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ON A THEOREM OF BAHADUR
ON THE RATE OF CONVERGENCE OF TEST STATISTICS

By M. RAGHAVACHARI

Carnegie—Mellon University '

0. Summary. Let x;, x,, -, x, be n independent and identically distributed
random variables whose distribution depends on a parameter 6, € ®. Let ®, be a
subset of ® and consider the test of the hypothesis that e ®y. L,(x,, ", x,) is
the level attained by a test statistic 7,,(x,, : - -, x,,) in the sense that it is the maximum
probability under the hypothesis of obtaining a value as large or larger than T,
where large values of T, are significant for the hypothesis. Under some assumptions
Bahadur [3] showed that where a non-null 8 obtains L, cannot tend to zero at a
rate faster than [p(0)]" where p is a function defined in terms of Kullback-Liebler
information numbers. In this paper this result has been shown to be true without
any assumptions whatsoever (Theorem 1). Some aspects of the relationship between
the rate of convergence of L, and rate of convergence of the size of the tests are
also studied and an equivalence property is shown (Theorem 2).

1. Introduction and main results. To facilitate reference with the relevant work
on this topic, we use the same notation as is employed in [3] and [4]. Let X be a
space of points x, & a o-field of sets of X and for each point 6 in a set O, let P,
be a probability measure on &. Let ©, be a given subset of @. If P, admits a density
with respect to Py, say dPy = f(x)dP,,, let

M K(0, 6o) = Eo(logf(x));

otherwise let K = oo. K is called the Kullback-Liebler information number. It is
clear that 0 < K < o and K = 0 if and only if P, = Py,. For each 6 in O, let

) J(0) = inf {K(0, 0,): 0,€ ©p}.

Then J is well defined over ® and 0 < J < 0. J =0 on O,

Let s = (x,, x,, ***) be a sequence of independent and identically distributed
observations on x. Let P,{* be the probability distribution of s in its sample
space when 0 is true. As in [3], for convenience we shall sometimes write P, for

P, For each n=1,2,:--, let T,(s) be an extended real-valued measurable
function of the observations x,, ** -, x,. For each 0, let

3 F,(t, 0) = P(T,(s) < 1)

and let

“) G, () =inf{F(t,0):0€©,} -0 <t< o0
Define

O] L,(s) = 1= G,(T,(5)).
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L,(s) has been called by Bahadur the level attained by 7, and has this interpretation
in the framework of tests of hypotheses. Consider the testing problem H,:0e®,
vs. H,:0e®—0, for which large values of T, are significant. Then L,(s) is an
index of the performance of this test in the sense it is the maximum probability of
obtaining a value of T, as large or larger than T,(s) when the hypothesis is true.
In many cases L, -0 with probability one or in probability as n— co when 0
obtains with € ® —@®,. Further in some cases there exists a function ¢(f) defined
for e ® —®, such that 0 < ¢ < 00 and

6) n~tlogL,— —c(6)/2 as n— o

with probability one or in probability.

In order to distinguish the two modes of convergence in (6), let us call ¢(6) the
strong exact slope if (6) happens with probability one and the weak exact slope if
(6) happens in probability only. For details regarding comparison of test statistics
through the slopes see [4], [2] and [5].

Bahadur [3] proved that for each § in @ —©,

@) liminf,_,, n~'logL,(s) = —J(6)

with probability one when 6 obtains if certain assumptions (Assumption 1 and
Assumption 2 of [3]) are satisfied. Bahadur stated that (7) holds under weaker
assumptions and posed the question. whether (7) holds without any assumptions
whatsoever. The following theorem answers this question in the affirmative.

THEOREM 1. For each € ® — @, (7) holds with probability one when 0 obtains.

REMARK 1. Bahadur [3] proved an optimal property of the likelihood ratio
statistic under assumptions which include an Assumption 2. In view of Theorem 1
above, Theorem 2 of [3] is valid without the latter assumption.

REMARK 2. Bahadur gives details of the relationship between exact slopes and the
size of the test statistics. Assume that the sequence {T,} is such that, for any given
p,0<p<1and c®—0@, there exist constants k, such that Po{T, = k,} - p as
n— .

For each n, let a, = sup {Py,(T, = k,):00€O,}. 1, is the size of {T, 2 k,} in
testing ®, against ©® —@,. It can be readily seen (the method of proof parallels
that of Proposition 11 of Bahadur [4]) that Theorem 1 implies liminf, ., ,n~ lloga, =
—J(0) when 0 obtains. This result can also be deduced from the proof of
Proposition 9 of Bahadur [4].

Bahadur has shown [4] that if the sequence {T,} has a strong exact slope ¢(6),
then n~'loga, —» —c(6)/2 as n— oo for every 0 < p < 1. The following theorem
gives necessary and sufficient conditions in terms of the rate of convergence of a,
for a sequence {T,} to have weak exact slope.

THEOREM 2. Under assumptions and notations given in Remark 2, n~ og L(s) -
h(0) in probability as n— o when 0 obtains with 0e®—0, if and only if
n~tloga, — h(0) as n — oo for every p,0 <p < 1 and h(0) is independent of p.
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The above theorem may be used sometimes to obtain weak exact slopes when they
exist. Asymptotic efficiency of test statistics based on weak exact and weak
approximate (see, for example, Bahadur [2] or Gleser [5] for definition) slopes have
been studied in [2] and [5]. The following simple example illustrates the application
of Theorem 2. In fact, for this example the strong exact slope exists and has been
computed by Bahadur in [1].

