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Michigan State University and University of Waterloo

0. Summary. Let & = {F,, ---, F,} be a class of probability measures on
(27, ). For any signed measure r on &7, let c* be the average of rg over
all N! permutations g and let ||z|| = V{|z(C)|: Ce &¥}. Let d,; = ||F, — Fj||
and K(x) = .5012 . .. x(1 — x)~. For any nonnegative integral partitions N =
Ny ---,N,) and N = (N, ---,N,”) of N, let 0; =N,/ — N, and A; =
(N AN)+ 1. Withe = X F"i — xF " andn = #{i|d; #+ 0} — 1, we bound
|[=*|* by
(T3) nK(d) 33 0N with d=V{d,;|d, +0,0; + 0}
and, if & is internally connected by chains with non-orthogonal successive
elements, by

(T4) ymK(d)(L 0D AT with d = v{d;|F, £ F}}.

The bound (T 3) is finite iff the F; with d; = 0 are pairwise non-orthogonal and
(T4) is designed to replace it otherwise.

1. Introduction. Section 2 investigates some general properties of signed
measures and their symmetrization w.r.t. general groups. Section 3 specializes
to the permutation group notes a contraction effect of probability factors in
product signed measures. The properties developed in Sections 2 and 3 will
be used throughout the paper and, in particular, in Lemma 2, in the completion
of the proof of Theorem 1, and in the proofs of Theorems 2, 3 and 4.

Section 4 proves Theorem 1, which is the special case of (T 3) form = 1 and
0, = 1. This is the main result of the paper. Its proof contains a detailed outline
of itselfincluding Lemmas 2, 3 and 4. An example, consisting of a simple spe-
cial case, shows that the bound of Theorem 1 is sometimes asymptotically sharp
to within a factor of 3.149. ...

Section 5 proves Theorems 2, 3, and 4, all as corollaries to Theorem 1.
Theorem 2 is the special case of (T 3) for m = 1, Theorem 3 is (T 3) and
Theorem 4 is (T 4).

Our main results are a strengthened generalization of TheoremII.1of Hannan
(1953). The latter is easily characterized in terms of the m = 1 case of (T 3),

(T2) [I7*[[* < K(dn)or(1/A, + 1/A,)
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STABILITY OF SYMMETRIZATION 309

amounting to the assertion that, for m = 1 and fixed F, x F,,
(TII. 1) [[z*[*—0 as RHS(T2)—0.

As partially indicated in Section 3 and Section 5, the derivation in Section 5
of (T 3) and (T 4) as corollaries of Theorem 2 equally well would yield weakened
(as (TII. 1) weakens (T 2)) forms of (T 3) and (T 4) as corollaries of (TII. 1).
A corollary of the §, = 1 case of (TII. 1), the Lemma of Hannan and Robbins
(1955), was there used to show (Theorem 5) that the difference between the
simple and equivariant envelopes converges to zero. A generalization of the
Lemma, Theorem 2 of Horn (1968), is shown in Section 3 to be improved by
the 6, = 1 case of a rather immediate corollary to (TII.1). The special case
of (T 3) with two non-zero 4, is used in Hannan and Huang (1972) (Theorem
1) to bound a more general case of the difference. A similar application,
Theorem 1 of Horn (1968), inherits the deficiencies of her Theorem 2.

2. Properties of symmetrization and of an .~“;-norm. Although in this paper
we will only be concerned with the difference between two symmetrized prob-
ability measures, some of the properties used in our proofs hold true and are
easier to prove in a more general context. This section investigates some of
these properties of symmetrized signed measures and their .%,-norms.

Let (2, ©") be a measurable space and < be a finite group of measurable
transformations g on (2, ©”). For a signed measure = on (%, %”), we define
tg~" as the induced signed measure and 7* as the symmetrization of ¢ by

(zg7)C = =(g7*(C)) Ce %, t*=AV(g9),
where AV denotes the average over g ¢ &. Thus symmetrization (*, hereafter)

is a linear operator.
For any real valued function fon 2 define o g and f* by

(fo9)y=Afay), [f*=AV(fey).
v and f are said to be symmetric if r = r* and f = f*, respectively. Since
*g = t*, ¢ is symmetric iff r = zg.
Throughout this paper we shall denote supremum and infimum by v and A,
and express integrals of left operators by

o(f) = § ) de(y) -

For any signed measure z, define an .~-norm of ¢ by

1) Il = V{I=(C)|: Ce &7}
It follows from the Jordan decomposition that
(2) [l = [l ]IV I=]

and hence, if (1) = 0,
) el = 1l = 1I="I1 -
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In particular, if P and Q are probability measures, then
4) o||P—-Qll=1,

with equality at 0 iff P = Q, and equality at 1iff P | Q.
For use in the proof of Lemma 1, let # be a measure such that dr/dp exists.
Since dr*jdy = (dr/dp)*t and de~[dp = (dr/dy)~,

el = pdefdpy* V pu(defdpey.
Hence, if z(1) = 0,

) 2fel| = u(ldedp])

It follows from the transformation theorem (Theorem 39.C, Halmos (1950)) that
(decjdp) o § = drgldug , \ ge <.

