A MONOTONICITY PROPERTY OF THE DISTRIBUTION OF THE STUDENTIZED SMALLEST CHI-SQUARE¹

By Khursheed Alam²

Indiana University

1. Main theorem. Let X_1, \dots, X_k be k i.i.d. random variables, each having a gamma distribution with m degrees of freedom. The random variable

(1.1)
$$X = \min(X_1/X_k, \dots, X_{k-1}/X_k),$$

is called the Studentized smallest chi-square. Its cumulative distribution function (cdf) is given by

(1.2)
$$G_m(x) = 1 - \int_0^\infty (1 - F_m(xy))^{k-1} dF_m(y)$$

where $F_m(y) = \{\Gamma(m)\}^{-1} \int_0^y x^{m-1} e^{-x} dx$ denotes the incomplete gamma function. Clearly, $G_m(1) = (k-1)/k$. A monotonicity property of the cdf of X, which has some applications, is given by the following theorem.

THEOREM 1.1. For m > 1, $G_m(x)$ is increasing (decreasing) in m for x > (<) 1.

PROOF. Let Y denote a random variable with cdf $F_m(y)$. For m > 1 let

$$(1.3) X = F_m(cY)$$

where c > 0 is a constant. The probability density function of X is given by

(1.4)
$$g_m(x) = (f_m(F_m^{-1}(x)/c))/(cf_m(F_m^{-1}(x)))$$
$$= c^{-m} \exp((c-1)F_m^{-1}(x)/c), \qquad 0 < x < 1,$$

where $f_m(x) = x^{m-1}e^{-x}/\Gamma(m)$ and $F_m^{-1}(x)$ denotes the inverse function of $F_m(x)$. For r > 0 let

(1.5)
$$A(x) = f_m(F_m^{-1}(x)) - f_{m+r}(F_{m+r}^{-1}(x))$$
$$= F_{m-1}(F_m^{-1}(x)) - F_{m+r-1}(F_{m+r}^{-1}(x))$$
 and

(1.6)
$$B(x) = \log g_{m+r}(x) - \log g_m(x).$$
 Then

(1.7)
$$dB(x)/dx = (c-1)c^{-1}(1/f_{m+r}(F_{m+r}^{-1}(x)) - 1/f_m(F_m^{-1}(x)))$$

$$= (c-1)c^{-1}A(x)/(f_m(F_m^{-1}(x))f_{m+r}(F_{m+r}^{-1}(x))).$$

It is shown below that A(x) is nonnegative. Therefore, from (1.7) we have that B(x) is nondecreasing (nonincreasing) in x for c > (<)1. This result will be used in the sequel.

^{*}Received November 12, 1968; revised July 29, 1969.

¹ This work was supported in part by NSF Grant GP7496 at Indiana University.

² Now at Clemson University.

Let

(1.8)
$$u = (m-1)F_{m+r}^{-1}(x) - (m+r-1)F_m^{-1}(x),$$
 then
$$du/dx = ((m-1)f_m(F_m^{-1}(x)) - (m+r-1)f_{m+r}(F_{m+r}^{-1}(x)))$$

$$\div (f_m(F_m^{-1}(x))f_{m+r}(F_{m+r}^{-1}(x)))$$

(1.9)
$$= ((m-1)A(x) - rf_{m+r}(F_{m+r}^{-1}(x)))/(f_m(F_m^{-1}(x))f_{m+r}(F_{m+r}^{-1}(x)))$$

$$< 0$$

for A(x) < 0, as m > 1 and r > 0. Also,

$$(1.10) dA(x)/dx = u/(F_{m+r}^{-1}(x)F_m^{-1}(x)).$$

To show that A(x) is nonnegative for $0 \le x \le 1$, suppose that the contrary is true. As A(x) = 0 for x = 0 and 1 we have that for some value of $x = \xi$, say, where $0 < \xi < 1$,

$$A(x) < 0$$
 and

$$(1.12) dA(x)/dx < 0.$$

From (1.9) and (1.10) we have

$$(1.13) u < 0$$
 and

$$(1.14) du/dx < 0$$

for $x = \xi$. Suppose that A(x) < 0 for $\xi \le x \le \xi + h < 1$. Then for $\xi \le x \le \xi + h$ we have from (1.9) that du/dx < 0, from (1.13) that u < 0 from (1.10) that dA/dx < 0. It follows that A(x) is decreasing in x for $\xi \le x < 1$ which contradicts the relation A(x) = 0 for x = 1. Therefore, $A(x) \ge 0$ for $0 \le x \le 1$.

