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A NOTE ON COMPARISONS OF MARKOV PROCESSES

By GEORGE O’BRIEN
Dartmouth College

This note contains a simple proof of the following theorem of G.
I. Kalmykov. Let {X,} and {Y,} be real-valued, discrete time Markov
processes. Suppose P(Xp < z) < P(Y, < z) for all real z and

PXn 2| Xp1=%) S PYnZz|Yp1=y)

forn=1,2,-.. and all z, whenever y < x. Then P(X, < z) < P(Y, < 2)
for all » and z. Some converse resul:ts are also given.

1. Introduction. We consider a discrete time real-valued Markov process
Xy, Xy, - - -, defined on a probability space Q, with initial distribution function
F and transition function p: Rx R — [0, 1] defined by

pxy)=PX,Zy|X,_,=x).

Although we assume such a p exists independently of n, the results of this note
may easily be extended to the more general situation. We denote such a
system by ({X,}, Q, p, F).

The primary purpose of this note is to give a simple proof of Theorem 1,
which was first proved by Kalmykov [2] by methods of functional analysis.

THEOREM 1. Let ({X,}, Q, p, F) and ({Y,}, @, q, G) be Markov processes (as
described above). Suppose F(z) < G(z) for all z¢ R and p(x, z) < q(, z) for all
(%,»,2) e R® for which y < x. Then P(X, <z) < P(Y, < z) forallneN =
{1,2,...}and all z¢ R.

The proof is given in Section 2. In Section 3, we discuss the connection
between this proof and a class of processes studied by Daley [1]. Section 4

contains some converse results.
The analytic proof of Theorem 1 first appeared in [3]. A greatly expanded
study of the comparison method, using different methods, will appear later.

2. Proof of Kalmykov’s comparison theorem. We begin with the following
lemma, whose proof we omit.

LeEMMA. Let f: R — [0, 1] be a decreasing function. Then there is a sequence
of continuous decreasing functions {f,: R — [0, 1], k = 1, 2, - ..} which converge
pointwise to f.

Proor oF THEOREM 1. We proceed by induction on ». The result holds for
n = 0; now assume it for arbitrary n. Let H and J be the distribution functions
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of X, and Y, respectively. We define a new transition function f by f(x, z) =
inf,_. ¢(y, z) for all (x, z) € R*. Note that f: R* — [0, 1] is a decreasing function
of x for each z and satisfies p(x, z) < f(x, z) < q(x, z) for all (x, z) e R®. Fix
ze R. There is a sequence {f,: R — [0, 1], ke N} of continuous decreasing
functions which converge pointwise to f{., z). For any k e N, we have:

§2. fu(x) dH(x) = [ fu(X)H(x)] |2 — §=. H(x) df(x)
=[SV )][Ze = §2. J(x) dfi(x)
= (=, fu(x) dJ(x) .
Applying the dominated convergence theorem, we conclude:
P(X, ., < 2) = §2. p(x, z) dH(x)
< §=.. f(x, z) dH(x)
®o f(%, 2) dJ(x)
§2x 9(x, 2) dJ(x)
=PY,,<2).

IAIA

This completes the proof.

DEFINITION. A Markov process ({X,}, Q, p, F) is said to /ive or a Borel set
Aif §,dF(z) = 1 and {, p(x,dz) = 1 for all xe 4.

We wish to extend Theorem 1 to processes that live on some subsets of R,
say on intervals or the integers. We have the following extension.

Let 4 and B be Borel subsets of R. Let ({X,}, Q, p, F) live on 4 and let
(Y.}, ', q,G) live on B. Suppose F(z) < G(z) for all ze Rand p(x, z) < q(y, z)
for all (x, y, z) € Ax Bx R for whichy < x. Then P(X, < z) < P(Y, < z) for
allzeRand forrn=0,1,2, ....

We extend the proof of Theorem 1 as follows: define f{x, z) as the supremum
over all y > x such that ye 4 of p(y, z) (or 0 if there are no such y). Then
p(x,z) < fix,z) forall (x,z) e Ax R and f(y, z) < q(y, z) for all (y, z) e Bx R.
The remainder of the proof easily goes through.

3. Stochastically monotonic processes.

DEFINITION. A Markov transition function p is said to be stochastically
monotonic if p(x, z) is a decreasing function of x for each z. A Markov process
{X,} is stochastically monotonic if it has such a transition function.

These processes were studied by Daley [1]. As we shall see, they are closely
related to the proof of Theorem 1. The following examples are included to
indicate the size of this class of processes.