In particular, if 4 = p*, AV of the above equality yields

6) (dejdp)* = dr*|dy .

Let 4 be a measure and let 4 and f be such that the products 4*f and Af*
are p*-integrable. By the transformation theorem and symmetry, p*(h*fo g) =
p*(h*f) for all ge <. Averaging over < and interchanging 4 and f yields

™) pH(h*f) = pr(hf*) = p*(hf*) -
For the special case of (7) obtained by letting » = dp/du*, we have h* = 1 by
(6) and therefore, if f (and hence also f*) is y*-integrable, then
(8) () = (") = wf) -

For use in the completion of proof of Theorem 1, we note that, by subaddi-
tivity of norm and by ||zg|| = [|r|| for a signed measure ,
) Il < AV|[zg]| = [I<I| -
It follows from norm subadditivity and the Schwarz inequality that if ; are
signed measures then
(10) Xl = (2D Xl

If = 7, X 7, is a product signed measure, ||z|| is simply related to the cor-
responding norms of its factors. We abbreviate by omission subscripts on the
norms. Since t+ = (t;* X t,Y) + (77 X 7y7), 77 = (0.t X ) + (77 X 157),
it follows easily that
(11) Izl - Mzl < Hlew X wll < 2l7l] - [zl s

with the first equality iff either 7, or r, is a measure or the negative of a measure,
the second equality iff 7;(1) = 7,(1) = 0. In particular, if 7, is a probability
measure, the first equality of (11) yields

(12) lles X wll = Il -
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To assist in comparing our results with Theorem II. 1 of Hannan (1953),
consider a signed measure = with z(1) = 0. By (3),

(13) Iell = ll*]| = V{=(NH 0 = f= 1}

Since ¢*(1) = 0 by linearity of * operator, upon applying (13) to 7*, and apply-
ing (8) to t*(f), it follows that

(14) el = Viz(fMI0 = = V(N0 = fr=f= 1},
with the second equality following from {f* |0 < f < 1} ={f|0 <f=f*<1}.

3. Permutations; contraction effect of probability factors. Henceforth we spe-
cialize £ to be the group of transformations on (27, )" induced by the group
of permutations on N objects, where (27, &) isa measurable space. We also
let & denote the permutation group itself. Thus a generic element g € < will
be used both as a permutation and the transformation gx = (X,, - - > %, )

The following lemma will be used, in Section 5, for the extension, via appro-
priate triangulation, from Theorem 2 with 2 factors to Theorem 3 with m + 1
factors. Starting from Theorem II. 1 of Hannan (1953) rather than Theorem
2, Lemma 1 together with (10) would yield an extension paralleling our Theo-
rem 3 extension from Theorem 2. It will be shown that Lemma 1 alone would
yield an extension of Theorem II. 1 improving Theorem 2 of Horn (1968),
where there is a stronger restriction of the F; than mutual absolute continuity,
and where the non-zero §; are 1 and —1 respectively.

LEMMA 1. Ifr = # X P for a signed measure t with t(1) = 0 and a probability
measure P, then, abbreviating affixes on * and on || || by omission,

=] < 1@ -

Proor. Since 7(1) = 0, ||o*|| = V{FP(/) |0 < f = f* < 1} by (14). Since
f = P(f) is symmetric in the remaining variables and since 0 g}‘_s_ 1, one
more application of (14) completes the proof.

For our extension of Theorem II.1, let z = X F;¥i — X F;"i where the F;
are pairwise non-orthogonal and fixed, and the d; = N, — N, are zero except
for two ’s. By judicious choice of g, we have rg =1¢ X P with P =
X {F¥i|d, = 0}. By (rg)* = ¢* and Lemma 1, |[*]| = ||(#)*|| which, by (14)
and Theorem II. 1, converges to zero as this case of the bound in (T 2) does.

