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SOME JOINT LAWS IN FLUCTUATION THEORY

By J. P. IMHOF
University of Geneva

1. Summary. Let S, = 0, 5,=>1X,,n = 1,2, --- bethe sequence of partial sums
of independent, identically distributed real valued random variables X 1 Xay oo
The sum S, is a (strict) ladder sum if S; < S, for 0 < j < k. Contrary to usual
practice, we always count S, as a ladder sum. A run of ladder sums of length i
starts at S, if Sy, Syiy, -+, Sp4i—y are ladder sums but S,_; and S,.; are not.
Thus S, is always the beginning of a run, of length one if S; < 0. Except at the
beginning of Section 3, we assume that X, has continuous law, symmetric with
respect to 0. Thus ties S; = §; can be disregarded. Let

L, = *“index of max {S,0 =i < n},”

(1 G, = “number of ladder sums among 0, S, ---, S,,”

n

R, = “number of runs they form.”

n

Two sets of probabilities concerning those variables are obtained, namely the joint
law

) pu(k+1,m+1) = P(G, = k+1,R, = m+41) = 27 2n+k2n 2k y(k)
where 0 < m < k £ nand k+m < n, and the probabilities
m
@) p(k+Lm+1) =P(G, = k+1,R, =m+1,L,=n) =—— p,(k+1,m+1),
valid for 1 Sm £k <nand k+m < n. If m = 0 and 0 £ k < n, then clearly

Pn*(k+1,1) = 0, while on the other hand p,*(n+1,1) = PO < S; < --- < S,) =
27"

Considering similarly the behavior beyond the maximum, let X, = — X,_,.,,
S/ =Yi-1X,=8S,-1—S,i=1,--,n, and
G)) G, = “number of ladder sums among 0, S,’, -+, S,/,”

R,” = “number of runs they form.”
so that G, counts descending ladders from S, on. Various limit laws are obtained,
in particular it is shown that (2L,)"*G,, (2n—2L,)"*G,’, n"'L,, G,”*(2R,—G),)
and G, "*(2R,—G,’) are asymptotically independent, the first two having a
limiting y, law and the latter two a standard normal one.

2. Derivation via difference equations. A useful technique for obtaining various
invariant probabilities is fully described by Hobby and Pyke [2], and applied to
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another problem in [3]. Briefly stated, one takes a numerical vector x = (x, -+, x,,)
and considers the set {x, , = (¢;X,,, ", &,X,,)} of 2"n! vectors derived from x by
all possible sign attachments ¢; = + 1 and all possible coordinate permutations
o = (o4, -+, 0,). Each x, , generates a sample path in the Cartesian plane, going
from the origin successively to the points (k,Y {&x,,), k = 1, ---,n. In all those
paths, one may assume the partial sums ) {¢x,, are all different and # 0. Let
u,(k+1,m+1) and u,*(k+ 1, m+ 1) be the numbers of paths fulfilling respectively
the conditions described in (2) and (3): then 2"a!p,(k+1,m+1) = u,(k+1,
m+ 1), and similarly with the *. The method now consists in obtaining a recurrence
relation by examining how all paths of length n counted e.g. by u,(k+1, m+1)
can be obtained from paths of length »—1 through insertion of a minutely ascen-
ding, or descending, segment. One finds in this fashion

) uk+1, m+1) = (k—m+Du,_(k+1, m)+ku,_ (k,m+1)
+@n—-2k+m—Du,_,(k+1, m+1),

valid for n > 1 with the initial values u(1, 1) = u,(2, 1) = 1, and

6) uM(k+1,m+1)=(k—m+)ut (k+1,m)+ku’ (k,m+1)
+(@2n—=2k+m=2)u_ (k+1,m+1),

valid for n > 2 and k = 1, with the initial conditions u,*(1, 1) = u,*2, 1) = 0,
u,*(2,2) = 1 and w,*(3, 1) = 2. In each case, terms on the right for which the
restrictions on k and m (relative to n—1) listed for (2) and (3) fail to hold are set
equal to zero. One checks easily that the solutions are respectively

w(k+1,m+1) =2"""*nlGL2)G),  w*(k+1Lm41) = —u(k+1,m+1),

so that (2) and (3) are established.
The marginal law of G,, and the marginal probabilities in (3) for fixed %, are
well known:

(7) P(G,, = k+1) = q,,(k+1) = 2”2"“‘(2";"),
k
®) Yupru*(k+1,m+1)=P(G, =k+1,L,=n)=q,*(k+1) = T 5 (k+1).

It does not seem, on the other hand, that the law of R, is expressible in compact
form. However, using (3) and (8) one finds after some algebra that E(R,) =
1 4+na,—(2n)"'E(G2_,), where a, =272"(3"). Results in [1] then yield

E(R,) = (n+1)a, ~ (n/n)*.

It is known that E(G,) = (2n+ 1)a,, thus as must be lim {£(G,)/E(R,)} = 2, the
expected length of a run in the infinite sequence {S,}
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3. Use of generating functions. We drop for a while the assumption of symmetric
law for the X ;. If E, is the event *“S, is aladder sum,” {E,, n > 0} defines a recurrent
event. Let

fi=PE)=P(X,>0), f,=PE; E_E) or j>1, q;=Y%f
F@s) =20/ 0s) =X a5 =(1-9)"{1-F(s5)},

where we have assumed in the last equality that the recurrent event is persistent,

ie.qy = 1.
Notice first that all probabilities considered can be obtained from the case
= m. In fact

