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1. Summary. The Bayesian theory for testing a sharp hypothesis, defined by
fixed values of parameters, is here presented in general terms. Arbitrary positive
prior probability is attached to the hypothesis. The ratio of posterior to prior odds
for the hypothesis is given by the weighted likelihood ratio, shown here to equal
Leonard J. Savage’s (1963) ratio of a posterior to a prior density (2.21). This
Bayesian approach to hypothesis testing was suggested by Jeffreys (1948), Savage
(1959), (1961), Lindley (1961), and Good (1950), (1965), but obscured some what
by approximations and unique choices of prior distributions. This Bayesian theory
is distinct from that of Lindley (1965) and that of Dickey (1967a).

Applications are given to hypotheses about multinomial means, for example,
equality of two binomial probabilities. A new test is presented for the order of a
finite-state Markov chain.

2. Introduction. Assume a statistical model in which the observed data vector
De E" occurs according to the probability mass or density function (elementary
derivative) o(D | 0), depending continuously on an unknown parameter vector
0e E". Assume an individual’s opinion about 8 before and after his observation of
D is described by his prior and posterior probability distributions P(S) and P(S | D).
We thus take D and 6 to have a well-behaved joint distribution.

Suppose one suspects the unknown parameter 6 of belonging to a given Borel
set H < E'. Then 0 < P(H) < 1, and hence, except for mathematical pathologies,
0< PH|D)< 1.

Let H denote a Borel measurable ““alternative”: HnH = S with P(H)+ P(H) =1.
Let O denote odds corresponding to probabilities P,

2.1 O(H) = P(H)/P(H),

having the immediate properties, O(H) = 1/O(H) and P(H) = O(H)/[1+ O(H)]).
Denote the posterior odds,

(2.2  O(H|D) = P(H|D)/P(H |D);
and the ratio of posterior to prior odds for H,

(2.3) L = O(H | D)/O(H).
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CoroLLARY (Well Known).

2.4 L = ®(D|H)/®D|H), where
(2.5) O(D|H) = [o(D|6)dP(0| H),
(2.6) O |H) = [o(D|0)dP6|H).

Proor. Since, if (p(D|0) is a density, it is assumed to be a uniquely defined
elementary derivative (and hence so is ®(D | H)), then Bayes’ theorem applies.

.7 P(H|D) = P(H)®(D | H)/®(D), where
(2.8) ®(D) = P(H)®(D | H)+ P(H)®(D [ H);

and analogously for P(H |D). Substitution of (2.7) and its analog into (2.3) yields
2.4).

In case H and H are simple point hypotheses, L is the usual likelihood-ratio-test
statistic. More generally, Wald (1947), Jeffreys (1948), Good (1950), (1965), Lindley
(1961), Savage (1959), (1961), in effect Raiffa and Schlaifer (1961), and Barnard (1964)
have proposed the use, in inference about H from D, of the ratio L of weighted
averages @ of ¢ over H and H. To use a weighted likelihood ratio, to summarize the
evidence in D for H, is certainly more sound in principle than the usual likelihood
ratio, involving a constrained and an unconstrained maximum of ¢.

Following Wald, Raiffa and Schlaifer and others have taken a general decision-
theoretic view of testing. Certain such concepts of tests for linear hypotheses
within a context of prediction or estimation were proposed by Dickey (1967a) and
by Lindley (1968). Non-decision-theoretic, whether or not called Bayesian (as in
Lindley (1965)), usually involve tail areas and should be avoided when genuine
Bayesian tests are available. Good (1965) writes of “‘Bayes/non-Bayes compromises,”
in which tail probabilities are developed for the statistic L. A Bayesian test does not,
of course, depend on the (noninformative) stopping rule.

We restrict attention here to a “‘sharp hypothesis,” defined as follows. Given an
invertible transformation ¢ having non-zero Jacobian,

(2.9) §=¢80), 0=2060),
partition the vector £€ E",

(2.10) &=, ¢, nekE’, s
We seek to test the possibly composite hypothesis

(2.1D H:n=n,,

where 1, is a fixed constant, against the alternative

(2.12) H:n # no.

