PROBABILISTIC TECHNIQUES LEADING TO A VALIRON-TYPE THEOREM IN SEVERAL COMPLEX VARIABLES

By J. GOPALA KRISHNA

Andhra University

- **0.** Introduction. Rosenbloom [5] initiated a probabilistic approach for proving Wiman-type theorems for entire power series in one complex variable, which is extended to the case of several complex variables and studied extensively by Schumitzky [6]. Their technique consists of studying the relations among certain functions such as the cumulants, the modal mass and the modes of a stochastic process (of which the classical Poisson Process is a particular case) associated with a non-constant entire power series. The purpose of this work is to discuss some properties of such a process, which lead to a well-known theorem of Valiron in one complex variable and its generalization to the case of several complex variables (see [3]). It incidentally turns out that the theorem may be proved bypassing the considerations of the central index.
- 1. Notation. We follow throughout the standard or suggestive notation (see [2]). Throughout k denotes a positive integer and \mathscr{C}^k the Cartesian product of k copies of the complex plane. We denote $(r_1, \dots, r_k), (n_1, \dots, n_k), (z_1, \dots, z_k), (|z_1|, \dots, |z_k|)$ etc. $\in \mathscr{C}^k$ by their respective unsuffixed symbols r, n, z, |z| etc. and denote $(0, \dots, 0) \in \mathscr{C}^k$ by 0. We say, in the case of r, $s \in \mathscr{C}^k$, that $r \leq s$ or $s \geq r$, iff (if and only if) r_j , s_j are real and $r_j \leq s_j$ for $1 \leq j \leq k$, and that $r \ll s$ or $s \gg r$, if and only if $r \leq s$ and $r_j \ll s_j$ for $1 \leq j \leq k$. We write $|\mathscr{C}^k| = [r: r \in \mathscr{C}^k, r \geq 0]$, $\mathscr{C}^{k+} = [r: r \in \mathscr{C}^k, r \gg 0]$ and $I = I^k = [n: n \in |\mathscr{C}^k|, \text{ where each } n_j \text{ is an integer}].$

Throughout f denotes a non-constant entire power series in \mathscr{C}^k defined by $f(z) = \sum_{n \in I} a_n z^n$, for $z \in \mathscr{C}^k$ $(z^n = z_1^{n_1} z_2^{n_2} \cdots z_k^{n_k})$ and F denotes the function on $|\mathscr{C}^k|$ defined by $F(r) = \sum_{n \in I} |a_n| r^n$, for $r \in |\mathscr{C}^k|$. We define the functions: the maximum term μ and the maximum modulus \mathscr{M} of f by

$$\mu(r) = \max_{n \in I} (|a_n| r^n), \qquad \mathcal{M}(r) = \max_{|z|=r} |f(z)|, \text{ for } r \in |\mathscr{C}^k|.$$

We say that a real valued function H on \mathscr{C}^{k+} is of finite order if and only if there exist $A \in |\mathscr{C}^1|$, $\alpha \in \mathscr{C}^{k+}$ such that $H^+(r) \leq Ar^{\alpha}$ asymptotically as $r \to +\infty = (+\infty, \dots, +\infty)$ in \mathscr{C}^{k+} . We say that f is of finite order (in \mathscr{C}^k) if and only if $\log \mathscr{M}$ is of finite order.

2. A distribution valued function associated with f and its properties. Throughout this section \mathcal{F} denotes the function over \mathscr{C}^{k+} with values as probability measure distributions (see for definitions etc. [1], [4]) such that the distribution \mathcal{F}_r , associated with $r \in \mathscr{C}^{k+}$ is the discrete distribution over $|\mathscr{C}^k|$ having mass $|a_n| r^n / F(r)$ at n, for $n \in I$. We write χ_n , for $n \in I$, to denote the nth cumulant of \mathscr{F} (so that $\chi_n(r)$ is the nth cumulant of \mathscr{F}_r). We first prove

Received December 4, 1968; revised April 25, 1970.

THEOREM 2.1. The following three statements are equivalent:

- (a) $\log F$ is of finite order;
- (b) each cumulant of F is of finite order;
- (c) there exists a positive integer p such that each cumulant of degree p (i.e., χ_n with $n_1 + \cdots + n_k = p$ —usually referred to as " \cdots of order p") is of finite order.

We require three lemmas.

LEMMA 2.2. For $r \in \mathcal{C}^{k+}$, $n \in I$,

$$\chi_n(r) = (\partial_1^{n_1} \partial_2^{n_2} \cdots \partial_k^{n_k}) \log F(r) = \partial^n \log F(r),$$

where ∂_i is the operator $r_i(\partial/\partial r_i)$ for $1 \leq j \leq k$.