ExampLEs. Let {X,} be an “independent trials” process. That means its
transition function p satisfies p(x, y) = F(y) for some distribution function F.
It is clear that {X,} is stochastically monotonic.
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Now let ({X,}, Q, p, G) satisfy p(x, z) = F(z — x). {X,} is a sum of inde-
pendent random variables processes. If y < x, we have p(x, z) = F(z — x) <
F(z — y) = p(», 2), so that p is stochastically monotonic.

Let p and ¢ be Markov transition functions which satisfy p(x, z) < ¢(y, z)
for all (x, y, z) € R® for which y < x.

Define two new transition functions by

f(x, 2) = inf,., 4(y, 2)
and
9(x, z) = inf,, sup,., p(y, v) .
Note that fand g are stochastically monotonic. Since f is the greatest such
transition function which is majorized by ¢, and since ¢ majorizes g, we have
PS9=f=q. ‘

The proof of Theorem 1 depended on finding a stochastically monotonic
transition function fsuch that p < f < ¢. This permitted us to integrate by
parts.

Daley [1] proved a weaker version of the theorem by assuming that one of
p and ¢ was stochastically monotonic; in which case p and ¢ need only be
compared at the same point (x, z). We give his result as a corollary.

CoroLLARY. Let({X,}, Q, p, F) be a stochastically monotonic Markov process.
Let ({Y,}, ', q, G) be any Markov process. If p < q and F< G, then P(X, < z) <
P(Y,<z) for all zeR and n=0,1,2,-... Ifp>q and F> G, then
Y <z)<PX,<2z) forallzcRandn=20,1,2, ...,

Proor. In the first case, p(x,z) < ¢(y, z) for all (x, y, z) € R® for which
» = x. In the second case q(x, z) < p(y, z) for all such (x, y, z). Thus we
may apply the theorem.

4. Converse results. This section concerns the extent to which the hypotheses
of Theorem 1 and its corollary are necessary.

Let us first consider the theorem. It is clearly false if we omit the hypothesis
that p(x, z) < ¢(y, z) whenever y < x. In fact, suppose p(x, z) > q(y, z) for
some (x,y, z) € R* with y < x. Suppose X, = xa.s. and Y, = ya.s. Then
P(X, =< z2) > P(Y, £ 2).

The problem remains interesting if we change the hypothesis F(z) < G(z)
for all z € R to F(z) = G(z) for all ze R. In this case, the above example only
works if p(x, z) > g(x, z) for some (x, z) e R*. When p(x, z) = ¢(x, z) for all
(%, z) e R*, but p(x, z) < q(y, z) for some (x, y, z) with y < x, the answer is
not so clear.

We give one result in the form of a partial converse to the corollary of the
last section. It should give some indication of what may be achieved by way
of a converse to the theorem when the initial distributions coincide.
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THEOREM 2. Let p be a Markov transition function which has the following

property: there exist points X,, x,, x, and y € R and a Borel set A in R such that
(i) xed implies x, < x < x

(i) xe A implies p(x,, y) < p(x, y)

(i) §,p(xp dz) >0

(iv) yel[x,x) or x,€ 4 or (%, + x, and §,, p(x,, dz) = 0).
Then there exist a distribution function F and a transition function ¢ > p such that
Sfor any Markov processes ({X,}, Q, p, F) and ({Y ,}, @', q, F), we have P(X, < y) >
P(Y, <)

Proor. Let F(z) =0 for z < x,and let F(z) = 1 for z > x,. Let ({X,},Q, p, F)
be a Markov process. Define the trarsition function ¢ by:

q(x, z) = p(x, z), if x #+x, or z< X,
= p(%y, 2) + P(X;€ 4 N (2, )), otherwise.
Let ({Y,}, @, ¢q, F) be a Markov process. Note that §, ¢(x,, dz) = 0. We have

P(Y, = y) = §29(2, y)9(%; dz)
= Y21 9(2 Y)9 (% d2)
= Y21 9(2, Y)P(X0 d2) + § 4 4(%, Y)P(X0: d2)
= Va-a P(Z P)P(X0r d2) + §4 (%, Y)p(%0 dz)  (bY (iV))
< $&p(z, Y)p(%0; d2) (by (ii) and (iii))
=PX,<y).

Several remarks may be made. Conditions (i) and (ii) and the condition
that 4 is nonempty are together the negation of the statement that p is
stochastically monotonic. It is clear that this negation cannot be enough; we
need some condition such as (iii). Condition (iv) is purely technical. It should
be possible to relax (iii) and (iv) by comparing P(X, < y) and P(Y, < y) for
n larger than 2.

Daley [1] gave the above result for processes on the integers, assuming
A = {x,} instead of Condition (iv).
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