.We take special interest in linear H,
E=A0.
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By an abuse of notation, denote again by P the induced prior measure for &.
Assume as the support of P an analytic surface segment Z < E" of dimension
dim (E), where dim (HNE) < dim(E) < r. We shall use integration with respect to
Lebesgue measure p on the surface Z with differential element denoted d¢é = d{ dn;
and then on the measure-zero set HNE, integration with respect to the factor
Lebesgue measure u, with element d¢.

The prior probability measure is a mixture over H and H of the following assumed
form. For a set S<Z" with Borel intersection SNE (and hence SNEnH),

(2.13) P(S) = P(H) [ [snzf(n, §)dLdn+P(H) [snznn 9(0) .

The density function fis assumed uniquely defined throughout = as the elementary
derivative,

(2.14) f€) =lim, .o P(S,(&) | H)/u(S () E),

where S,(€) denotes the ball of radius p centered at £. Hence, even though for
&e H f(¢) has an interpretation as a conditional density of £ given H, if e H f(&) is
well defined and not necessarily zero.

Similarly, g is assumed given by

(2.15) g(§) = lim, .o P(S, (0, O) | H)/111(S (10, )NENH);

and for e H g(¢) has an interpretation as a conditional density of { given H.
For a sharp hypothesis, (2.5) and (2.6) take the forms

(2.16) (D | H) = [o(D|no, $g({) d¢,

(2.17) ®D|H) = [[oD|n, Of(n, {)dldn,

where (D Ir], {) is an abuse of notation for (D l 0(n, ©)).
Define for all g,

(2.18) P'(y|H) = [f(n, D) d¢,

and define for all 9, {, P'(y, {| H, D) = o(D |9, {)-f(n, {)/®(D | H), motivating the
quite natural definition for all #,

(2.19) P'(q|H, D) = [o(D| 1, {)-fr, {) d/(D| H).

THEOREM (Savage’s Density Ratio). If
(2.20) 9(8) =f(no, O/1f (o, )¢ dt, then
(2.21) : L =P'(no|H, D)/P'(no| H).

Proor. Use (2.20) for g in the numerator ®(D [ H)(2.16) of L (2.4).

Equation (2.21) was given in special approximate forms by Jeffreys (1948),
Lindley (1961), and Savage (1959), (1961). Since the first submission of this paper,
the authors have found an unpublished general exact statement of (2.21) by Savage
(1963). See also Dickey (1968) and Patil (1964).
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Formula (2.21) is presented here as a convenient alternative to (2.4) when f
belongs to a family of prior distributions conjugate to ¢ in the sense of Raiffa and
Schlaifer (1961). For, then, the parameters of f merely change in a simple way.
Examples utilizing the most important conjugate family, the beta (Dirichlet), for
binomial (multinomial) data, are given below. Examples for normally distributed
data will be given elsewhere, including a Bayesian replacement for the usual F test.

The authors have no interest in magical unique prior distributions. Conjugate
families are viewed as broad sources of approximate expressions for actual opinions.
If several extreme values of prior parameters, chosen to closely bound one’s actual
opinion, do not lead to weighted likelihood ratios of a single implication, then the
data can only be inconclusive to one. The authors realize this may be disturbing to
mathematically helpless experimenters who need to “prove something with statis-
tics.” Work is needed badly on problems of describing data Bayesianly.

The ratio L of posterior to prior odds may serve as an adequate summary for
some scientific experiments. Consider, though, the more general setting of a decision
d of dy, for H or dy for H and a utility function U(d; n, {) satisfying

U(d; n, ) = U(dy; 10, §)
(2.22) =U(dn;n, ) n# 1o
=0 otherwise.
An optimum decision d is one which maximizes the posterior expected utility,
E[Ud;n,0) |D]. As pointed out by Lindley (1961), the utility function (2.22) is the
most general one in the testing situation, since the optimum decision d is unaffected

by subtracting a function of # and { from U. We have subtracted U(dyg; o, {) when

n =1, and U(dy;n,{) whenn # 1,.
The posterior expected utility satisfies

(2.23) E[U(d; ,{)| D] = E[U(dy; 1o, {)| D, H]- P[H|D], for d=dy
= E[U(dy; 9, {)|D, H]-P[H,D], for d=dp.