PROOF OF LEMMA 2.2. Let $r \in \mathcal{C}^{k+}$ and be $= (e^{s_1}, \dots, e^{s_k})$, denoted by e^s . Now the moment generating function \mathcal{M}_r of \mathcal{F}_r is easily seen to be analytic over the entire \mathcal{C}^k and is given by

$$\mathcal{M}_r(t) = g(e^{s+t})/F(r)$$
, for $t \in \mathcal{C}^k$,

where $g(z) = \sum_{n \in I} |a_n| z^n$ for $z \in \mathcal{C}^k$. Hence the cumulant generating function of \mathcal{F}_r is analytic in a neighborhood of $0 \in \mathcal{C}^k$ and

$$\chi_n(r) = \frac{\partial^{n_1 + \dots + n_k} \log g(e^{s+t})}{\partial t_1^{n_1 \dots \partial t_k^{n_k}}} \quad \text{at} \quad t = 0 \quad \text{in} \quad \mathscr{C}^k$$

$$= \frac{\partial^{n_1 + \dots + n_k} \log F(e^s)}{\partial s_1^{n_1 \dots \partial s_k^{n_k}}} \quad \text{in} \quad \mathscr{C}^{k+},$$

which implies the lemma.

LEMMA 2.3. Let ϕ and $\phi_j (1 \le j \le k)$ be nonnegative real valued and locally bounded functions on \mathscr{C}^{k+} such that the jth section of ϕ_j is increasing (i.e. $\phi_j(r) \le \phi_j(s)$ if $r, s, \in \mathscr{C}^{k+}$, $r \le s$, $r_t = s_t$ for $t \ne j$, $1 \le t \le k$), for $1 \le j \le k$. Let further the line integral

$$\int_{r}^{s} \left[\sum_{j=1}^{k} x_{j}^{-1} \phi_{j}(x) dx_{j} \right]$$

taken over any polygonal path from r to s with sides parallel to the axes, exist and $be = \phi(s) - \phi(r)$. Then (i) the following two statements are equivalent:

- (a) ϕ is of finite order;
- (b) each $\phi_i(1 \le j \le k)$ is of finite order.
- (ii) (b) implies (a) even if the jth section of ϕ_i is not increasing for any $1 \le j \le k$.

PROOF OF LEMMA 2.3. For any $r \in \mathscr{C}^{k+}$, $1 \le j \le k$ we have

$$\phi_{j}(r) \leq \int_{r_{j}}^{er_{j}} \phi_{j}(r_{1}, \dots, r_{j-1}, x_{j}, r_{j+1}, \dots, r_{k}) x_{j}^{-1} dx_{j}$$

$$\leq \phi(r_{1}, \dots, r_{j-1}, er_{j}, r_{j+1}, \dots, r_{k}),$$

which shows that (a) implies (b).

We easily verify that for any $d, r \in \mathcal{C}^{k+}, d \leq r$,

$$\phi(r) \le \phi(d) + \sum_{j=1}^k \sup_{d \le t \le r} \phi_j(t) \log(r_j/d_j),$$

which (with the components of d "fixed but chosen sufficiently large") shows that (b) implies (a). Hence the lemma.

LEMMA 2.4. If f is of finite order, then any partial derivative of f is of finite order (all in \mathcal{C}^k).

PROOF OF LEMMA 2.4. The proof may be carried out as in the case of one variable using Cauchy's Integral Formula (see [2]).

PROOF OF THEOREM 2.1. We first prove that (a) implies (b). Let (a) hold. By Lemma 2.2, $\partial_j^2 \log F(r) \ge 0$ and hence the *j*th section of $\partial_j \log F(r)$ is increasing with r_j , for $1 \le j \le k$. It is now easy to verify that the hypothesis of Lemma 2.3 holds with $\phi = \log F$ and $\phi_j = \partial_j \log F$ and hence by Lemma 2.2, $\partial_j \log F = (\partial_j F)/F$ is of finite order for $1 \le j \le k$. By virtue of Lemma 2.4 we might repeat the above argument with $\partial^n F$, for any particular $n \in I$ in the place of F to conclude that $\partial_j \partial^n F/\partial^n F$ is of finite order, and (b) now follows from the fact that each cumulant of \mathcal{F} is a polynomial in the functions $(\partial_i \partial^n F)/\partial^n F$ $(n \in \mathcal{I}, 1 \le j \le k)$.

