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A WEAK CONVERGENCE THEOREM FOR ORDER STATISTICS
FROM STRONG-MIXING PROCESSES!

By Roy E. WELSCH
Massachusetts Institute of Technology

This paper provides sufficient conditions for the weak convergence in
the Skorohod space D%a,b] of the processes {(Yi,tue;— bn)lans
(Y2 tm—bw)lan, -y (Yatny—bn)lan}, 0 < a = t = b, where Y, is the ith
largest among {X;, X, *-*, X,,}, a, and b, are normalizing constants, and
{(X,:n = 1) is a stationary strong-mixing sequence of random variables.
Under the conditions given, the weak limits of these processes coincide
with those obtained when <{(X,:n = 1> is a sequence of independent
identically distributed random variables.

1. Introduction. Let (X,:n = 1) be a stationary strong-mixing sequence of
random variables with common distribution function F(x) = P{X, < x} and
define the order statistics Y, , by

Y, = ith largest among (X, X,, -, X,) i< n;
=Y, i>n.
For constants a, > 0 and b,, set z, J(t) = {y; (1), y2..(1), -+, Yau(t)} With
Yiult) = (Yi,1 —by)la, 0<t=<1n;
= (Yitay— ba)/ t>1/n.

The processes z,,(¢) with 0 £ a <t =<b < oo will be regarded as random
elements of the product of d copies of D[a, b], the space of all real-valued functions
on [a, b] that are right continuous and have left limits.

The possible limit laws of z, 4(1) were described in Welsch (1970). In this paper
we present sufficient conditions for the weak convergence of the processes z, 4.
Loynes (1965) gave similar sufficient conditions for the convergence of z, ;(1) but
did not consider the joint distributions of z, ,(1) for d > 1 or the weak convergence.
Lamperti (1964) has given a complete solution to the weak convergence problem
for z, , when (X,:n = 1) is composed of independent random variables.

2. Sufficient conditions for convergence. A stationary sequence is strong-mixing if

|P(AB)—P(A)P(B)| < «(k)
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whenever 4 € B(Xy, X5, -+, X)) and B€ B(Xp+1+1> Xmir+2, ---) fOr some m,
where a(k) | 0 as k — oo ; here %(---) denotes the o-field generated by the random
variables indicated.

To simplify the discussion we shall only consider the maximum and second
maximum and let M, = Y, ,and S, = Y, ,. The same techniques apply to higher
dimensions but the results become more cumbersome to state. As was shown in
Welsch (1970) the limit laws for M, and S, involve a distribution function G(x)
which Gnedenko (1943) proved has only three possible forms (except for scale and
location parameters):

Gy(x)=0 x<0

=exp[—(x"%)] x>0,0>0

(2.1) G,(x) =exp[—(—x)"] ‘ x<0,a>0
=1 xz=0

G;(x) =exp(—e™¥) —00 <X < 0.

THEOREM 1. Let {X,:n 2 1> be a stationary strong-mixing sequence and assume
that a sequence {a, > 0, b,:n Z 1) exists so that

(22) F"(a,x+b,) — G(x).

Then P{M, < a,x+b,, S, < a,y+b,} converges to the limiting distribution

(2.3) H(x,y) = G(y){1+1og[G(x)/G(y)]} y<x
= G(x) yzx

provided that

(2.4) lim,, o k, P23 (pa—j)P{X | > ax+b,, X ;11 > ax+b,} =0

for x such that 0 < G(x) < 1 and any system of integer-valued functions k, and p,
that satisfy

(2.5a) k,— o, p, = ©
(2.5b) njk,p, - 1
(2.5¢) k,2«([(n—k,p,)/kn]) = O.

The following two lemmas will be needed in the proof.

LemMa 1 (Ibragimov). Given a nonnegative monotone decreasing function of the
positive integers, u(k), such that a(k) — O there exists a system of functions satisfying
2.5).

