## A WEAK CONVERGENCE THEOREM FOR ORDER STATISTICS FROM STRONG-MIXING PROCESSES<sup>1</sup>

## By Roy E. Welsch

Massachusetts Institute of Technology

This paper provides sufficient conditions for the weak convergence in the Skorohod space  $D^d[a,b]$  of the processes  $\{(Y_{1,\lfloor nt\rfloor}-b_n)/a_n, (Y_{2,\lfloor nt\rfloor}-b_n)/a_n, \cdots, (Y_{d,\lfloor nt\rfloor}-b_n)/a_n\}, 0 < a \leq t \leq b$ , where  $Y_{l,n}$  is the *i*th largest among  $\{X_1, X_2, \cdots, X_n\}$ ,  $a_n$  and  $b_n$  are normalizing constants, and  $\langle X_n \colon n \geq 1 \rangle$  is a stationary strong-mixing sequence of random variables. Under the conditions given, the weak limits of these processes coincide with those obtained when  $\langle X_n \colon n \geq 1 \rangle$  is a sequence of independent identically distributed random variables.

**1. Introduction.** Let  $\langle X_n : n \ge 1 \rangle$  be a stationary strong-mixing sequence of random variables with common distribution function  $F(x) = P\{X_n \le x\}$  and define the order statistics  $Y_{i,n}$  by

$$Y_{i,n} = i$$
th largest among  $(X_1, X_2, \dots, X_n)$   $i \le n$ ;  
=  $Y_{n,n}$   $i > n$ .

For constants  $a_n > 0$  and  $b_n$ , set  $\mathbf{z}_{n,d}(t) = \{y_{1,n}(t), y_{2,n}(t), \dots, y_{d,n}(t)\}$  with

$$y_{i,n}(t) = (Y_{i,1} - b_n)/a_n$$
  $0 \le t \le 1/n;$   
=  $(Y_{i,[nt]} - b_n)/a_n$   $t > 1/n.$ 

The processes  $\mathbf{z}_{n,d}(t)$  with  $0 \le a \le t \le b < \infty$  will be regarded as random elements of the product of d copies of D[a, b], the space of all real-valued functions on [a, b] that are right continuous and have left limits.

The possible limit laws of  $\mathbf{z}_{n,d}(1)$  were described in Welsch (1970). In this paper we present sufficient conditions for the weak convergence of the processes  $\mathbf{z}_{n,d}$ . Loynes (1965) gave similar sufficient conditions for the convergence of  $\mathbf{z}_{n,1}(1)$  but did not consider the joint distributions of  $\mathbf{z}_{n,d}(1)$  for d>1 or the weak convergence. Lamperti (1964) has given a complete solution to the weak convergence problem for  $\mathbf{z}_{n,d}$  when  $\langle X_n : n \geq 1 \rangle$  is composed of independent random variables.

2. Sufficient conditions for convergence. A stationary sequence is strong-mixing if

$$|P(AB)-P(A)P(B)| \le \alpha(k)$$

Received November 6, 1970.

AMS 1970 subject classification. Primary 60B10; Secondary 62G30.

Key words and phrases: weak convergence, order statistics, mixing processes, invariance theorems.

1637

<sup>&</sup>lt;sup>1</sup> This research was supported by the National Science Foundation through its Graduate Fellowship program, contract N0014-67-A-0112-0015 at Stanford University and DA-31-124-ARO-D-209 at the Massachusetts Institute of Technology.

whenever  $A \in \mathcal{B}(X_1, X_2, \dots, X_m)$  and  $B \in \mathcal{B}(X_{m+k+1}, X_{m+k+2}, \dots)$  for some m, where  $\alpha(k) \downarrow 0$  as  $k \to \infty$ ; here  $\mathcal{B}(\dots)$  denotes the  $\sigma$ -field generated by the random variables indicated.

