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PROBABILISTIC TECHNIQUES LEADING TO A VALIRON-TYPE
THEOREM IN SEVERAL COMPLEX VARIABLES

By J. GoraLA KRISHNA

Andhra University

0. Introduction. Rosenbloom [5] initiated a probabilistic approach for proving
Wiman-type theorems for entire power series in one complex variable, which is
extended to the case of several complex variables and studied extensively by
Schumitzky [6]. Their technique consists of studying the relations among certain
functions such as the cumulants, the modal mass and the modes of a stochastic
process (of which the classical Poisson Process is a particular case) associated with
a non-constant entire power series. The purpose of this work is to discuss some
properties of such a process, which lead to a well-known theorem of Valiron in one
complex variable and its generalization to the case of several complex variables
(see [3]). It incidentally turns out that the theorem may be proved bypassing the
considerations of the central index.

1. Notation. We follow throughout the standard or suggestive notation (see [2]).
Throughout k denotes a positive integer and %* the Cartesian product of k copies
of the complex plane. We denote (ry, ***, ), (ny, =+, 1), (24, *, 2, (|24], *+, |zi])
etc.e%* by their respective unsuffixed symbols r, n, z, |z| etc. and denote
(, - -+, 0)e%* by 0. We say, in the case of r, se ¢*, that r < s or s = r, iff (if and
only if) r;, s; are real and r; < s; for 1 < j < k, and that r < s or s > r, if and only
if r<s “and r;<s; for 1 <]<k We write |¢% =[r:re%*,r20], ¢** =
[r:re%*, r> 0] and I I* = [n:ne|%"|, where each n; is an integer].

Throughout f denotes a non-constant entire power series in %* defined by
f(2) =Y ,c1a,2" for ze¥* (2" = z,™z," -+ z,™) and F denotes the function on
|6%| defined by F(r)=Y,cr|a,|r", for re|%¢*|. We define the functions: the
maximum term g and the maximum modulus .# of f by

w(r) =max, ;(|a,| ™),  M(r) =max, - |f(z), for re|€.

We say that a real valued function H on ¢** is of finite order if and only if there
exist Ae |‘€ !, ae®** such that H*(r) < Ar* asymptotically as r— +o0 =
(400, -+, +00)in €**. We say that fis of finite order (in €*) if and only if log.#
is of ﬁmte order.

2. A distribution valued function associated with / and its properties. Throughout
this section & denotes the function over ¥** with values as probability measure
distributions (see for definitions etc. [1], [4]) such that the distribution &, associated
with re@** is the discrete distribution over |#¢*| having mass |a,| r"/F(r) at n, for
nel. We write y,, for ne I, to denote the nth cumulant of & (so that y,(r) is the nth
cumulant of &,). We first prove
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THEOREM 2.1. The following three statements are equivalent:

(a) log F is of finite order;

(b) each cumulant of F is of finite order;

(c) there exists a positive integer p such that each cumulant of degree p (i.e., X,
with ny+ -+ +n, = p—usually referred to as *“- - - of order p”) is of finite order.

We require three lemmas.

LeMMa 2.2. For re6**, nel,

Xu(r) = (6,0, -+ - 9") log F(r) = " log F(r),
where 0; is the operator ri(0/0r;) for 1 <j < k.

PROOF OF LEMMA 2.2. Let re@** and be = (¢!, - - -, €*), denoted by e°. Now the
moment generating function .#, of &, is easily seen to be analytic over the entire
%* and is given by

M) = g(¢*)F(r), for ted,
where g(z) =Y ,e1 |a,,| z" for ze %¢*. Hence the cumulant generating function of &,
is analytic in a neighborhood of 0 e %* and

an1+- IR 4% logg(es+t)
atl"l. . atk”k
gt tmog F()

. o+
= in 4
05" -+ - 05, ’

xn(r) = at . t=0 in %"

which implies the lemma.

LEMMA 2.3. Let ¢ and ¢ (1 < j < k) be nonnegative real valued and locally bounded
functions on €** such that the jth section of ¢; is increasing (i.e. ¢ (r) < ¢(s) if
r,s, €€, r<s, r,=s, for t#j, 1 £t £k), for 1 £j < k. Let further the line
integral

=1%o (x)dx;]

taken over any polygonal path from r to s with sides parallel to the axes, exist and
be = ¢(s)— @(r). Then (i) the following two statements are equivalent:

(a) @ is of finite order;
(b) each ¢ (1 < j < k) is of finite order.

(ii) (b) implies (a) even if the jth section of ¢; is not increasing for any 1 < j < k.
PROOF OF LEMMA 2.3. For any re%**, 1 <j < k we have
¢j(") =< If;"bj("la sl X P rk)xj— ! dxj
SP(rys  sTj1s€rjsTings " 5T

which shows that (a) implies (b).



2128 J. GOPALA KRISHNA

We easily verify that for any d, re%**,d<r,

¢(r) £ G(d)+Yj=1 SUPasis, D) l0g (r;/d)),

which (with the components of d ““fixed but chosen sufficiently large”) shows that
(b) implies (a). Hence the lemma.