4. Two distinct factors with unit differences in multiplicities.

TueoreM 1. Let F, and F, be p-measures and let N = (N,, N,) be an integral
partition of N with N, =2 0 < N,. Withd = ||F, — Fy||, and K(d) = .5012 - - X
d(1 —d)7,

1 1
15 FY F¥o)* — F N+l FrNo1y*||2 < K(d ).
(19)  [IEn X F* — N X By S K@) (=g )
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Proor. Since both sides of (15) vanish if d = 0, henceforth assume F, = F,.

The proof proceeds according to the following outline: Asin Hannan(1953),a
parametric family of densities of the F; is introduced and some of their moment
properties are related to d. Starting as in Hannan (1953) but then weakening
by the Schwarz inequality, Lemma 2 obtains a family of upper bounds for a
slight generalization of LHS (15). Lemma 3 develops lower bounds for modal
binomial probabilities for application to the denominators of a bound of Lem-
ma 2. Lemma 4 bounds the second difference of generalized binomial proba-
bilities for application to the rest of the bound of Lemma 2. The bound of
(15) is then obtained as the minimum of 42, from Lemma 1, and a bound
resulting from the application of the qther lemmas.

ForO<p=1—-—g<landi=1,0, let

(16) F, = pF, 4+ qF,,  f,=dF;dF,,

(17) 0 = F(f), Pi = pR(f) = 1 — Q=1 — ¢F(f)) ,

and note

(18) F(f)) = F(f) > (Ff)) =

by the Schwarz inequality, with equality eliminated by F, - F,. Thus
(19) 0=p7'(1—qF(f)) <1.

Let ¢ be any o-finite measure dominating the F, let h; = dF;/dy and let h, =
ph, + qh,. Since f, fih, = hhh,™* = h, A h,, it follows that

(20) 0= puh ANh)=1—4d.
Finally, note that from (17) and (18)
(21) P —-—P=1-9, P.Q; = paF\(f)F(f:) > pqb .

For integer N and p € [0, 117, let b(k; p) denote the generalized binomial
probability of k successes in N independent trials with success probabilities p.

At the cost of notational complications, the following lemma could be stated
and proved for m 4 1 instead of 2 probability measures.

LeMMA 2. For nonnegative integral partitions of N, N = (N,, N,) and N’ =
(N, NY), define ¥ = F"1 x F¥o, ¥' = F""' x F*' and t =F — F'. For
0<pl1

(22) F* <dF’*> _ b(N,; PV PNo') _ b(N; P,"1P o)
aF;) = by pY) BN P
b(k; P 'rP N—'r) :|k=N1’:|r=N1’
23 4||z*|[2 A 10 7 .
(23) I < e b, o,

Proor. Since F*(dF'*|dF,") = F'*(dF*/dF,"), the second equality in (22)
will follow from the first.
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By (6) the integrand in LHS (22) is (dF’/dF,¥)*, whence, by (8), LHS (22)
is AV of
dF¥’
24 F <__ °g).
24) )

Since the integrand in (24) is the product [T fi(x,.) TI¥ /41 fi(¥,s) Of F-inde-
pendent variables, the integral is expressible, interms of K=#[a > N/’ | ga < N,],
as the product

(25)  [E( ) B IE()Ioo  R(f) ™
— P—qu—NoPOKQONO’-—KP1N1—KQ1N1’~N1+K — H(K) .

Then (22) follows since

(26) AV H(K(9)) = X, (]},C°'> ( NlNi k) (1]:/,)_1 H(‘k) - %

with the first equality following from the transformation theorem.
From (5) and the Schwarz inequality,
)= ()
dF Y

@) aee = (S < B (

Four-fold application of (22) to this bound results in (23), completing the proof.
For integers 0 < k < N, let

(28) ay, = {(N — DpgPb(k; p*) with p = (k + /(N + 1).

1 —
LEMMA 3. ayy_ = Gy, = ay,5eas N1 oo.

dr*
dF ¥

Proor. Note that f{x) = (1 + x*)*** se as 0 < x 1 oo since, with 7=

(2x 4+ 1), logfix) =1 + £/3 + /5 + .... The lemma then follows from
the representations,

k) S _([N=1)F 1
29 = _f(—_ = k —_— o —_— —_—
(29) ay, = ay N — &) ay, I11 N — ) Ay {N-l- 1} I

The following lemma uses characteristic function inversions to bound the
second difference of generalized binomial probabilities. In our application to
certain numerators of (23), the generalized binomials involve only two distinct
probabilities but the added generality simplifies the proof and may serve to
motivate other applications.

LeEMMA 4. Let B(x) = (4/7) §; y}(1 — y)~te~*¥dy and o* = Y,¥ P, (1 — P,).
For P ¢ [0, 11" and integral k
(30) |A%(k; P)| < B(d") ,

(31) x'B(x) — (2m)~* as x1 oo,
(32) s = V{xIB(x)|0 < x < oo} = .545447 ...