©) pulk+1,m+1) =/ 7"C)pu- s m(m+1,m+1),

and the same relation holds for the p,*, because there are (%) ways of splitting
k—m X;’s into m+1 batches (some maybe empty) which are then inserted after
each beginning of a run for the sums 0, S, ---, S,_,,,, Where all runs are assumed
of length one. This will provide, for n summands, m+ 1 runs with a total of k+1
ladders if the k—m inserted X;’s are positive, for which the probability is £, ™.
On the other hand, p,(m+1, m+1) can be determined by reviewing the indices
0,7y, iy+iy iy +-+- +i, of occuring E;’s; the occurrence of E; excludes that of

E;., hence all i; are greater than one and

pu(m+1,m+ 1) = Z{i1.+~~~+im.+j:n}/;'1f;'z il

ir> 1, im>1

The factor g; guarantees that ladder number m + 2 occurs beyond n. The p,*(m+1,
m+1) correspond to j = 0. Hence the generating functions of the p,(m+1, m+1)
and p,*(m+1, m+1), n = 2m, are respectively

(10) gn(s) = (F(5)=/19)"Q(s),  gw™(s) = (F(s)=/19)",

the first for m = 0 and the second for m > 0. Notice also that a review of possible
values of L, gives, with the notation of (7) and the value g,(1) = 1,

(A1) p(m+1,m+1)=> i, p*m+1,m+1)q,_(1), 0<m, 2m=n.
Returning to the symmetric case where f; = 4, F(s) = 1—(1—s)* and Q(s) =
(1—5)"%, (2) and (3) imply for |s| < I the expansions
{I=ds—(1=s)*}"(1=s) 7% =}y, 2720 m(2m)s,

m
{1_%3_(1_3)%}"! — p20:2m2_2n+m;1—_—;1—(2n;2m)3”'

If one could obtain those directly, the detour via (5) and (6) would not be necessary.
The identity (11) now becomes the apparently non-standard binomial identity

n

m . .
(2n;2m) — Z l —~ (Zt—iZm) 2n—}2!)’ 0 < m, 2}1’1 é n.

n—i
i=2m
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Quite generally, finding the probability of a specific pattern concerning lengths of
runs amounts to solving a corresponding occupancy problem for k—m balls
placed into m+1 boxes. Thus for instance, if 0 £ m < k < n and k+m < n,
one has in the case f; = 1

P(G, = k+1, R, = m+1 of which m—r have length one)

2IIEAGENCTE, r =0kt

4. Limit laws. The results above for the symmetric case are directly applicable,
as is well known, to 2n steps of simple, symmetric random walk provided one
translates ladder sum into return to equilibrium and run of ladders into run of
returns to equilibrium (two steps apart). One can however obtain from (3) more
detailed information involving both the variables (1) and (4), which does not have
an equivalent for random walk. Clearly,

P(G, = k+1,R,=m+1,L, = j,G,' = k'+1,R, = m'+1)
(12) =P(G;=k+1,R; =m+1,L; = )P(G,_; = k'+1,R,_; = m'+1,
L,_;=n—j),

with the obvious restrictions on the arguments. Let U, = 2n)~*G,, U, =
@2n)"*G,’, V, =G, *QR,-G,), V,, = G,/ *Q2R,-G,), T,=n"'L, and for
O0<a<b<1,0<a <b <1 consider the event

Aya<U,<b, a'<U,/<b, c<V,<d,
<V <d, e<T,</f

When k, m and j satisfy in (12) the conditions imposed by 4,, one has for n — oo
the asymptotic equivalence 2m ~ k, (j—k)™'m ~ 1j~ 'k and also, from standard
results in [1],

. ) m? 1(2m—k)?
G ~ G o] T 27 ~ ek enp] 5 |

all holding uniformly within A,. Substituting these expressions into the first right-

hand factor of (12) as given by (3) and (2), proceeding similarly with the second
factor, then taking sums as specified by 4, and passing to the limit, one obtains

i 1 bd b(d ’Nfi uu’ 1/u?* u?
1mP(A,,):; . u ) u Je(t [t(l—t)]%eXp ) t+1—t

1 d d’
Tnj exp(—}vz)dvj exp (—4v'?)dv’.

c c
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Thus V,, V,’ and the set (U,, U,’, T,) are asymptotically independent, V, and
V,’ have limiting N(0, 1) law while the limit law of (U,, U,’, T,) is given by the
density

3 ) uu’ 1 ur u? 0<uu0<t<
(13) p(u,ust) = [t(l t)]aexp AT+ e Su,u, 05t 1.

Integration in u’, then either in  or in ¢ yields the known limiting arcsine and y;,
densities for 7, and U, respectively. Performing the change of variables w = t ™y,
w = (1—t)"*u, one sees that W, = (2L,)" *G,, W, = 2n—2L,)"*G,’ and T,
are also asymptotically independent, W, and W,' having limiting y, law with
density p(w) = wexp (—iw?), w = 0.

It is not obvious how (13) can be integrated in ¢, so we derive the result ab initio.
On the set of 2"n! paths described in Section 2, consider the map which sends each
(glxal? ] 8nxan) = (yl’ Tt yn) into (yl’ U Ve TV T Vn—15 7 _yLn+l)' It shows
that P(G, = k+1, G, = k'+1) = P(G, = k+k'+1, L, = n). Using (8) and (7),
then passing to the limit as above, one obtains for (U,, U,’) the limiting density

2\*
p(u,u’) = <;> (u+u')exp{—3(u+u')}, u,u" =z 0.

Simple calculations show that the corresponding correlation coefficient is
p = (m—4)(2n—4)"', and that the limit laws of U,+ U,’, U,— U, are respectively
x3 and N(O, 1). Finally, convergence in law of U, *V, = (2n)*(1-2R,/G,)
implies that 2R,/G, — 1 in probability.
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