To simplify the discussion we shall only consider the maximum and second maximum and let  $M_n = Y_{1,n}$  and  $S_n = Y_{2,n}$ . The same techniques apply to higher dimensions but the results become more cumbersome to state. As was shown in Welsch (1970) the limit laws for  $M_n$  and  $S_n$  involve a distribution function G(x) which Gnedenko (1943) proved has only three possible forms (except for scale and location parameters):

$$G_{1}(x) = 0 x \leq 0$$

$$= \exp\left[-(x^{-\alpha})\right] x > 0, \alpha > 0$$

$$G_{2}(x) = \exp\left[-(-x)^{\alpha}\right] x < 0, \alpha > 0$$

$$= 1 x \geq 0$$

$$G_{3}(x) = \exp(-e^{-x}) -\infty < x < \infty.$$

THEOREM 1. Let  $\langle X_n : n \geq 1 \rangle$  be a stationary strong-mixing sequence and assume that a sequence  $\langle a_n > 0, b_n : n \geq 1 \rangle$  exists so that

$$(2.2) Fn(anx + bn) \to G(x).$$

Then  $P\{M_n \leq a_n x + b_n, S_n \leq a_n y + b_n\}$  converges to the limiting distribution

(2.3) 
$$H(x, y) = G(y)\{1 + \log[G(x)/G(y)]\} \qquad y < x$$
$$= G(x) \qquad y \ge x$$

provided that

$$(2.4) \qquad \lim_{n \to \infty} k_n \sum_{j=1}^{p_n-1} (p_n - j) P\{X_1 > a_n x + b_n, X_{j+1} > a_n x + b_n\} = 0$$

for x such that 0 < G(x) < 1 and any system of integer-valued functions  $k_n$  and  $p_n$  that satisfy

$$(2.5a) k_n \to \infty, p_n \to \infty$$

$$(2.5b) n/k_n p_n \to 1$$

(2.5c) 
$$k_n^2 \alpha([(n-k_n p_n)/k_n]) \to 0.$$

The following two lemmas will be needed in the proof.

LEMMA 1 (Ibragimov). Given a nonnegative monotone decreasing function of the positive integers,  $\alpha(k)$ , such that  $\alpha(k) \to 0$  there exists a system of functions satisfying (2.5).

PROOF. A minor modification of the proof of Theorem 1.3 of Ibragimov (1962). If we let  $q_n = [(n-k_np_n)/k_n]$  then  $n-k_n(p_n+q_n) \ge 0$ .

LEMMA 2. Condition (2.4) implies that

$$(2.6) \qquad \lim_{n\to\infty} k_n P\{M_{p_n} \ge a_n x + b_n\} = -\log G(x).$$

PROOF. (cf. Loynes (1965)). The Bonferroni inequalities state that

$$S_1 - S_2 \le P\{M_{p_n} \ge a_n X + b_n\} \le S_1$$

where  $S_1 = \sum_{i=1}^{p_n} P\{X_i > a_n x + b_n\}$  and

$$S_2 = \sum_{1 \le i < j \le p_n} P\{X_i > a_n x + b_n, X_j \ge a_n x + b_n\}.$$

Now  $k_n S_2 \to 0$  from (2.4) and  $k_n S_1 = k_n p_n P\{X_1 > a_n x + b_n\} \to -\log G(x)$  because of (2.2) and (2.5b).

PROOF OF THEOREM 1. We assume first that  $x \ge y$  and 0 < G(y), G(x) < 1. Let

$$\begin{split} \widetilde{M}_n &= \max \big\{ X_1, \cdots, X_{p_n}; X_{p_n + q_n + 1}, \cdots, X_{2p_n + q_n}; \cdots; \\ & X_{(k_n - 1)(p_n + q_n) + 1}, \cdots, X_{k_n p_n + (k_n - 1)q_n} \big\}, \\ M_{n,i} &= \max \big\{ X_{(i-1)(p_n + q_n) + 1}, \cdots, X_{ip_n + (i-1)q_n} \big\}, 1 \leq i \leq k_n \end{split}$$

and define  $\tilde{S}_n$  and  $S_{n,i}$  similarly using the second maximum. Then

(2.7) 
$$P\{\tilde{M}_n \leq a_n x + b_n, \tilde{S}_n \leq a_n y + b_n\} - P\{M_n \leq a_n x + b_n, S_n \leq a_n y + b_n\} \rightarrow 0$$
  
  $\leq (n - k_n p_n) P\{X_1 > a_n y + b_n\} \rightarrow 0$ 

because of (2.5b) and (2.2).

