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A GAMBLING THEOREM AND OPTIMAL STOPPING THEORY

By WiLLIAM D. SUDDERTH
University of Minnesota

A proof is given for a gambling theorem which was stated by Dubins
and Savage. Connections are made with optimal stopping theory and the
usual abstract stopping problem is generalized to a situation where stopping
is allowed only at certain times along a given path.

1. Introduction. Consider a gambling problem in which, at each stage of play, the
gambler has at most two choices. He may either gamble his fortune on a given
game or, if the house allows it, he may stay with his current fortune. Dubins and
Savage (1965) (Theorem 3.9.5) stated a result giving the optimal strategy for such
a problem. Here a proof is given in the finitely additive setting of Dubins and
Savage. Some results on measurability are then obtained under assumptions
of countable additivity. Finally connections are made with optimal stopping theory
as presented in Snell (1952), Chow and Robbins (1963), Haggstrom (1966), and
Siegmund (1967). A generalization of the usual stopping problem is made to a
situation where the player is allowed to stop only at certain times along a given path.

In accordance with Dubins and Savage, the present note treats the case of
uniformly bounded random variables. As pointed out in the final section, most of
the results here do not require such a strong assumption.

Notation is mostly taken from Dubins and Savage.

2. A gambling theorem. Let F be a set and « a gamble-valued function on F.
Assume I' is a gambling house on F such that, forevery f, either I'(f)= {«(f)} or
T(f) = {a(f), 6(f)}, where 8(f) is the gamble assigning mass one to f. Let u be a
bounded utility function on F and let U and V be the corresponding utility of T’
(Dubins and Savage (1965), page 25) and strategic utility of I' (ibid., page 41)
respectively.

THEOREM 1. For allf € F,

U(f) = max {u(f), | Udu(f)},

and

V(f) = max {u(f), | Vdu(f)} if 3(f)eT(f),
= [ Vda(f) if O(f) ¢ T(f).

Proor. It follows easily from Corollary 3.3.4 of Dubins and Savage that,
for any gambling problem and fortune f € F, V(f) = sup {yV : y e ['(f)). This
formula specializes in the present situation to give the desired functional equation
for V. It also yields the desired equation for U if we apply it to the gambling house
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1698 WILLIAM D. SUDDERTH

I defined by I''(f) = {a(f), 6(f)} forallf € F,since U = U’ = V' by Corollaries
3.3.2 and 3.3.3 of Dubins and Savage. []

Let &(-) be the stationary family of strategies associated with the map

) Wf)=0(f) if u(f)=V(f) and &(f)eT(f),

=oa(f)  otherwise.
The next theorem is the major result of this section.

THEOREM 2 (Theorem 3.9.5 of Dubins and Savage (1965)). The strategy &(f)
is optimal for every f. That is, W(G(f)) = V(f) for every f.

It suffices to prove that the strategies o((f) are thrifty and equalizing (ibid.
Theorem 3.5.1). By Theorem 1, y(f)V = V(f) for all fe F and, hence, (f)
is thrifty for all f € F (ibid., Theorem 3.6.1). It remains to prove that each &(f)
is equalizing. The following two lemmas are helpful.

. Lemma 1. Suppose T'(f) = {a(f), 6(f)} for every f and also w' = 15 is an
indicator function. Let 7(-) be the stationary family determined by

@) B(f)=o(f) if f¢B
= o(f) if feB.
Then, for every f, T(f) is optimal in T at f.

Proor. Let Q(f) = uw'(i(f)) and apply Theorem 2.12.1 of Dubins and
Savage. []

LEMMA 2. Let I be any gambling house on F, u a utility function, and U the corres-
ponding utility of T. Let ¢ > 0 and define B = { f: u(f) 2 U(f)—¢}. Then, for the
new gambling problem with utility function ' = 1g, T has corresponding utility U’
identically equal to one.

PROOF. Let 0 < &’ < ¢ and let fe F. If u(f) = U(f), then clearly U'(f) = 1.
So assume u(f) < U(f). Choose ¢ available at f and a stop rule ¢ such that
u(o, t) > U(f)—(&")*. Since U is excessive, U(f) = U(a, t). Hence (U—u)(a, t) <
(¢")*. Since U = u, we have

olU(f)—u(f) 2 €] = olU(Sf) —u(f) 2 €] = €.
Thus U'(f) = 1g(0, 1) 2 1—¢". [] l

A somewhat deeper result is that Lemma 2 would remain true if U and U’ were
replaced by ¥ and V' in its statement.

Now we return to the proof that ¢( f) is equalizing.