Define the posterior weighted utility ratio R by

(2.24) R = E[U(dy; 1o, {) | D, HJ/E[U(dg; n, )| D, H].
Then the optimal decision is dy or dy according to whether the product
(2.25) O(H)-L-R

is greater or less than unity (given that the denominator of R is positive). In the
following examples, R will be easy to calculate when U(dy ;9, () and U(dg;n, () are
polynomials in the coordinates of # and ¢.

3. Chances.

,3.1. A special value for a Bernoulli probability. For a simple illustration of the
general theory without nuisance parameters ¢, let » denote the number of successes
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in a sequence D of N independent Bernoulli trials of unknown success probability
n = 0. Then

3.1 (D |0) = n"(1—m)""".

To test whether 7 takes on a pre-chosen value n, we let n = 7, , = 7,, and test the
hypothesis H:n = 1.

We consider the class of beta prior distributions for = under H. Suppose | H
has a beta distribution with parameters a,b > 0; namely, with density on [0, 1],
n°~1(1—n)>~1/B(a, b), where B(a,b) =T'(a) I'(b)/T(a+b). We use the notation

(3.2) n|H ~ B(a, b).
By an application of Bayes’ theorem,
(3.3) n|H, D ~ p(d, N—#), * where
3.4) Ai=a+n, N=a+b+N.
Hence, by (2.21).
3.5) L = ny"(1 —no)¥ ~"B(a, b)/B(#i, N — 7).

Jeffreys (1961, page 256), Edwards, Lindman, and Savage (1963, p. 222), and Good
(1965, page 41) obtained (3.5) from (2.4).
Recall the classical notation, ifa > 0,5 = 0,

(3.6) (a, b) = T(a+b)/T(a)
=a(a+1)---(a+b-1), integer b > 0.

analogous to a® or (@+b)’, and for which

B(a+n, b+m)/B(a, b) = (a,n)(b,m)[(a+b,n+m).
Then
(3.7 L = ny"(1 =mo)" ~"/[(a, n)(b, N=n)/(a+b, N)].
We note that for large, a, b, and fixed a/(a+b) = 7,
L =m'(1 —ﬂo)N_"/[mn(l -n)" "],
the usual likelihood ratio with the simple alternative H: n = m,.

For small a > 0, I'(@) = o(1/a), hence B(a,b) - o0 as a » 0+ or b —» 0+ or both.
Consequently, L — oo for D containing at least one each of a success and a failure,
as the nonintegrable prior, a = 0, b = 0, is approached. This pseudoprior, express-
ing “ignorance” to some Bayesians, is analogous in this implication for L to an
unbounded-support ‘“‘uniform” prior for a normal mean. Such infinite posterior
odds for H in cases of ‘““ignorance” under H received much discussion by Cornfield
(1966), whose equation (7.8) violates our assumption (2.20) relating g to f.

An interesting approximate form of L for large N and i follows from an applica-
tion of Stirling’s approximation to the complete beta integral,

"(3.8) B(f, N—7) = —3log N — NI(#)— 1 log[#(1 — #)] +1log(2n),
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where the “information” I(#) is given by
3.9 I(®) = —#logf#—(1—R)log(1—#) and
(3.10) = AlN.

The decision factor R (2.24) can be calculated from the distribution (3.3). For
example, if U(dy; 7o) = ¢; and U(dy; n# mo) = ¢, +c3n?, then

R = c;/[c; +c5(R—mo) +c3 (1 —R)/(N+1)].

3.2. Equality of two Bernoulli (binomial) probabilities. Suppose n; and n, are the
number of successes in N; and N, (N, + N, = N) independent Bernoulli trials with
unknown probabilities of success 7, and n,. Then for the sequences D of observa-
tions and 0 = (7, 7,)

(3.11) oD I 0) = [T n (1 —m)Vi ™™,
Define # and { by
(312) n="m,—T,, C = %(77«'1 +752).