Furthermore

(2.8) 
$$P\{\tilde{M}_{n} \leq a_{n}x + b_{n}, \tilde{S}_{n} \leq a_{n}y + b_{n}\} = P\{M_{n} \leq a_{n}y + b_{n}\}$$
$$+ \sum_{j=1}^{k_{n}} P\{a_{n}y + b_{n} < M_{n,j} \leq a_{n}x + b_{n}, S_{n,j} \leq a_{n}y + b_{n};$$
$$M_{n,i} \leq a_{n}y + b_{n}, i = 1, \dots, k_{n}, i \neq j\}.$$

Applying the strong-mixing property repeatedly to (2.8) and using (2.5c) gives

$$(2.9) |P\{\tilde{M}_{n} \leq a_{n}x + b_{n}, \tilde{S}_{n} \leq a_{n}y + b_{n}\} - P^{k_{n}}\{M_{p_{n}} \leq a_{n}y + b_{n}\} - k_{n}P\{a_{n}y + b_{n} < M_{p_{n}} \leq a_{n}x + b_{n}, S_{p_{n}} \leq a_{n}y + b_{n}\}P^{k_{n}-1}\{M_{p_{n}} \leq a_{n}y + b_{n}\}|$$

$$\leq (k_{n}+1)(k_{n}-1)\alpha(q_{n}) \to 0.$$

Now

$$P^{k_n}\{M_{p_n} \le a_n y + b_n\} = \left[1 - \frac{k_n P\{M_{p_n} > a_n y + b_n\}}{k_n}\right]^{k_n}$$

and therefore from Lemma 2

(2.10) 
$$P^{k_n}\{M_{p_n} \le a_n y + b_n\} \to G(y).$$

We may rewrite  $k_n P\{a_n y + b_n < M_{p_n} \le a_n x + b_n, S_{p_n} \le a_n y + b_n\}$  as

$$(2.11) k_n P\{M_{p_n} > a_n y + b_n\} - k_n P\{M_{p_n} > a_n x + b_n\} - k_n P\{a_n y + b_n < M_{p_n} \le a_n x + b_n, S_{p_n} > a_n y + b_n\}.$$

Again using Lemma 2, the first two terms of (2.11) converge to  $\log [G(x)/G(y)]$ . Finally

(2.12) 
$$k_{n}P\{a_{n}y+b_{n} < M_{p_{n}} \leq a_{n}x+b_{n}, S_{p_{n}} > a_{n}y+b_{n}\}$$

$$\leq k_{n}P\{S_{p_{n}} > a_{n}y+b_{n}\}$$

$$\leq k_{n}\sum_{1 \leq i < j \leq p_{n}}P\{X_{i} > a_{n}y+b_{n}, X_{j} > a_{n}y+b_{n}\} \rightarrow 0$$

from condition (2.4). It now follows that  $\lim_{n\to\infty} P\{\tilde{M}_n \leq a_n x + b_n, \tilde{S}_n \leq a_n y + b_n\} = H(x, y)$ .

If y > x the conclusion of the theorem follows immediately from (2.10). The remaining cases are treated by noticing that  $G(\cdot)$  is continuous.

**3. Weak convergence.** When G(x) is of type II or III we cannot allow t = 0 (i.e. a = 0) since this will lead to improper random variables. All of our weak convergence results will be stated for a > 0. Only minor modifications of the proofs are necessary to consider a = 0 when the limit law is of type I. Let  $m_n(t) = y_{1,n}(t)$  and  $s_n(t) = y_{2,n}(t)$ .

Theorem 2. Under the same conditions as stated in Theorem 1,  $\langle m_n(t), s_n(t) \rangle$  converges weakly in  $D^2[a, b]$  to a random element  $\langle m(t), s(t) \rangle$  characterized by

$$(3.1) P\{m(t_1) \leq x_1, s(t_1) \leq y_1; m(t_2) \leq x_2, s(t_2) \leq y_2\}$$

$$= G^{t_1}(y_1)\{1 + t_1 \log [G(x_1)/G(y_1)]\}$$

$$\cdot G^{t_2 - t_1}(y_2)\{1 + (t_2 - t_1) \log [G(x_2)/G(y_2)]\}$$

$$when 0 < t_1 \leq t_2, y_1 \leq x_1 \leq y_2 \leq x_2 \text{ and}$$

$$= G^{t_1}(y_1)G^{t_2 - t_1}(y_2)\{1 + t_1 \log [G(x_1)/G(y_1)]\}$$

$$+ G^{t_1}(y_1)\{1 + t_1 \log [G(y_2)/G(y_1)]\}$$

$$\cdot G^{t_2 - t_1}(y_2)\{(t_2 - t_1) \log [G(x_2)/G(y_2)]\}$$

$$when y_1 \leq y_2 \leq x_1 \leq x_2.$$

The higher dimensional laws have a similar form.

