check that 0 < o’ < + . To this end, note that
F02 Way) = 18 + 05" + 0//K + E{c(tay, 08,) C(Uay, 98,) | Uar},
and foi® (vs,) = b*(vs,) + 0.”/K.
But since

E{c(uau vﬁl)’c(udw 0ﬁ1) ' ual} = E{E{c(uau vﬁl)'c(uazy vﬁl) ,uau vﬁ1}' ual}

a different normalization is needed. That s, J* (§ — 05°) —¢ 91 (0,6°) and s;* —p o*,
where ¢® = ¢5® = Var (b°(v,) ). However, note that one needs I — o for this

result to hold in general. Again one can obtain tests or confidence intervals for
the quantity o5’ /o,
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