LeEMMA 2.4. If f is of finite order, then any partial derivative of f is of finite order
(all in €%).

PROOF OF LEMMA 2.4. The proof may be carried out as in the case of one variable
using Cauchy’s Integral Formula (see [2]).

ProOF OF THEOREM 2.1. We first prove that (a) implies (b). Let (a) hold. By
Lemma 2.2, 3;?log F(r) 2 0 and hence the jth section of 9 ;log F(r) is increasing
with r;, for 1 <j < k. It is now easy to verify that the hypothesis of Lemma 2.3
holds with ¢ = log Fand ¢; = 0;log F and hence by Lemma 2.2, 9;log F = (9; F)/F
is of finite order for 1 <j < k. By virtue of Lemma 2.4 we might repeat the above
argument with 0"F, for any particular nel in the place of F to conclude that
0;0"F[0"F is of finite order, and (b) now follows from the fact that each cumulant
of # is a polynomial in the functions (0;0"F)/0"F (ne #, 1 <j < k).

That (b) implies (c) is trivial. Let (c) hold. Since any cumulant o of & of order
p—1(log Fbeing regarded as the cumulant of order 0, for the moment) is expressible
by a line integral of the kind mentioned in Lemma 2.3 in terms of 0;a(1 £ j < k),
it follows by Lemma 2.3 (ii) that « is of finite order and (a) now follows by
induction. []

REeMARK 2.5. Following the ideas of Ronkin and Fuks (cf. Section 26.2, Ch. V
of [2]) one might define the more precise concept of the hypersurface of systems
of conjugate orders in the case of a function of finite order in ¥** and observe
through our discussion of Theorem 2.1 that if log F is of finite order, then itself
and the function F, = max [y,:n€l, #, + -+ +m = 1] have the same hypersurface
of systems of conjugate orders. It may however be realised that our growth
indicators are based on the asymptotic considerations *“as r - + o0’ and that the
theorems of Section 3 would be false, if “r — + 00 in their statements is replaced
by “Y r; > + 00", even if ““- - - of finite order” is interpreted in the sense of Fuks or
in that of Gol’dberg [2] (consider the example suggested in Remark 5.6 of [3] and
ignore the rest of the remark).

THEOREM 2.6. Let log F be of finite order. Then the reciprocal of the modal mass
of & viz, Flu is of finite order.

PROOF OF THEOREM 2.6. The theorem follows from Theorem 2.1, Lemma 2.2 and
the following lemma (which we mention separately mainly because of its elegance):

LEMMA 2.7. There exists a positive real number A = A(k) such that
F(r) S u(nATTS-1[1+0,*log F(r)]*, for re®**.
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" PROOF OF LEMMA 2.7. Using a multi-dimensional version of Chebyschev’s Lemma,
Schumitzky [6] proved the existence of a positive real 4 = A(k) such that for any
re®**, F(r) £ u(r)A[det(A,+ U)]?, where A, is the moment matrix of #, and U
is the k/k unit matrix. The lemma now follows from the fact that A, is a non-
negative definite matrix.

3. A Valiron-type theorem. We define the power series g in &* by g(z) =
Yoer |a,,| z" and as in the case of f we say that g is of finite order (in #*) if and only
if its maximum modulus F is such that log F is of finite order. We first prove

THEOREM 3.1. Let g be of finite order. Then
logu(r) ~ logF(r), as r— +oo.

ProoF oF THEOREM 3.1. The theorem readily follows from Theorem 2.6 in case
F is “purely trancendental’ i.e. if there exists no m e I with the property thata, =0
for all n Z m. The theorem follows in particular when k = 1. The rest of the proof
may be carried out using induction on &, the number of variables (see for details
the proof of Theorem 5.2 of [3]).

We finally deduce

THEOREM 3.2. Let f be of finite order. Then
log u(r) ~ log #(r), as r— +co.

Proor OF THEOREM 3.2. It easily follows from Cauchy’s inequality that
u(r) < A(r), while it is obvious that .#(r) < F(r), for re€**. Thus the theorem
follows from Theorem 3.1 because of the fact that the finite orderedness of f is
equivalent to a statement involving only the absolute values of its coefficients
a,, ne I (cf. Theorems 26.1, 26.2, Chapter V of [2]), which implies that g is of finite
order.

REFERENCES

[1] Doos, J. L. (1965). Stochastic Processes. Wiley, New York.

[2] Fuks, B. A. (1965). Introduction to the theory of functions of several complex variables.
Amer. Math. Soc. Transl.

[3] KrisuNA, GoraLA J. (1969). Maximum term of a power series in one and several complex
variables. Pacific J. Math. 29 609-622.

[4] Rao, RADHAKRISHNA C. (1967). Linear Statistical Inference and its Applications. Wiley, New
York.

[5] RosenBLOOM, P. C. (1962). Probability and entire functions. Studies in Mathematical Analysis
and Related Parts. Stanford Univ. Press.

[6] ScHUMITZKY, A. (1966). Probabilistic approach to Wiman-Valiron theory. Notes, Summer
Institute on entire functions, LaJolla. Pp. III R 1-9. (To appear in J. Math. Anal.
Appl.)