Let £ > 0 and s be any stop rule. By Theorem 3.7.2 of Dubins and Savage,
it suffices to find a stop rule ¢ such that ¢ = s and 6(f)[f, € A] = 1—¢, where

A =A{fru(f) 2 V(f)—¢}
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Let g € F, 7(g) be as in Lemma 1, and B be as in Lemma 2. Then 4 2 B, since
V £ U, and, by the lemmas,

L,(3(9) 2 15((9) = U'(9) = 1.
In particular, there is a stop rule r(g) such that 7(g)[ f,,) € 4] =2 1—e.
Let
t(fy, ) = least k, if any, for which f, € 4
= 400 ifall f, ¢ A.

We may assume r(g) < ¢,. For, if not, we could replace r(g) by r(g) A t, and
observe that

[fryne. € Al 2 [foq) € Al

But (g) agrees with 7(g) up to time ¢,. Hence, 6(g)[ f,,) € 4] =2 1 —e.
Now let & = (f,, ---) and suppose s(h) = n. Define

t(h) = n+r(f)(for 15 -

Then
a(f)f € 4]

I 5(fs(h))[fr(f,(,.)) € Aldo(f)(h)

1—e.

v -

(ibid., Formula 3.7.1).
This completes the proof of Theorem 2.
Consider now the stationary family ¢,(-) determined by

() =06(f) if u(f) =z V(f)—e and &(f)eI(f),
= a(f) otherwise.

Let ¢, be the time at which &,(f) stagnates, the same ¢, which occurs in the proof
of Theorem 2.

THEOREM 3. For every f, u(G(f)) = V(f)—e. Moreover, if 6(f) € I'(f) for all
f, then 6 (f)t, < +oo] = 1 for all f.

ProOF. Clearly, G,(f) is thrifty. So V(G,(f)) = V(f). By Lemma 2, given
¢ >0 and a stop rule s, we can find a stop rule f = s such that

G(f) [u(f) > V(f)—e]l = 1—¢. It follows that u(G.(f)) = V(G (f))—e.
The last part of the theorem follows easily from Lemma 2. []

3. A countably additive setting. The new assumptions for this section are that
(a) a Borel field 4 of subsets of Fis given;

(b) each gamble y available in T is countably additive when restricted to £ and
each y is identified with its restriction to %;
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(¢) the map «, of the previous section is a regular conditional probability on
(F, %) in the sense that the map f — a( f)(A) is #-measurable for every 4 € &,

@ {f:6(f) e ()} € %;

(e) the utility function u is #-measurable. Under these regularity assumptions,
we have

THEOREM 4. The strategic utility function V is #-measurable and, hence, the map
y (defined in (1)) is B-measurable.

Before the proof, a definition is necessary. Let ¢ = ¢4, 64, --- be a strategy.
Suppose o, restricted to & is countably additive and, for every n = 1 and every
n-tuple (fy, ---,f,) of elements of F, a,(f, -+, f,) restricted to # is countably
additive. Suppose also that, forn 2 1and 4 € &, 6,(f1, -, f) (A)isa Bx - xAB
(n-factors) measurable function of (fy, :--,f,). Then ¢ is said to be a measurable
strategy. Theorem 4 implies that the strategies a(f) of Section 2 are measurable,
since 6(f)(f1> > f) = y(f,). Thus, for our problem, the optimal strategy is
measurable, although in other measurable problems the question of existence of
good measurable strategies remains open (cf. Sudderth (1971)).

A measurable strategy o determines a probability measure on the measurable
sets BxBx - = B° of FxFx --- = H as well as on the finitary sets. These
measures are consistent and have a common extension (ibid., Section 2) which we
also write as 0.

Define u* on H by
3) u*(f1, fr, ) = lim sup,, o u(f,).
According to Theorem 3.2 of Sudderth (1971).
4 u(o) = [ u*do for every measurable strategy .

LeMMA 3. Let o be a measurable strategy. Then

u(a[fl’ ’fn]) - u*(fl, "'afm ) o as.

as n — oo. (Recall that o[ f, --+, f,] denotes the conditional strategy determined by
o given the first n fortunes are f, -+, f,.)

PrOOF. By (4),
u(olfy, - fu) = [ wrdel f1, -, fil-

Since u* is shift invariant, the right hand expression is just the conditional expecta-
tion of u* under o given f,, ---, f,. The lemma now follows from a version of the
martingale convergence theorem (Doob (1953) Theorem VII.4.3). []

The next lemma is a special case of Theorem 4.

LemMa 4. If 6(f) € T(f), for all f, then V is #B-measurable.

PrROOF. Let Uy(f) = u(f) and, for n =1, 2, ---, U, (f) = max (U,(f),
J Unda(£)).
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Then each U, is #-measurable. By Theorem 2.15.5 and Corollary 3.3.2 of Dubins
and Savage (1965), U, » Vasn — . []

It is easy to generalize Lemma 4 to the case where there are countably many
gambles available at each f as in Theorem 4.1 of Sudderth (1969).

