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AN M/G/o ESTIMATION PROBLEM'

By MARK BROWN

Cornell University

0. Introduction. We shall consider the problem of estimating the cdf G in an
M|G|oo queue, when the data are arrival and departure epochs without identifica-
tion of customers. That is, the experimenter observes the epochs customers arrive
and depart without keeping track of individual customers. From such data taken
over a finite time interval he wishes to estimate the cdf G of the service time
distribution. We shall define a sequence of estimators {G,, n = 1} which depend
on the data up to the nth output and then we shall show that

1 Pr(lim,., ,, sup, |G(x)— G,(x)| > 0) = 1.

The intensity A of the Poisson arrival process, and the number of customers
initially in service are not assumed to be known. However, we assume that the
expected service time g exists.

A consequence of (1) is that G is completely identifiable from a single sample
path of the process {Q(¢), t > 0}, where Q(¢) is the number of customers in service
at time ¢. It is interesting to contrast this with an identifiability result of Kendall
and T. Lewis [6]. They show that in a GI/G/oo queue if one is given the output
epochs along with the serial number of the input corresponding to each output,
then the input distribution is completely identifiable and the output distribution is
identifiable up to a local parameter.

The problem of inferring properties of G from a finite sample path of the process
{QO(1), t = 0} has received some attention in the literature. A brief survey of papers
in this area and applications can be found in Cox [4] pages 302-303. The present
paper appears to be the first in which G itself is estimated rather than individual
quantities associated with G.

The work in this paper was motivated by problems of statistical estimation in
low density Poisson traffic streams. Assume that vehicles enter a highway according
to a Poisson process and choose distances to travel i.i.d. as D, and velocity patterns
iid. as {V(¢), t = 0}, the velocity patterns and distances being indepzndent. The
assumption of independence of velocity patterns ignores vehicular interactions. It
is used in approximations to low density traffic, where interactions occur infrequently
(see [3], [8]). Under the above assumptions the amounts of time spent by vehicles
on the highway are i.i.d. random variables. We interpret the system as an M/G/oo
queue in which each vehicle is a customer and the amount of time spent by a
vehicle on the highway is its service time. If one wishes to estimate the service
time cdf, our procedure would enable him to do so, without having to keep track
of individual vehicles.
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1. Theory. Consider a Poisson process on the real line of intensity A.
The points of increase of the process will be referred to as input points. The output
process is obtained by translating the input points by i.i.d. random variables with
cdf G. It is assumed that pg = [ xdG(x) < oo. The output process is also a Poisson
process of intensity A, [5] page 404. Choose any output point and label it ¥, .
Then define Y, for n =0, +1, -+ as the nth output point to the right of Y,.
Define Z, for n =0, +1, -+ - as the distance from Y, to the nearest input to the
left of Y,.

Our argument proceeds as follows. We show that the sequence {Z,} is stationary
and ergodic. This enables us to estimate the cdf H of Z;. Since H and G are related
by a simple expression (Lemma 3) we can modify the estimator of H to obtain an
estimator of G.

LEMMA 1. The sequence {Z,,n=0, +1, -} is stationary and ergodic.

ProOF. Stationarity follows from the fact that a shift of the Z, sequence is
equivalent to shifting the origin to a new output point.

It is shown in [2] page 119 that every invariant event of a stationary sequence is a
tail event. Therefore to prove ergodicity it is sufficient to prove that every tail event
has probability 0 or 1. This will follow if we show that for all m, the tail o-field
of {Z,} is independent of {Z;, i < m}. Now for any m, with probability 1, there
are a finite number of customers in service at time Y,,. This is assured since the
finiteness of ug implies that the system attains equilibrium. Thus, the after-affects
of inputs prior to Y,, is finite with probability 1. Also, inputs subsequent to Y,
and their service times are independent of the history prior to Y,,. Therefore the
tail o-field of {Z;} depends only on the inputs subsequent to Y,, and their service
times. The tail o-field is thus independent of {Z;, i < m}.

Let H be the cdf of Z; and A the intensity of the input process.

LEMMA 2. G(x) = 1 —(1—H(x)) e**.

PrOOF. The probability that Z; < x given W, the distance from Y to the input
which led to Y, and K, the number of input points in (¥Y;— W;, Y;) is given by:

HElpR =1-(1-x/w)l,  x<w;

=1, X=w.
It follows that
HEW =1-e"%,  x<w;

=1, X = w;
and thus that H(x) = 1 —(1—G(x))e™**. -

Lemma 3. If {F,,n = 1,2, -} is a sequence of random cdf *s and F is a non-random
cdf such that for all real x

Pr(F,(x) — F(x), F(x—0)—>F(x—0))=1

then F, converges uniformly a.s. to F.
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ProoF. The result follows by the same argument as found in the proof of the
Glivenko-Cantelli theorem in [7] page 20.

Let {1,,n=1,2, -} be a sequence of random variables converging a.s. to 1.
For example 1, may be the sample input intensity in [Y,, ¥,].
Define

A(x)=1, Z;=x;
=0, Z;>x;
Hy(x) = n™ 357" Ax);
Vi(x) = 1—=(1—H,(x)) e**;
G(x) = sWPosye Vi().
LeEMMA 4. H, converges uniformly a.s. to H.

PrOOF. Since the sequence {Z;} is stationary and ergodic, so is {44(x)} [2]
page 119. Therefore by the ergodic theorem, [2] page 118, H,(x) converges a.s. to
H(x) for all x. Similarly H,(x—0) converges a.s. to H(x—0) for all x. The con-
clusion now follows from Lemma 3.

LEMMA 5. The sequence of random functions {V,} converges uniformly on bounded
intervals a.s. to G.

Proor. Easy consequence of the definitions of ¥, and G together with Lemmas 3
and 4.

THEOREM 1. G, — G uniformly a.s.

ProoF. Note that G(x) = sup, <, <, G(y). Lemma 5 implies that P(G,(x) —» G(x),
G,(x—0)—> G(x—0)) =1 for all x. For each n, G, is a random cdf since G, is
monotone nondecreasing, G,(0) =0 and G,(y) =1 for y =2 max(Z,, ", Z,_,).
The proof is completed by applying Lemma 3.

2. Comments and additions.

(i) Although we have obtained an estimator for the cdf G, it is clearly not the
best estimator in any sense because we do not use all the information. The problem
of finding a best estimator (according to any criterion) is still open.

(ii) It would be of interest to obtain the asymptotic distribution of sup (G,— G)
suitably normalized, and weak convergence of the sequence of processes {G,— G,
n=1,2, -} suitably normalized. The author has been unable to verify the mixing
conditions given by Billingsley [1] page 197. Were one to verify the mixing con-
ditions there would still remain the difficulty of computing the covariance kernel
of the limiting process.

(iii) It would also be interesting to estimate the service time cdf G in the
G-I'/G/oo queue, or at least to prove identifiability of G from {Q(¢), t > 0}.
Some type of restriction on the input cdf would be necessary.
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