PROOF. Iglehart (1968), Theorem 5, has shown that it is only necessary to verify that the finite dimensional laws of  $\langle m_n, s_n \rangle$  converge and that each of the marginal processes  $m_n(t)$  and  $s_n(t)$  is tight in D[a, b]. We begin by using Theorem 1 to show that the one-dimensional distribution functions converge. For convenience we will assume that the limit law G(x) is  $G_1(x)$ . The proof for  $G_2(x)$  and  $G_3(x)$  is not

essentially different. A theorem of Khintchine [Gnedenko and Kolmogorov (1968) Theorem 2, page 42] and (2.2) imply that for  $0 \le s_1 < s_2$ ,

(3.2) 
$$a_n/a_{\lfloor ns_2\rfloor - \lfloor ns_1\rfloor} \to (s_2 - s_1)^{-1/\alpha}$$
 and 
$$(b_n - b_{\lfloor ns_2\rfloor - \lfloor ns_1\rfloor})/a_{\lfloor ns_2\rfloor - \lfloor ns_1\rfloor} \to 0.$$

Now

$$P\{m_n(t) \le x, s_n(t) \le y\}$$

$$= P\{M_{[nt]} \le a_{[nt]} [(a_n x + b_n - b_{[nt]}) / a_{[nt]}] + b_{[nt]},$$

$$S_{[nt]} \le a_{[nt]} [(a_n y + b_n - b_{[nt]}) / a_{[nt]}] + b_{[nt]}\}$$

and it follows from (3.2) and a standard argument [Gnedenko and Kolmogorov (1968) page 41] that if  $(t^{-1/\alpha}x, t^{-1/\alpha}y)$  is a point of continuity for the limit law, H, then by Theorem 1

(3.3) 
$$\lim_{n\to\infty} P\{m_n(t) \le x, s_n(t) \le y\} = H(t^{-1/\alpha}x, t^{-1/\alpha}y)$$
  
=  $G^t(y)\{1 + t \log \lceil G(x)/G(y) \rceil\}.$ 

The last equation follows from the fact that  $G_1(t^{-1/\alpha}x) = G_1^{t}(x)$ .

For the two-dimensional case we let

$$\begin{split} r_n &= \left[ \left( \left[ nt_2 \right] - \left[ nt_1 \right] \right)^{\frac{1}{2}} \right] \\ M_{n,1} &= \max \left\{ X_1, \cdots, X_{[nt_1]} \right\} \\ M_{n,2} &= \max \left\{ X_{[nt_1]+1}, \cdots, X_{[nt_2]} \right\} \\ \tilde{M}_{n,2} &= \max \left\{ X_{[nt_1]+r_n+1}, \cdots, X_{[nt_2]} \right\} \end{split}$$

with  $S_{n,1}$ ,  $S_{n,2}$ , and  $\widetilde{S}_{n,2}$  defined similarly. It is not hard to show that  $P\{m_n(t_1) \leq x_1, s_n(t_1) \leq y_1, m_n(t_2) \leq x_2, s_n(t_2) \leq y_2\}$ 

$$(3.4a) = P\{M_{n,1} \le a_n x_1 + b_n, S_{n,1} \le a_n y_1 + b_n, M_{n,2} \le a_n x_2 + b_n, S_{n,2} \le a_n y_2 + b_n\}$$

when  $y_1 \le x_1 \le y_2 \le x_2$  and

(3.4b) 
$$= P\{M_{n,1} \le a_n x_1 + b_n, S_{n,1} \le a_n y_1 + b_n, M_{n,2} \le a_n y_2 + b_n\}$$