Now we are ready to prove Theorem 4.

Consider a gambling house I'" on F given by I''(f) = {a(f), 6(f)} for every f.
Let A(-) be the stationary family of measurable strategies determined by the map a.
Define

W (f) = [ u*di(f) if 6(f) ¢ T(f)
max {u(f), [ u*dA(f)}  if (f) e I(f).

Let V' be the corresponding strategic utility. Then, by Lemma 4, V' is #-measurable.
(It is straight forward to check the measurability of u’.) Thus it suffices to show
V=Vv.

For every f, A(f) is available at f in . So, by definition of ¥ and (4), V(f) 2
u(A(f)) = [u*dA(f). Hence, V = . But V isexcessive for I and thus for I'". By
Theorem 2.12.1, Dubins and Savage (1965), V = V.

It remains to prove that ¥ < V. Fix fin Fand let y(f) and &(f) be as in Section
2. By Theorem 2, u(6(f)) = V(f). Now a(f) is available at fin I'". So it suffices
to show

&) u'(@(f)) 2 u@(f)).

(In fact, equality holds.)
Let C = {f: y(f) = 6(f)} and define

te(fis -++) = least k, if any, for which f, e C
= 400 if fr¢C forall k.

I

Then, for any stop rule ¢,

u(@(f), 1) = u(@(f), t A 1)

= u(A(f), t A tc) (by Theorems 3.4.3. and 3.4 .4,
ibid.)

=[5 u(fYAAS )+ [e u( £, DA S ),

where E = [t = t].

Let e > 0.

For each positive integer n, let B, = {h: 3kak = n and u(f,) > u*(h)+¢}.
Then B, | & and A(f) is measurable, so that 3 N; with A(f)(By,) < e Thus,
ift = Ny,

[(f) > w*+e] < By,
and

A Nu(f) > u*+e] < e.
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Hence,

M u@(f), ) £ Jg u*dA(f)+ [g u(fi)dA(f)+eM+1),

for t 2 N, and M = sup |u|.

Now the equations in (6) remain true if u is replaced by u’. By Lemma
3, W(fy) z [urdd(f,) = u(A(f,) > w* as n— oo A(f)as. Hence, IN,>
A(f){h:3k = Nyandu'(fi) < u*(h)—e} < e Noticealsothat,foreveryh,u'(f,.(h)) =
u(fi(h) since fe C = 6(f) e I'(f).

Thus, for t = N,,

® w(@(f), 1) 2 Jg w*dA(f)+ fpe u(fi)dA(f)—eM+1).
By (7) and (8),
w(a(f), 1) 2 u(a(f), 1)—2eQ2M +1),

for ¢t = max (N;, N,), which proves (5) and, hence, the theorem.

4. Stopping theory. Let (Y,, %,),>, be a sequence of measurable spaces and, for
n=1,2 - let

(Y", B = (Y xxY, B, x - xB,)
and
(Y°°’ ‘@"0) = (Yl Xoeee, ’%1 x...).

Let P be a countably additive probability measure on #*. We shall assume, for
every n, the existence of a regular conditional distribution of the n+ 1st coordinate
Yu+1 given the first n coordinates y, -+, y,. The assumption is not very restrictive
in practice and the existence is guaranteed if the (Y,, 4,) are separable standard
Borel spaces (Parthasarathy (1967) Theorem V.8.1).

Forn = 1, let X, be a #"-measurable map from Y " to the Borel line and assume
the X, are uniformly bounded.

A stopping variable (sv) is a random variable ¢ on (Y®, #®, P) with range con-
tained in {1, 2, ---,4+ 00} and such that, for every two elements y = (yy, ¥, +**)
and y' = (', y,, --) of Y, if t(y) = n and y;, = y,/ for i £ n, then t(y’) = n.
Stopping variables are not assumed here to be finite with probability one. Following
Siegmund (1967), we define, for y € Y*,

X0) = Xi»(») if #(y) < oo,
= lim sup,. o, X,(») if #y) = c.

The object is to choose a sv which maximizes EX,.