That (b) implies (c) is trivial. Let (c) hold. Since any cumulant α of \mathscr{F} of order p-1 (log F being regarded as the cumulant of order 0, for the moment) is expressible by a line integral of the kind mentioned in Lemma 2.3 in terms of $\partial_j \alpha (1 \le j \le k)$, it follows by Lemma 2.3 (ii) that α is of finite order and (a) now follows by induction. \square

REMARK 2.5. Following the ideas of Ronkin and Fuks (cf. Section 26.2, Ch. V of [2]) one might define the more precise concept of the hypersurface of systems of conjugate orders in the case of a function of finite order in \mathscr{C}^{k+} and observe through our discussion of Theorem 2.1 that if $\log F$ is of finite order, then itself and the function $F_1 = \max [\chi_n : n \in I, n_1 + \cdots + n_k = 1]$ have the same hypersurface of systems of conjugate orders. It may however be realised that our growth indicators are based on the asymptotic considerations "as $r \to +\infty$ " and that the theorems of Section 3 would be false, if " $r \to +\infty$ " in their statements is replaced by " $\sum r_j \to +\infty$ ", even if " \cdots of finite order" is interpreted in the sense of Fuks or in that of Gol'dberg [2] (consider the example suggested in Remark 5.6 of [3] and ignore the rest of the remark).

Theorem 2.6. Let $\log F$ be of finite order. Then the reciprocal of the modal mass of \mathcal{F} viz, F/μ is of finite order.

PROOF OF THEOREM 2.6. The theorem follows from Theorem 2.1, Lemma 2.2 and the following lemma (which we mention separately mainly because of its elegance):

LEMMA 2.7. There exists a positive real number A = A(k) such that

$$F(r) \leq \mu(r) A \prod_{j=1}^k \left[1 + \partial_j^2 \log F(r)\right]^{\frac{1}{2}}, \quad for \quad r \in \mathcal{C}^{k+}.$$

PROOF OF LEMMA 2.7. Using a multi-dimensional version of Chebyschev's Lemma, Schumitzky [6] proved the existence of a positive real A = A(k) such that for any $r \in \mathcal{C}^{k+}$, $F(r) \leq \mu(r) A [\det(\Lambda_r + U)]^{\frac{1}{2}}$, where Λ_r is the moment matrix of \mathcal{F}_r and U is the k/k unit matrix. The lemma now follows from the fact that Λ_r is a nonnegative definite matrix.

3. A Valiron-type theorem. We define the power series g in \mathscr{C}^k by $g(z) = \sum_{n \in I} |a_n| z^n$ and as in the case of f we say that g is of finite order (in \mathscr{C}^k) if and only if its maximum modulus F is such that $\log F$ is of finite order. We first prove

THEOREM 3.1. Let g be of finite order. Then

$$\log \mu(r) \sim \log F(r)$$
, as $r \to +\infty$.

PROOF OF THEOREM 3.1. The theorem readily follows from Theorem 2.6 in case F is "purely trancendental" i.e. if there exists no $m \in I$ with the property that $a_n = 0$ for all $n \ge m$. The theorem follows in particular when k = 1. The rest of the proof may be carried out using induction on k, the number of variables (see for details the proof of Theorem 5.2 of [3]).

We finally deduce

THEOREM 3.2. Let f be of finite order. Then

$$\log \mu(r) \sim \log \mathcal{M}(r)$$
, as $r \to +\infty$.

PROOF OF THEOREM 3.2. It easily follows from Cauchy's inequality that $\mu(r) \leq \mathcal{M}(r)$, while it is obvious that $\mathcal{M}(r) \leq F(r)$, for $r \in \mathcal{C}^{k+}$. Thus the theorem follows from Theorem 3.1 because of the fact that the finite orderedness of f is equivalent to a statement involving only the absolute values of its coefficients a_n , $n \in I$ (cf. Theorems 26.1, 26.2, Chapter V of [2]), which implies that g is of finite order.

REFERENCES

- [1] DOOB, J. L. (1965). Stochastic Processes. Wiley, New York.
- [2] FUKS, B. A. (1965). Introduction to the theory of functions of several complex variables. Amer. Math. Soc. Transl.
- [3] Krishna, Gopala J. (1969). Maximum term of a power series in one and several complex variables. *Pacific J. Math.* 29 609–622.
- [4] RAO, RADHAKRISHNA C. (1967). Linear Statistical Inference and its Applications. Wiley, New York.
- [5] ROSENBLOOM, P. C. (1962). Probability and entire functions. Studies in Mathematical Analysis and Related Parts. Stanford Univ. Press.
- [6] SCHUMITZKY, A. (1966). Probabilistic approach to Wiman-Valiron theory. Notes, Summer Institute on entire functions, LaJolla. Pp. III R 1-9. (To appear in *J. Math. Anal. Appl.*)