$$+ P\{M_{n,1} \le a_n y_2 + b_n, S_{n,1} \le a_n y_1 + b_n, a_n y_2 + b_n \le M_{n,2} \le a_n x_2 + b_n, S_{n,2} \le a_n y_2 + b_n\}$$

when  $y_1 \le y_2 \le x_1 \le x_2$ . Considering (3.4a) first, we have

(3.5) 
$$P\{M_{n,1} \leq a_n x_1 + b_n, S_{n,1} \leq a_n y_1 + b_n, \widetilde{M}_{n,2} \leq a_n x_2 + b_n, \widetilde{S}_{n,2} \leq a_n y_2 + b_n\}$$
$$-P\{M_{n,1} \leq a_n x_1 + b_n, S_{n,1} \leq a_n y_1 + b_n, M_{n,2} \leq a_n x_2 + b_n, S_{n,2} \leq a_n y_2 + b_n\}$$
$$\leq r_n P\{X_1 > a_n y_2 + b_n\} \to 0$$

since  $r_n/n \to 0$ , and the strong-mixing property implies that

$$|P\{M_{n,1} \le a_n x_1 + b_n, S_{n,1} \le a_n y_1 + b_n; \widetilde{M}_{n,2} \le a_n x_2 + b_n, \widetilde{S}_{n,2} \le a_n y_2 + b_n - P\{M_{n,1} \le a_n x_1 + b_n, S_{n,1} \le a_n y_1 + b_n\}$$

$$P\{\widetilde{M}_{n,2} \le a_n x_2 + b_n, \widetilde{S}_{n,2} \le a_n y_2 + b_n\}| \le \alpha(r_n) \to 0.$$

An argument like that used in (3.5) allows us to remove the tildes in  $P\{\tilde{M}_{n,2} \leq a_n x_2 + b_n, \tilde{S}_{n,2} \leq a_n y_2 + b_n\}$  and it is only necessary to prove that

$$\lim_{n\to\infty} P\{M_{n,2} \le a_n x_2 + b_n, S_{n,2} \le a_n y_2 + b_n\}$$

$$= G^{t_2 - t_1}(y_2)\{1 + (t_2 - t_1)\log[G(x_2)/G(y_2)]\},$$

which follows from (3.3). This method can be used to prove (3.4b) and for the convergence of any finite-dimensional distribution.

It remains to demonstrate that the marginal measures are tight. Let  $y_n(t) = m_n(t)$  or  $s_n(t)$  and use y(t) to denote the limit process. Following Billingsley (1968), we define functionals on D[a, b] for each  $\delta > 0$  by letting

$$w_{x}[a, a+\delta) = \sup \{ |x(t_{1}) - x(t_{2})|; a \leq t_{1}, t_{2} < a+\delta \}$$

$$w_{x}[b-\delta, b) = \sup \{ |x(t_{1}) - x(t_{2})|; b-\delta \leq t_{1}, t_{2} < b \}, \text{ and }$$

$$w_{x}''(\delta, a, b) = \sup \{ \min (|x(t) - x(t_{1})|, |x(t_{2}) - x(t)|);$$

$$a \leq t_{1} \leq t \leq t_{2} \leq b, t_{2} - t_{1} \leq \delta \}.$$

According to Theorem 15.3 of Billingsley (1968) the family  $\{y_n\}$  is tight if and only if for each positive  $\varepsilon$  and  $\eta$ , there exist a  $\beta > 0$ , a  $\delta$  with  $0 < \delta < b-a$ , and an integer  $n_0$  such that

(3.6a) 
$$P\{\sup_{a \le t \le b} |y_n(t)| > \beta\} \le \eta \qquad n \ge 1$$

(3.6b) 
$$P\{w_{y_n}''(\delta, a, b) > \varepsilon\} \le \eta \qquad n \ge n_0$$

(3.6c) 
$$P\{w_{y_n}[a, a+\delta) > \varepsilon\} \le \eta \qquad n \ge n_0$$

(3.6d) 
$$P\{w_{y_n}[b-\delta,b) > \varepsilon\} \le \eta \qquad n \ge n_0.$$

Since  $y_n(t)$  is monotone increasing in t

$$P\{\sup_{a \le t \le b} |y_n(t)| > \beta\} = P\{\max [|y_n(a)|, |y_n(b)|] > \beta\}$$

$$\le P\{|y_n(a)| > \beta\} + P\{|y_n(b)| > \beta\}$$

$$\to P\{|y(a)| > \beta\} + P\{|y(b)| > \beta\}$$

and therefore  $\beta$  can be chosen to satisfy (3.6a).