We seek to test the natural hypothesis that n, = #,, or withn, =0, H:n =0.
We take independent beta prior distributions for the n;’s under H. Symbolically,
fora;, b, > 0,

(3.13) n;|H ~ B(a;, by).

By an application of Bayes’ theorem, we have

(3.14) m | H, D ~ (#i;, N,— i), where
(3.15) fi,=a;+n;, N,=a,;+b;+N,

with 7, | H,D and =, | H,D independent. Thus, to use equation (2.21), we merely
need the density at zero of the difference of two independent beta random variables.
Direct calculation yields

—_— B(a1+a2—l, b1+b2—1)
(3.16) P(p=0(H)=
1 I B(ay, by)B(a,, by)
B(ﬁ1+ﬁ2—1, N1+N2_ﬁ1_ﬁ2_1)

B(ﬁla ﬁl _ﬁl)B(ﬁZ’ NZ_ ﬁZ)

and

3.17) P'(n=0|D,H)=

L is then the ratio (3.17)/(3.16),
_(ayta,—1,n +n)(by+by—1, Ny —n,+N,—n,)
(a,+ay+by+b,—2,N;+N,)
‘[(01, ny)(by, Ny _nl):l_l l:(az, na)(bs, Nz—"z):l_l
(a;+by, Ny) (ay+b,,N,)

- Jeffreys (1948, page 263) used essentially (2.4) to derive an L, but with numerator
and denominator ® conditioned on the margin n, +n,.

(3.18) L
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Cases where a;+a, <1 or b;+b, <1 lead to L =0, since the denominator
(3.16) is then infinite while the numerator (3.17) will probably be finite. In such
instances data exhibiting both successes and failures prove H. A feeling for this
pathology can be gained by examining the numerator ®(D | H) (2.16) of L (2.4).
The distribution of the data under H is a mixture over { = &, which has the following
limiting distribution under H. For r = (a; +a,—1)/(b; +b,— 1),

(3.19) { =0 with probability 1/(1+7r)

=1 with probability r/(1+7)
as a,+a, — 1+. Hence, under H the data must consist of all successes or all
failures, according to the value of {. (This result contrasts with L = oo for the
normal-theory Behrens-Fisher hypothesis under the ‘‘ignorance’ alternative.)

Posterior moments of # and { under H and H, useful in calculating the factor R
(2.24) for the decision criterion (2.25), follow from the distributions

(3.20) C|H, D~ B, +7,—1, Ny + Ny— iy — i, — 1)
and (3.14) for n,, m, | H, D. For example, if
Ud;n, ) =c;+c,¢ if d=dy and =0,
(3.21) =cy+cy{+esn? if d=dg and n#0,
=0 otherwise.
then

(322) R = [(C] +62(Za,~—- 1))/(Zal+zbl_2)]
+ [es+dea YN+ es Y (A2 + B)(N2+ N)—2¢s AN 1.
3.3. An invariance property. Several persons, including the referee, have asked
the authors whether L is invariant with respect to the choice of defining trans-

formation (@) for H. The answer is yes for an integrable prior density f, if fand ¢
induce the densities f* and g* for another parametrization #*(n,¢), {*(y, ().

(3.23a) 1*(10> §) = n*(no) = 1™
(3.23b) 'I('Io*’ ¢*) = n(no™) = no,

(3.24) f*0*, 8% =f(n, §)- J(9E/0E™)
(3.25) 9*(€™*) = 9(©) - J(OL/0C*)y = yo-

This answer is obvious in regard to the expression (2.4) for L as a ratio of prior
moments ®.
To prove

(3.26) L = P*(yo*| H, D)/P*'(no* | H),
we need merely show that

(327 gL =1 o™, T [ *(no*, T dE*.
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But by (3.23b),
(3.28) 013 M mimo*, *) =0, each i,j, so
(3.29) J(OEIOE™ )=y = J(OL)OE™)y= o " T (O] ON™),y= o

Equations (3.24), (3.29), and (3.25) imply
I¥mo™, ¢ [f *(mo™, £ dl* =
(3.30) f (0, §)- J(0L/0T* )y = ol f (10, ©)dE =
(&) - J(OL/OT* )=, = 97(C™).