PROOF. A minor modification of the proof of Theorem 1.3 of Ibragimov (1962).
If we let g, = [(n—k,p,)/k,] then n—k,(p,+4q,) = 0.
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LemMA 2. Condition (2.4) implies that
(2.6) lim,., , k,P{M, = ax+b,} = —log G(x).
PrOOF. (cf. Loynes (1965)). The Bonferroniinequalities state that
8,-8; < P{M,, 2 a,X+b,} <5,
where S; =Y, P{X; > a,x+b,} and
Sy =Yi<i<jepP{Xi>a,x+b,, X; = a,x+b,}.

Now k,S, -0 from (2.4) and k,S, = k,p,P{X; > a,x+b,} > —log G(x)
because of (2.2) and (2.5b).

ProoF oF THEOREM 1. We assume first that x = y and 0 < G(»), G(x) < 1. Let
M, = max {X., s X3 Xptant 157 X2pptans 0
X tkn= 1)ontam)+ 10" Xbeupnt Gen= 130>
M, = max {X - 1)putgn+ 15 Xipyr - 1yau> L S 15K,y
and define S, and S, ; similarly using the second maximum. Then
(2.7) P{M,<ax+b,,5,<a,y+b,}—P{M, =< ax+b,S, =< a,y+b,

é (n—knpn)P{Xl > any+bn} -0

because of (2.5b) and (2.2).
Furthermore

(28) PpP{M,<ax+b,S,<ay+b,}=P{M,<a,y+b,}
+) 5 Pla,y+b, <M, ; S ax+b,,S, ; < a,y+by;
M,; S ay+by,i=1,k,i#j}
Applying the strong-mixing property repeatedly to (2.8) and using (2.5c) gives
(2.9) |P{M, £ a,x+Db,, 3, < ay+b,}—P"{M, < a,y+b,}
—k,P{a,y+b,<M, <ax+b,S, < a,y+b,}P""{M, <a,y+b,}|
< (k,+1)(k,—1)(g,) — 0.

wa

P*{M, <a,y+b,} = [1 -

k,P{M, > a,y +b,,}:|""
k.,

and therefore from Lemma 2

(2.10) P*{M,, < a,y+b,} - G(y).
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We may rewrite k,P{a,y+b, <M, <a,x+b,S, <a,y+b,} as
(2.11) k,P{M, > a,y+b,}—k,P{M, >ax+b,}
—k,P{a,y+b, <M, <ax+b,S, >a,y+b,}.

Again using Lemma 2, the first two terms of (2.11) converge to log [G(x)/G(»)].
Finally

(212)  k,P{a,y+b,<M, <ax+b,S, >a,y+b,}

< k,P{S,,> a,y+b,}

Sk i<icizpmP{Xi> ay+b,X; > a,y+b,} >0
from condition (2.4). It now follows that lim,_, , P{M, < a,x+b,, S, < ay+b,} =
H(x, y).

If y > x the conclusion of the theorem follows immediately from (2.10). The
remaining cases are treated by noticing that G(+) is continuous.

3. Weak convergence. When G(x) is of type II or III we cannot allow ¢t = 0
(i.e. a = 0) since this will lead to improper random variables. All of our weak
convergence results will be stated for @ > 0. Only minor modifications of the
proofs are necessary to consider ¢ = 0 when the limit law is of type I. Let
mn(’) = yl,n(t) and Sn(t) = y2,n(t)'

THEOREM 2. Under the same conditions as stated in Theorem 1, {m,(t), s,(t))
converges weakly in D*[a, b] to a random element {m(t), s(t)) characterized by

(3.1)  P{m(t;) £ x1,5(t;) < yism(ty) < x5,5(,) < y,}
= G"(yo){L+1,log[G(x,)/G(y1)]}
“ G2 (y {1+ (t,— ;) 10g [G(x,)/G(y2) T}
when 0 <t; <t),y, < x; Sy, <x, and
= G"(y1)G* " (y2){1+1,1og[G(x1)/G(y1)]}
+G"(y,){1+1,log [G(Y2)/G(YI)]}
G2y ){(t2—11) log[G(x,)/G(y,) 1}
when y; < y, < x; < X,.
The higher dimensional laws have a similar form.