We generalize the problem by restricting the sv’s allowed. Let A4, € 4" for
n=1. Ansvt is permissible iff, for every y = (y,, ---) € Y, t(y) = n implies
1> > Yu) € A,. (To specialize to the case where all sv’s are permissible, take
A, = Y" for all n.) The object now is to find the optimal sv among the class of
permissible sv’s. It will be seen that an optimal sv always exists. To obtain this



A GAMBLING THEOREM AND OPTIMAL STOPPING THEORY 1703

result, we associate a gambling problem with the given stopping problem by means
of the following definitions:

F= (U;o=1 Yo {fo} where f,¢ U;o=1 Y,
% = Borel field generated by (| i, 2" v {{fo}};

(The unions above can be assumed to be unions of disjoint
sets.)

a( fo) =distribution of y, ;

a(y;, -+, ¥a) = a version of the regular conditional distribu-
tion of (yls 5 Vn yn+1) given (yl’ RE) yn) forn = 13 23 s

[(fo) = {a(fo)};
r(yl’ ) yn)
= {a(yla ) yn)} lf(yla ] yn) ¢ Am

= {'x(yl’ ) yn)s 5(yl, ) yn)} if(yl, Tty yn) € An
forn=1,2,:;

(For each f € F, a( f) can be extended, by the Hahn-Banach
Theorem, to all subsets of F so as to be a gamble. The
particular extension taken is irrelevant for the sequel.)

u( f,) is an arbitrary real number;

u(yl’ ) yn) = Xn(}ﬁ, HE) yn) for all (yls Tty yn) € Y" and
alln=1,2, .

The definition of the associated gambling problem is now complete. Notice that
the gambling problem is one of the type studied in Section 3.
Now associate to each sv ¢ a gamble-valued function y, defined on F by

(€) 7(fo) = o(fo);
yt(yla '”3yn) = 5(})1, "'ayn) if t(yla s Vo ) =n,;
)’t(yl’ ) yn) = a(yl’ ) yn) if t(yls s Vo ) # n.

Let o, be the associated stationary strategy at f, and notice that o, is a measurable
strategy.

LEMMA 5. For every sv t, u(s,) = EX,. If t is permissible, then o, is available at
foinT.

ProoF. Let & = (fi, f>, --+) € H and define

Yt(h) = Xn(fn) if fn = (yl’ ) yn)e Y" and t(yla s Vns ) =n,
= limsup,., X,(f,) if f,eY" forall n.



1704 WILLIAM D. SUDDERTH

Then Y, is defined on a set of H which has probability one under o,. Moreover,
| xXdp = | Ydo,

since the distribution of X, under P is the same as that of Y, under o,.

By Theorem 3.2 of Sudderth (1971), u(s,) = [ u*do,, where u* is as in (3). Since
olu* = Y] =1, the first statement of the lemma is proved. The second is
obvious. ]

Consider the function s on Y given by

(10) s(yb Y25 ) = least hn, if any, such that u(yl’ s yn) = V(yl, Tty yn)
and 5(y1’ ) yn) € r(yla ) yn),

= +00 if there is no such n. -

Here V is the strategic utility function for I".
The next result is the principal one in this section and overlaps with theorems in
Chow and Robbins (1963), Haggstrom (1966), Siegmund (1967) and Snell (1952).

THEOREM 5. The function s is a permissible sv and is optimal.

Proor. By Theorem 4, V is #-measurable. It follows that s is Z®-measurable
and, therefore, a sv. Clearly, s is permissible.

Let &(fo) be the optimal stationary strategy of Theorem 2. Then &(f,) and o,
agree on a set of histories which has probability one under both. So, by Lemma 5,

EX; = u(o,) = w(@(fo)) = V(fo)-
But, for every permissible sv ¢,
EX, = u(o,) £ V(fo),

againby Lemma 5. [J

It is worth remarking that the proof shows o, to be optimal among a larger class
of strategies than just the class of ¢, arising from permissible sv’s ¢.

Other results which overlap with previous work in stopping theory can now be
easily established. Theorem 3 can be reinterpreted for this section to give informa-
tion about e-optimal sv’s and Theorem 1 gives a functional equation for V. Finally,
an easy application of the fundamental theorem of gambling (Dubins and Savage
(1965) Theorem 2.12.1) shows that, if 4, = Y" for all n then V(y,), V(y1,¥,), «-- is
minimal among the class of all expectation decreasing semi-martingales (measurable
or not) adapted to (Y”", #") and satisfying V(y,, ---, ¥,) 2 X, (b1, -+, ya) for all
(¥1> ***» V). Viewed from this standpoint, Snell’s original work (1952), where he
used ‘“maximal semi-martingales,” seems very much in the spirit of the basic
gambling result.

5. Remarks on the assumption of boundedness. The major results of this note
would presumably still hold if the utility function u were assumed only to be bounded
above. If attention is restricted to a countably additive setting and measurable
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strategies, then analogues of all the theorems can be proved under this weaker
assumption by essentially the arguments already given except that results quoted
from Dubins and Savage (1965) must be replaced by similar results from Sudderth
(1970). Moreover, in a countably additive setting, it should be possible to weaken
the boundedness assumption still further.
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