The property (3.28) is easily verified for n=0,—0,, {=%0,+0,), n*=
log(0,/6,), {* = log(8y,0,), 1o =ne* = 0.

4. Multivariate chances.

4.1. A special value for a multinomial mean vector. Let n(k) be a probability mass
functiononk = 1,-+, K, and let @ = n,» = K. The N independent realizations from
. m with cell frequencies n(k), Y n(k) = N, occur with probability,

(4.1) (D] 0) = [Tn(k)"®.

With y = 0 = =, and §, = =, consider the hypothesis H:9 = n,, or & = m,.

We take a Dirichlet prior for = under H, with density on oy = {n: ) (k) =1
and each n(k) > 0}, [ [n(k)*®~!/B(a), each a(k) > 0, and B(a) denoting Dirichlet’s
complete integral,

“4.2) B(a) = [T (a(k))/T( a(k)). Symbolically,
(4.3) n|H ~ f(a).
The multinomial analogues of equations (3.3) through (3.5) are
(4.4) n|H, D ~ (i),
(4.5) ii=a+n,
(4.6) L = [[Jro(k)"®]B(a)/B(i).
Note that
.7 B(a+b)/B(a) = [](a(k), b(k)/(Xa(k), 3.b(K)).
in the notation (3.6). Hence -
(4.83) L = [[ro(k)" @[T [(a(k), n(k)/(Xa(k), N)].

Good (1965, pages 37 and 41) derived (4.6) from (2.4). Good (1965) and (1967)
takes special interest in the symmetric-Dirichlet alternative, parameters a(k) = a, the
“flattening constant”; and the hypothesis H of equal probabilities, namely, with
special value my(k) = K™!; then L = K~ ¥[(a)*/T(Ka)l/[[ [T (a+n)/T(Ka+ N)].
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Good suggests, among others, the choice of a to maximize ®(D ] H)=K"™/L, and
also symmetric priors obtained as mixtures over a.

4.2. Equality of several multinomial mean vectors. The results of Section 3.2 are
extended in two directions simultaneously in this section. The first is to test the
equality of two multinomial mean vectors. The second is to test the equality of
several such vectors.

For each I =1,---,1 let m,(k) be a probability mass function on k=1,---, K
and let = (n;, -+, m;), r=1K. The N independent realizations D, N; from =,,
2N; = N, with cell frequencies n,(k), ¥ ,n:(k) = N,, occur with probability

4.9) o(D|0) = [[Tr (k).
Define the vectors 5; and { by

(4.10) 0= m—m_y, i=2,---[ and

(4.11) {=1""Yn,

Each #; and ¢ is K dimensional but is subject to the constraints ¥ ,#,(k) = 0 and
Y «l(k) = 1. We test the hypothesis of identical probability distributions =;,

(4.12) H:ﬂ2=tl3="'=ﬂl=0, =(I‘-])K.

We take independent Dirichlet prior distributions for the #;’s under H. Sym-
bolically,

(4.13) m | H ~ flay).

Then, independently in i,

(4.14) n; | H, D ~ B(#i;) where
(4.15) fi; =a;+n,

We calculate L from its original form (2.4) as a ratio of subjective mixtures ® of
@(D | 6). The joint density of the x;’s yields

(4.16) ¢|H ~ BXa,—(— 1), where
4.17) 1=(,---,1),

and so for the numerator of L (2.4) we have

(4.18) ®D |H) = E; |5 9(D | 0)

= By ii;—(I - )1)/B( a;,—( - D1).
The denominator is given by

(4.19) ®(D|H) = Eq | 5 (D | 0) = [[[B(#,)/B(a))].
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By (4.7),
[LOak)—1+1, Yini(k)
.20 =
4.20) L Qixadk)—IK+K, Y ; ni(k))
. l—[ ﬂx(ai(k), nyk))
. ’ (Zu ai(k)’ Zx nl(k))

For identical symmetric-Dirichlet prior distributions, a;(k) = a,
_ [L@-1+1, ¥ink)
(IK(a=1)+K, Y n(k)

. II ],_Ix(a9 nz(k))
" (Ka, Yn (k)

(4.21)

a special case of Good’s (1965, equation (6.2)) statistic for the hypothesis of inde-
pendence in a two-way contingency table.
The multivariate analogue of (3.20) is

(4.22) {|H, D ~ B f;—(I—1)1).