Proor. Iglehart (1968), Theorem 5, has shown that it is only necessary to verify
that the finite dimensional laws of {m,, s,y converge and that each of the marginal
processes m,(t) and s,(¢) is tight in D[a, b]. We begin by using Theorem 1 to show
that the one-dimensional distribution functions converge. For convenience we will
assume that the limit law G(x) is G,(x). The proof for G,(x) and G;(x) is not



CONVERGENCE THEOREM FOR ORDER STATISTICS 1641
essentially different. A theorem of Khintchine [Gnedenko and Kolmogorov (1968)
Theorem 2, page 42] and (2.2) imply that for 0 = s; < s,,
(3.2) Al Apnsyy— sy = (52— 1) 17* and

(b= binsz1-trs11)/ Apnsa1—prsi = 0-
Now
P{m,(t) < x,s,(t) < y}
= P{Mp,y = a[m][(anx +b,— b[nt])/a[nt]] + b
Stuy £ agunl(@ny + by — bpan) g + bar}

and it follows from (3.2) and a standard argument [Gnedenko and Kolmogorov
(1968) page 41] that if (¢~ **x, t ~*/*y) is a point of continuity for the limit law, H,
then by Theorem 1

(3.3) lim,. o, P{m,(t) < x,5,(t) S y} = H(t™"/*x, 17 "/%y)
= G'(y){1+tlog [G(x)/G(y)]}.

The last equation follows from the fact that G,(¢~'/*x) = G,'(x).
For the two-dimensional case we let

ro = [([nt;]—[nt,1)*]
M, =max{Xy, -, X1}
M, , =max {X 1415 > Xpnea1}
Mn,Z = maX {Xtne,14rn+ 15" Xt}

with S,, S, and S,, defined similarly. It is not hard to show that
P{m,(t;) £ x1, 5,(t1) S y1, m(t2) < X3, 5,(12) < 2}

(3.4a) =P{M,; £ a,x,+b, S, L a,y1+b,M,, < a,x,+b,S,, < a,y,+b,}
when y; < x; =y, < x, and
(3.4b) =P{M,, < ax,+b,S, < a,y;+b,M,, < a,y,+b,}
+P{M, < a,y,+b,S,1 = a,y;+b,,a,y,+b, <M, , < a,x,+b,
Suz £ a,y2+by}
when y; £ y, £ x; £ x,. Considering (3.4a) first, we have
(3.5) P{M, < ax,+b,S,1 < a,y+by M, <ax,+b,,S,,<a,y,+b,}
—P{M,; < a,x;+b,,S,1 £ a,y,+b,, M, , £ a,%,+b,,S,2 < a,y,+b,}
é rnP{Xl > any2+bn}—)0
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since r,/n — 0, and the strong-mixing property implies that
|P{Mn 1Sax;+b,S,1 = <a,y,+b,;M,, < ax,+b,, gn,Z <a,y,+b,
—P{M,; £ a,X;+b,, S, 1 < a,y;+b,}
P{M,, < a,X;+ b, S,2 = any2+bn}| < a(r,) = 0.

An argument like that used in (3.5) allows us to remove the tildes in
P{M,, < a,x,+b,, S, < a,y,+b,} and it is only necessary to prove that

li n-*ooP{MnZSaX2+bmSn2<any2+b}
= G2 (y {1 +(t, = 1,)10g[G(x,)/G(v,)]},

which follows from (3.3). This method can be used to prove (3.4b) and for the
convergence of any finite-dimensional distribution.