Now assume  $\varepsilon$  and  $\eta$  have been specified. Choose  $\gamma$  so that  $G(\gamma) > 0$  and  $P\{y(a) \le \gamma\} < \eta/2$ . Then

$$P\{w_{y_n}[a, a+\delta) > \varepsilon\} \le P\{y_n(a+\delta) - y_n(a) > \varepsilon\}$$

$$\le P\{y_n(a) \le \gamma\} + P\{\max(X_{[na]+1}, \dots, X_{[n(a+\delta)]}) > a_n\gamma + b_n\}$$

and it follows that

$$\limsup_{n\to\infty} P\{w_{\nu_n}[a,a+\delta) > \varepsilon\} \le \eta/2 + 1 - G^{\delta}(\gamma)$$

which can be made less than  $\eta$  for sufficiently small  $\delta$ . Condition (3.6c) is verified in a similar way.

With  $\gamma$  chosen as above

$$(3.7) P\{w_{y_n}''(\delta,a,b)>\varepsilon\} \leq P\{y_n(a)<\gamma\} + P\{w_{y_n}''(\delta,a,b)>\varepsilon,y_n(a)>\gamma\}.$$

It is clear that in evaluating the functional  $w_{y_n}''(\delta, a, b)$  the points  $t_1$ , t, and  $t_2$  each lie in intervals of the form  $[a+i\delta, a+(i+1)\delta]$ . If  $t_2-t_1 < \delta$  then these intervals either coincide or abut. Therefore

(3.8) 
$$P\{w_{y_n}''(\delta, a, b) > \varepsilon, y_n(a) > \gamma\}$$

$$\leq \sum_{i=0}^{\lfloor (b-a)/\delta \rfloor - 1} P\{w_{y_n}''(\delta, a+i\delta, a+(i+2)\delta) > \varepsilon, y_n(a) > \gamma\}.$$

If  $y_n(a) > \gamma$  there must be at least two random variables from among  $\{X_{[nu]+1}, \dots, X_{[n(u+2\delta)]}\}$  which exceed  $a_n\gamma + b_n$  in order to have  $w_{y_n}''(\delta, u, u+2\delta) > \varepsilon$ . Formally this implies that

$$(3.9) \quad P\{w_{y_n}''(\delta, u, u+2\delta) > \varepsilon, y_n(a) > \gamma\}$$

$$\leq P\{\text{second max } \{(X_{\lceil nu\rceil+1}, \dots, X_{\lceil n(u+2\delta) \rceil})\} > a_n\gamma + b_n\}$$

and combining (3.7), (3.8), and (3.9) gives

$$\limsup_{n\to\infty} P\{w_{y_n}''(\delta,a,b)>\varepsilon\} \le \eta/2 + \{1-G^{2\delta}(\gamma)[1-2\delta\log G(\gamma)]\}(b-a)/\delta.$$

It is easy to show that

$$\lim_{\delta \to 0} \frac{1 - G^{2\delta}(\gamma)[1 - 2\delta \log G(\gamma)]}{\delta} = 0$$

which completes the proof of Theorem 2.

Recent results due to Whitt (1970), Corollary 4.2, page 20, allow the use of this same proof for the space  $D[a, \infty)$ .

**4. Gaussian processes.** If  $\langle X_n : n \ge 1 \rangle$  is also a Gaussian process, then (2.4) can be translated into a condition on the covariance sequence.

THEOREM 3. Let  $\langle X_n : n \geq 1 \rangle$  be a Gaussian stationary strong-mixing sequence with  $E(X_n) = 0$ ,  $E(X_n^2) = 1$  and covariance sequence  $\langle r_n : n \geq 1 \rangle$  where  $r_n = E(X_1 X_{n+1})$ . If (2.2) holds and

$$(4.1) r_n \log n = O(1)$$

then the results of Theorems 1 and 2 are valid.