5. The order of a finite-state Markov chain. Let D be a length-N realization of a
K-state Markov chain known to be of order at most & > 0,

(5.1) D = (ky, ks, * -, ky)', each k,e{l, -, K}
(52) (P(DIO)=Hﬁ:lnkn-ﬁ,k,,_i,’+1,"',k,.-1(kn)‘

Regretably, we take the h initial states k, _5, k5, ', ko as a non-informative
given condition to all the probabilities. (It has been said that for the subjectivist,
all probabilities are conditional.) In practice, this restriction will usually amount to
ignoring information about @ imparted by just the first h states, a triviality if h/N
is small and zero transition probabilities are not a consideration.

Suppose one suspects the order of the chain to be h, 0 < & < h, h fixed. Denote
by i an (h— h)-tuple of states and by j an A-tuple of states (j absent if 4 = 0). Then
redenote the transition probabilities,

(5.3) 0=00)ay 0;=mDani 7= (my(1), ", m(K)),
5.4 @D |0) = [Tijpmis(k)"5%,
where the transition coﬁnts n; j(k) suffice for D,
(5.5) n (k) =Yoo= 1 05 (knebs Kn—iis 15+ k),
A (5.6) n;; = (n;(1), - -+, n(K)'.

If H, denotes the hypothesis that the probability 7;;(k) of transition from the
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sequence j of & states to each state k does not depend on the sequence i of h—h
states immediately preceding the states j,

*

(57) H,':nij = ni*j, all i, i N then

(58) H= ma"jHj.

The similarity of each hypothesis H; to the hypothesis treated in the previous
section, equality of multinomial mean vectors, is more than just notational.
Denote by D} data from a hypothetical fixed-length (3 ,n;;(k)) sequence of multi-
nomial trials having the vector of cell counts n;; with vector of means =;;. Then with
D;* = (D;'})an 0

(5.9) o(D|0)=];0,"(D;*|0)). .
where, as in (4.9),
(5.10) ;" (D;*|0,) = [Tuwmi (k)"

The D/%’s are independent given 6.

We invoke the likelihood principle (Lindley (1965), for example) to make inference
about @; from D;*. For a fixed j, given H;, we take the K F=h many, ;’stohave prior
independence and, as in (4.13)

(5.11) ;| H; ~ Bay)).
(Martin (1967) has used prior Dirichlet distributions for Markov-chain control-
theory problems.)
Then, as in (4.14),
(5.12) m | H;, D;* ~ B(a;;+n;))

Hence L,.(H;) =[P(H;|D;*)/P(H;|D;*)]/[P(H;)/P(H,)] is given by equation
(4.20) with i replaced i, I replaced by K"~ a,(k) replaced by a; i(k), and ny(k)
replaced by n; (k). If prior opinion is invariant in the index ijk, a similar statement

holds for equation (4.21).
For example, to test whether a first-order Markov chain is an independent

sequence, ijk = i, k, say a;;(k) = a, Lp(H) = L (H;) = L, as given by (4.21).
Now, on the one hand, if

(5.13) P(H) = P(H;), each j,

and if given A the 0;’s are prior independent for 4 = H and hence for 4 = H, then
O(D | A4) =]];®;*(D;*| 4) for 4 = H and for A= H,and so

On the other hand, if the 8,’s are prior independent, hence

(5.15) P(H) =T, P(H).
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then the 0,’s are also posterior independent,
(5.16) P(H|D)=[];P(H;|D;*)
= I[];[1+Lp(H))"'P(H)/P(H)].
Equations (5.15) and (5.16) yield
(5.17) Lo(H) = {[T,{1+P(H)iPH )] -1}
{TL1+Lp(H)™ ' P(H)/P(H)]-1}.

Methods will be published elsewhere for more general prior distributions for
intersecting hypotheses H .

Acknowledgments. The authors are grateful to a referee for requesting the statement
of equation (2.21) in theorem form.
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