It remains to demonstrate that the marginal measures are tight. Let y,(¢) = m,(¢)
or s,(t) and use y(¢) to denote the limit process. Following Billingsley (1968), we
define functionals on D[a, b] for each 6 > 0 by letting

w,la,a+08) = sup {|x( ;a <t t, <a+d}
w,[b—3,b) = sup {|x( t, <b}, and
w,"(8,a, b) = sup {min (|x(£)— x(t,)|, |x(t2) — x(¢)]);

ast; St<t, < bt,—t; <6}

According to Theorem 15.3 of Billingsley (1968) the family {y,} is tight if and only
if for each positive ¢ and 5, there exist a f > 0, a 6 with 0 < 6 < b—a, and an

integer n, such that

(3.6a) P{sup,<,<p [vu()] > B} S nz1
(3.6b) P{w; (6,a,b) > ¢} <1 nzn,
(3.6¢) P{w,[a,a+d)>¢} <1 nzn,
(3.6d) P{w,[b—6,b)>¢} <1 nz ng.

Since y,(¢) is monotone increasing in ¢
P{sup,<,<5 |ya(t)| > B} = P{max[|y, (b)[1> B}
< P{|y,(a)| > B}+P{|y.(b)| > B}
—~ P{|y(a)] > B} +P{|y(b)| > B}

and therefore § can be chosen to satisfy (3.6a).
Now assume ¢ and n have been specified. Choose y so that G(y) > 0 and

P{y(a) <y} < n/2. Then
P{w, [a,a+08)> ¢} < P{y,(a+0)—y,(a) > ¢}
é P{yn(a) § ‘Y}+P{maX(X[na]+19 “'9X[n(a+6)]) > an'y+bn}
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and it follows that
lim sup,_, , P{w, [a,a+5) > e} S n/2+1-G'(y)

which can be made less than # for sufficiently small 6. Condition (3.6c¢) is verified
in a similar way.
With y chosen as above

(3.7)  P{w}(8,a,b) > ¢} < P{y,(a) < y}+P{w} (0,a,b) > &, y,(a) > y}.

It is clear that in evaluating the functional wj (9, a, b) the points ¢,, ¢, and ¢, each
lie in intervals of the form [a+id, a+(i+1)8]. If 1, —¢; < ¢ then these intervals
either coincide or abut. Therefore

(3.8) P{w;'”(é, a,b) > ¢, y,(a) >y}
< YIesalI=t plye (8, a+i8, a+(i+2)d) > &, y,(a) > 7}

If y,(a) >y there must be at least two random variables from among
{Xmi+ 1> > Xingu+ 25y} Which exceed a,y+b, in order to have wy (J,u,u+20) > e.
Formally this implies that

(3.9) P{w} (6,u,u+20)> & y,(a) > v}
< P{second max {(Xpuy+ 1> "> Xinw+260)] > dn¥ +5u}
and combining (3.7), (3.8), and (3.9) gives
limsup,_,,, P{w} (8, a,b) > e} < n/2+{1—G*(y)[1—251og G(y)]}(b—a)/é.
It is easy to show that

) 1—-G*(y)[1-2510g G(y)]
lim,_, 5 =0

which completes the proof of Theorem 2.
Recent results due to Whitt (1970), Corollary 4.2, page 20, allow the use of this
same proof for the space Dla, o).

4. Gaussian processes. If {X,:n = 1) is also a Gaussian process, then (2.4) can
be translated into a condition on the covariance sequence.

THEOREM 3. Let {X,:n = 1) be a Gaussian stationary strong-mixing sequence
with E(X,) =0, E(X,) =1 and covariance sequence {r,:n = 1) where
r, = E(X1X,+1) If (2.2) holds and

(4.1) r,logn = 0(1)

then the results of Theorems 1 and 2 are valid.
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ProOF. We remark that if
a, =(2logn)™*
b, = (2logn)*—%(21og n) *(loglogn+log4r)

then F"(a,x+b,) - G3(x) where F(-) is the normal law with mean zero and unit

variance.
Since (4.1) implies that r, — 0, there exists a & such that sup, |r,| =& < 1. If

8(n) = supys, |ri| then (4.1) becomes
(4.2) é(n)logn = O(1).