A real-valued random variable X with probability density function $p_{\theta}(x)$ depending on a real parameter θ is said to have monotone likelihood ratio (m.l.r.) property if $p_{\theta_1}(x_1)p_{\theta_2}(x_2) \ge p_{\theta_1}(x_2)p_{\theta_2}(x_1)$ for $x_1 < x_2$ and $\theta_1 < \theta_2$. The m.l.r. property implies that

$$(1.15) E_{\theta}, \psi(X) \leq (\geq) E_{\theta}, \psi(X)$$

for all monotone nondecreasing (nonincreasing) function $\psi(x)$. Strict inequality holds in (1.15) if $\psi(x)$ is strictly monotone.

From (1.7) and the result shown above that $A(x) \ge 0$ we see that the distribution of X, given by (1.3), has m.l.r. property for c > 1 and in the opposite direction for c < 1. From (1.15) it follows that $G_m(c) = 1 - E(1-x)^{k-1}$ is increasing (decreasing) in m for c > (<)1. \square

2. Applications. Consider a multinomial population with K cells and the associated ordered probabilities $p_{[1]} \le \cdots \le p_{[k]}$ where $\sum_{i=1}^k p_{[i]} = 1$. Cacoullos and Sobel [1] have considered the sequential procedure for selecting the "best" cell, that is, the cell corresponding to $p_{[k]}$: Take observations one at a time from the population until any one cell has n counts in it and select that cell as the best cell.

For $(p_{[k]}/p_{[k-1]}) \ge \theta > 1$ the probability of a correct selection (Pcs) is minimized for $p_{[i]} = 1/(\theta + k - 1)$, $i = 1, \dots, k - 1$; $p_{[k]} = \theta/(\theta + k - 1)$ and the minimum value of the Pcs is given by (see (4.5) of [1])

(2.1)
$$\min \operatorname{Pcs} = \frac{\Gamma(kN)}{(\Gamma(N))^k} \int_{\theta^{-1}}^{\infty} \cdots \int_{\theta^{-1}}^{\infty} \frac{(y_1 \cdots y_{k-1})^{N-1} dy_1 \cdots dy_{k-1}}{(1 + \sum_{i=1}^{k-1} y_i)^{kN}}.$$

The multiple integral on the right-hand side of (2.1) can be shown to be equal to

(2.2)
$$\Pr\{X_i \ge \theta^{-1} X_k; \quad i = 1, \dots, k-1\} = 1 - G_N(\theta^{-1})$$

where X_1, \dots, X_k denote k i.i.d. random variables, each having a gamma distribution with N degrees of freedom. From Theorem 1.1 it follows that the minimum value of the Pcs, given by (2.1) is increasing in N. Therefore, given θ and p^* , the smallest value of N for which $\operatorname{Pcs} \geq p^*$ when $(p_{\lfloor k \rfloor}/p_{\lfloor k-1 \rfloor}) \geq \theta$ is uniquely determined.

Similar application of Theorem 1.1 arises in a problem of selecting a subset of k given normal populations which includes the population with the smallest variance. This problem has been considered by Gupta and Sobel [2].

REFERENCES

- [1] CACOULLOS, T. and SOBEL, M. (1966). An inverse sampling procedure for selecting the most probable event in a multinomial distribution. In *Proceedings of International Symposium on Multivariate Analysis*. Dayton, Aerospace Research Laboratories, 423–455.
- [2] GUPTA, S. S. and SOBEL, M. (1961). On selecting a subset containing the population with the smallest variance. *Biometrika* **49** 495–507.