EXAMPLE. X, X,, ***, X, are independent and identically distributed as normal
with mean 0 and unit variance. Consider testing H:0 =0 vs. H;:6>0. Let
T(xy,""*,x,)=%x Fix a 6>0 and a p such that 0 <p < 1. In this case
k,= (@ *®"'(1-p)+0), a, = 1 —®[@® *(1—p)+06n*] where @ is the cdf of the
standard normal distribution. It can be checked easily that n~'loga, - —02/2 as
n-» oo for every p such that 0 <p < 1. Theorem 2 applies and we have that
n~'log L,(s) converges to —6?%/2 in probability.

ProoF oF THEOREM 1. Choose and fix a 6 in @ —@,. If J(6) = oo, (7) holds
trivially. Suppose then that J() < co. Choose and fix ¢ > 0. By the definition of J
there exists 6, in ©®, such that

®) K(0, 6,) < J(0)+e.

Since K(0, 6,) < 0, Py is dominated by Py, say dPy = f(x)dPy,, 0 < f< co0. Let
g(x) = logf(x), — o0 < g < c0. Note that Py(— 0 < g < ) =1 and K(0, 6,) =
Ey9).

Choose constants y, & and p, all in (0, 1), with d<p. Let h,=n"1Y7_, g(x)).
We have 4, — K as n — co with P,®)—probability one. By Egoroff’s theorem there
exists a set 4 of sequences s such that Py(*(4) > 1—y and such that k,(s) > K
uniformly on 4. Hence there exists a finite constant N such that

) K-6<h(s)<K+6 for n=N, seA.

Now define L,*(s) = 1—F,(T,, 6,). Let

(10) B, = {s:L,* < "k}
and let

(11) C,={s:—o0 < h, < o}

Then

(12 PyC)=1 and Py (B,) < e "K*P

for each n; the second part of (12) follows from Bahadur [3] page 20, the first
sentence in the proof of Lemma 3. Note also that dP,™ = e dP{® on X™, and
hence

(13) dP{" = e "ndPy™ on C,,
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by (11). Now forn =N

Py®YANB,) = P,"(AnB,NnC,) by (12)
= ,[AnB,,nC,. " e~ d Py
< e KFD IAnB,.nC,. e dPo(w) by (9)
(14) é en(K+6) IB”nC” e-—nh,. dPo(OO)
= PEFD[ i Py
= 9 P(B,AC,) by (13
< e+ OPEB,)
< ¢nG-P ' by (12).

Since & <p, it follows from (14) that ) ,Py(4nB,) < co. Hence with
D =lim sup,.,, (ANB,), we have Py(D)=0. Let E =limsup,.,(B,). Then
Py(E) £ Py(A°)+ Py(D) = Py(A°) < y. Since E does not depend on y, and y is
arbitrary, Py(E)=0. It now follows from (10), and L,(s) = L,*(s), that with
P,(®>—probability one, n~'log L, = —K—p for all sufficiently large n. Hence, by

(3),
(15) liminf,,,n"'logL, = —J(0)—e¢—p

with probability one when 6 obtains. Since ¢ and p are arbitrary, (7) holds with
probability one when 6 obtains.

PrROOF OF THEOREM 2. Suppose n~'logL,(s) — #(6) in probability as n— oo
when 0 in ® — @, obtains. Suppose, if possible, lim inf,_, ,n~ ' loga, < h(f). This
would imply that there exists a sequence m; < m, < - of positive integers m,
such that m,”*loga,, < h(f). Take & to be a positive constant. We have

Po[m, " log L, (s) > h(6)—e]
(16) < Py[m,”*logL,,(s) > m,” 'loga,, ]
= Py[L,,(5) > ]
< P[T,,.(5) < k]

since for each n, L,(s) = 1—G,(T,(s)) and «, = 1 —G,(k,) and G,(¢) is monotone
non-decreasing in t. Letting r — oo in (16) and observing that Py[T,, (s) < k] —
1—p, we have 1 £ 1 —p which is not true since 0 < p < 1. Thus

lim inf,_, , n~ ! loga, = A(6).

In a similar fashion it follows that lim sup,_,,n~ *loga, < A(6). This proves the
“if” part.
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Now assume that n™'loga, — h(0) as n —» o for every p, 0 <p < 1, and that
h(0) is independent of p. Take any ¢ > 0. We have for all sufficiently large n

Py[n~"logL,(s) < h(6)—¢]

17 S Py[n~'logL,(s) <n"'loga,]

S P[T(s) 2 k,]-
Letting n — oo in (17) and noting that P,[T,(s) = k,] — p, we have
(18) limsup,_,,, Po[n"'log L,(s) < h(6)—e] < p

for all 0 < p < 1. Since A(6) is independent of p and L,(s) clearly does not depend
on p, we have from (18) that lim sup,.,,, Py[n~*log L{s) < h(0)—e] = 0 which
implies that Py[n~'log L,(s) < h(0)—&] -0 as n— cc. A similar argument shows
that for every & > 0, Py[n~ ' log L,(s) > h(0)+¢] — 0 as n — oo. This establishes the
“only if”” part and hence the theorem.
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