We shall now verify condition (2.4). Define: ¢, = a,x+b,, T,(r;) = P{X; >
a,x+b,, X;,, > a,x+b,}; then

T, (r;) =(2n) '(1—r?) *exp[—c 2/(1+r1)_|
The mean-value theorem states that
T,(r;)= T,(0) = r;T,/(F;)

where 7; is between zero and r;.
For n sufficiently large, 7,'(-) is an increasing function of its argument and

therefore
I T(r)) = TO)] < | T (r;)-
Now
(4.3) ko Y531 (Pa—)T(r) < kaba T(0) + apn X521 1| T/ ([1s)
and
2 'lp'l p'l 2p2
k,p,’T,(0) = < ) PYX,>ax+b,} >0
because p,/n —» 0 and nP{X, > a,x+b,} is bounded. Since k,p,/n — 1 the last
term in (4.3) will converge to zero if
(4.4) lim, ., n Y%, |r;|n =2/ * D (logn) /O +1nD =0,
If & is a real number satisfying 0 < o < (1—09)/(1+9) then for n large
n Yo Ir |n—2/(1+|rj|)(log n)AFIND < (p )5 nt ta= 20+ jogp

which tends to zero because of the choice of o and the fact that p,/n — 0.
The remaining part of the sum in (4.4) is dominated by

(4.5) (P./n){5([p.*]) logn} exp(26([ p,*1)1ogn).
Let ¢, = n/(k,p,). Then
5([p.*])logn < dlogt,+dlogk,+8([p,])log p,
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and (4.5) is smaller than
(pk,2 )t [51ogt,+5log k,+8([p."])log p,] - exp {6([ p.*]) log p,.}

which tends to zero because of condition (4.1) and the fact that ¢, — 1 implies that
(pak,® log k,)/n — 0. This completes the verification of condition (2.4).

This proof is based on one given by Berman (1964) for the convergence of
z,,1(1) when {X,:n 2 1) is a Gaussian sequence and

(4.6) r,logn — 0.

We are able to weaken (4.6) because of the strong-mixing assumption.

5. Concluding remarks. A sequence is M-dependent if,'in the definition of strong-
mixing, a(k) = 0 for k = M. When {(X,:n = 1) is M-dependent condition (2.4)
follows immediately if (cf. Watson (1954))

(5.1) lim,, nP{X,; > ax+b,X;>ax+b,} =0

for j > 1 and x such that G(x) > 0.

Newell (1964) has constructed a 1-dependent process that fails to satisfy (2.4).
Let (Z,:n = 1) be a sequence of independent identically distributed random
variables and set X, = max (Z,, Z,,). Then (2.4) becomes

lim, [k,(p,—1)P{X, > a,x+b,, X, > a,x+b,}
+kPHX, > ax+b,} 305" (pa—j)] =0.

The last term is dominated by (k,p,*/n*)n*P*{X, > a,x+b,} and tends to zero.
When a,, b, satisfy (2.2) it is easy to show that

lim, k,p,P{X, > ax+b, X, >ax+b,} =%

Some results on the weak convergence of such processes are contained in Welsch
(1969).

The limit laws that occur in the statement of Theorem 2 were called extremal
processes by Dwass (1964), (1966) and they coincide with the limit laws obtained
if (X,:n = 1) is an independent sequence. This leads to a kind of “invariance
theorem” with respect to dependence. Using the results of Theorem 2 and
Theorem 5.5 of Billingsley (1968) it is possible to compute the limiting distributions
of functionals of {m,(t), 5,(t)) by considering a sequence {X,:n = 1) of indepen-
dent, identically distributed random variables. The independence generally makes
the distributions of the functionals easier to compute, and the limiting values apply
to the original strong-mixing process if the conditions of Theorem 1 are satisfied.
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