Proof. We remark that if

$$a_n = (2\log n)^{-\frac{1}{2}}$$
  

$$b_n = (2\log n)^{\frac{1}{2}} - \frac{1}{2}(2\log n)^{-\frac{1}{2}}(\log\log n + \log 4\pi)$$

then  $F^n(a_nx+b_n) \to G_3(x)$  where  $F(\cdot)$  is the normal law with mean zero and unit variance.

Since (4.1) implies that  $r_n \to 0$ , there exists a  $\delta$  such that  $\sup_n |r_n| = \delta < 1$ . If  $\delta(n) = \sup_{k \ge n} |r_k|$  then (4.1) becomes

$$\delta(n)\log n = O(1).$$

We shall now verify condition (2.4). Define:  $c_n = a_n x + b_n$ ,  $T_n(r_j) = P\{X_1 > a_n x + b_n, X_{j+1} > a_n x + b_n\}$ ; then

$$T_n'(r_j) = (2\pi)^{-1} (1 - r_j^2)^{-\frac{1}{2}} \exp[-c_n^2/(1 + r_j)].$$

The mean-value theorem states that

$$T_{n}(r_{j}) - T_{n}(0) = r_{j}T_{n}'(\tilde{r}_{j})$$

where  $\tilde{r}_j$  is between zero and  $r_j$ .

For *n* sufficiently large,  $T_n'(\cdot)$  is an increasing function of its argument and therefore

$$|T_n(r_j) - T_n(0)| \leq |r_j|T_n'(|r_j|).$$

Now

(4.3) 
$$k_n \sum_{j=1}^{p_n-1} (p_n-j) T_n(r_j) \leq k_n p_n^2 T_n(0) + k_n p_n \sum_{j=1}^{p_n} |r_j| T_n'(|r_j|)$$

and

$$k_n p_n^2 T_n(0) = \frac{k_n p_n}{n} \left(\frac{p_n}{n}\right) n^2 P^2 \{X_1 > a_n x + b_n\} \to 0$$

because  $p_n/n \to 0$  and  $nP\{X_1 > a_n x + b_n\}$  is bounded. Since  $k_n p_n/n \to 1$  the last term in (4.3) will converge to zero if

(4.4) 
$$\lim_{n\to\infty} n \sum_{j=1}^{p_n} |r_j| n^{-2/(1+|r_j|)} (\log n)^{1/(1+|r_j|)} = 0.$$

If  $\alpha$  is a real number satisfying  $0 < \alpha < (1-\delta)/(1+\delta)$  then for n large

$$n \sum_{j=1}^{\lfloor p_n \alpha \rfloor} |r_j| n^{-2/(1+|r_j|)} (\log n)^{1/(1+|r_j|)} \le (p_n/n)^{\alpha} \delta n^{1+\alpha-2/(1+\delta)} \log n$$

which tends to zero because of the choice of  $\alpha$  and the fact that  $p_n/n \to 0$ .

The remaining part of the sum in (4.4) is dominated by

$$(4.5) (p_n/n)\{\delta([p_n^{\alpha}])\log n\}\exp(2\delta([p_n^{\alpha}])\log n).$$

Let  $t_n = n/(k_n p_n)$ . Then

$$\delta([p_n^{\alpha}])\log n \leq \delta \log t_n + \delta \log k_n + \delta([p_n^{\alpha}])\log p_n$$

and (4.5) is smaller than

$$(p_n k_n^{\delta}/n) t_n^{\delta} [\delta \log t_n + \delta \log k_n + \delta ([p_n^{\alpha}]) \log p_n] \cdot \exp \{\delta ([p_n^{\alpha}]) \log p_n\}$$

which tends to zero because of condition (4.1) and the fact that  $t_n \to 1$  implies that  $(p_n k_n^{\delta} \log k_n)/n \to 0$ . This completes the verification of condition (2.4).

This proof is based on one given by Berman (1964) for the convergence of  $z_{n,1}(1)$  when  $\langle X_n : n \ge 1 \rangle$  is a Gaussian sequence and

$$(4.6) r_n \log n \to 0.$$

We are able to weaken (4.6) because of the strong-mixing assumption.

5. Concluding remarks. A sequence is *M*-dependent if, in the definition of strong-mixing,  $\alpha(k) = 0$  for  $k \ge M$ . When  $\langle X_n : n \ge 1 \rangle$  is *M*-dependent condition (2.4) follows immediately if (cf. Watson (1954))

(5.1) 
$$\lim_{n\to\infty} nP\{X_1 > a_n x + b_n, X_j > a_n x + b_n\} = 0$$

for i > 1 and x such that G(x) > 0.

Newell (1964) has constructed a 1-dependent process that fails to satisfy (2.4). Let  $\langle Z_n : n \geq 1 \rangle$  be a sequence of independent identically distributed random variables and set  $X_n = \max(Z_n, Z_{n+1})$ . Then (2.4) becomes

$$\begin{aligned} \lim_n \left[ k_n (p_n - 1) P\{X_1 > a_n x + b_n, X_2 > a_n x + b_n\} \\ + k_n P^2 \{X_1 > a_n x + b_n\} \sum_{j=2}^{p_n - 1} \left( p_n - j \right) \right] &= 0. \end{aligned}$$

The last term is dominated by  $(k_n p_n^2/n^2)n^2 P^2 \{X_1 > a_n x + b_n\}$  and tends to zero. When  $a_n$ ,  $b_n$  satisfy (2.2) it is easy to show that

$$\lim_{n} k_{n} p_{n} P\{X_{1} > a_{n} x + b_{n}, X_{2} > a_{n} x + b_{n}\} = \frac{1}{2}.$$

Some results on the weak convergence of such processes are contained in Welsch (1969).

The limit laws that occur in the statement of Theorem 2 were called extremal processes by Dwass (1964), (1966) and they coincide with the limit laws obtained if  $\langle X_n:n\geq 1\rangle$  is an independent sequence. This leads to a kind of "invariance theorem" with respect to dependence. Using the results of Theorem 2 and Theorem 5.5 of Billingsley (1968) it is possible to compute the limiting distributions of functionals of  $\langle m_n(t), s_n(t) \rangle$  by considering a sequence  $\langle \hat{X}_n:n\geq 1 \rangle$  of independent, identically distributed random variables. The independence generally makes the distributions of the functionals easier to compute, and the limiting values apply to the original strong-mixing process if the conditions of Theorem 1 are satisfied.

Acknowledgment. Some of the results discussed here form a part of the author's Ph.D. dissertation at Stanford University. The author wishes to express his appreciation to Professor Samuel Karlin for his guidance and encouragement.

## REFERENCES

- BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.
- Berman, S. M. (1964). Limit theorems for the maximum term in stationary sequences. *Ann. Math. Statist.* 35 502–516.
- Dwass, M. (1964). Extremal processes. Ann. Math. Statist. 35 1718-1725.
- Dwass, M. (1966). Extremal processes II. Illinois J. Math. 10 381-391.
- GNEDENKO, B. V. (1943). Sur la distribution du terme maximum d'une série aléatoire. *Ann. Math.* 44 423-453.
- GNEDENKO, B. V. and A. N. KOLMOGOROV (1968). Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, Reading.
- IBRAGIMOV, I. A. (1962). Some limit theorems for stationary processes. *Theor. Probability Appl.* 7 349–382.
- IGLEHART, D. L. (1968). Weak convergence of probability measures on product spaces with applications to sums of random vectors. Technical Report No. 109, Operations Research Dept., Stanford Univ.
- LAMPERTI, J. (1964). On extreme order statistics. Ann. Math. Statist. 35 1726-1737.
- LOYNES, R. M. (1965). Extreme values in uniformly mixing stationary stochastic processes. *Ann. Math. Statist.* **36** 993–999.
- Newell, G. F. (1964). Asymptotic extremes for *m*-dependent random variables. *Ann. Math. Statist.* **35** 1322–1325.
- WATSON, G. S. (1954). Extreme values in samples from *M*-dependent stationary stochastic processes. *Ann. Math. Statist.* **25** 798–800.
- Welsch, R. E. (1969). Weak convergence of extreme order statistics from  $\phi$ -mixing processes. Ph.D. dissertation, Stanford Univ.
- Welsch, R. E. (1970). Limit laws for extreme order statistics from strong-mixing processes. Submitted to *Ann. Math. Statist*.
- Whitt, W. (1970). Weak convergence of probability measures on the function space  $D[0, \infty)$ . Technical Report, Dept. of Administrative Sciences, Yale Univ.