314 JAMES HANNAN AND J. S. HUANG

ProoF. Note for later use that, with ¢(u) = Pe‘* + Q the ch.f. of a Bernoulli
variable with parameter P = 1 -0,

(33) |p(u)|? = 1 — 4PQ sin’u/2 < exp—4PQsin’u/2 .

Since — Ale—ivtk—1) — e~ivk4 sin?u/2, it follows that —A%h(k — 1; P) is given by
the Fourier inversion

(34) {7, e"i*k4 sin? % L () du .

L
2w
By application of (33) to the ¢,, the modulus of (34) is bounded by

(35) 4 (rsint X oo gy = B(o?) .
T 2 .
(Since v~'sinv | on 0 < v < 7/2, RHS (33) < exp—4PQ(u/z)* on [u| < .
The corresponding weakening of (35) implies s < n%2277 = 1.546 - . .
B(x) < (4/) §; sin® (u/2)e*/* du < (1/x) §¢ ute=win? gy — (7%2271%)x~1 )
With I,, I, denoting the modified Bessel functions,
(36) B(x) = [__2_ §yH(1 — y) e dy]'
T
= [—=2e72I(x)] = 2e7*[I(x) — L(¥)],
where the second equality follows by differentiation from the corresponding
Laplace transform (cf. 29. 3. 124 of NBS-AMAS55 (1964)), and the last from
I =1I.

In view of (36), (31) is an immediate consequence of the usual asymptotic
expansions of I, and I, (cf. 9.7. 1 ibid.).

To verify (32), first note that [x!B(x)]" = x’e~*F(x) with

F=3—4x)I,+ (4x — ), .

Since F(1) > 0 > F(2), the behavior of F will imply that 3x, e (1, 2) with
F 50 on [0, x,] and F <0 on (X, o) as follows. Since I, < xI,, xF' =
x(4x — 5)I, + (1 — x)(4x + I, = —(15/16)xI,0n [0, 1]. Since x(4x — 1)F" =
(4x 4+ 1)(1 — x)F — 31, 1 < x and F(x) 2 0 — F’(x) < 0 and hence 1 < x,
and F(x)) = 0 = F < 0 on (x,, o).

Since, in addition, .00012 > F(1.452) > 0 > F(1.453) (page 228 BAAS v
VI (1937)),

0 < s — (1.452)}B(1.452) < (1.452)te™4*(.00012)(.001) < 4(107)
which results in (32) and thus completes the proof.

COMPLETION OF PROOF OF THEOREM 1. From Lemma 2 with N/ = N, + 1
we have this case of the bounds (23). Let p = (N, + 1)/(N + 1) henceforth.
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This choice insures both denominators in (this case of) (23) are equal and,
by Lemma 3, are bounded below by {(N — 1)pg}~tay,. Use of the recursion
relation resulting from the convolution interpretation of the generalized
binomials shows that the mixed second difference remaining in the numerator
is —(P, — P))A®(N, — 1; P,*>»P"o™"). Application of Lemma 4 results in the
upper bound (P, — P)B(¢*), with P, — Py =1 — 60 < d and ¢* = N,P,Q, +
Ny, — 1H)P,Q, > (N — 1)pg(1 — d) by (20) and (21), so that, with C(d) =
d(1 — d),

37 fp < AV = DPal ypigry < N+ 1 @B gy (L LY.
G7 P = 5 @)= N1 da,, ()<NI+I+N0>

With the s of (32) and ¢, = (N + 1;/(N — 1)(s/4ay,), (37) and Lemma 1 yield

NO

1 1
38 ]2 < d? A Cd( _>.
(38) Il = a* A ey €@ (51 + 7
Since ¢, | w.r.t. N while
by = Varuy a M TN LN 2]y
' 1 1 N4+ 1 2 2
T
N, +1 N,

and v, < ¢, = .5012. .. < v, the bound of (15) is the best of its kind following
from (38), and the proof of Theorem 1 is complete.

REMARK. As ¢’ — oo (which occurs if (N, A Nj)(1 — d) does), so does N
so that, from (31), the RHS of (37) is then asymptotic to the bound of (15)
with ¢,, improved to e(327)~t = .2711....

That the bound of Theorem 1 is sometimes relatively sharp will follow from
examination of one of the simplest special cases.

ExampLE. Let F, put mass § oniand 1 — § on 4 fori =0, 1. For every
triple of nonnegative integers M = (M,, M,, M,) with sum N, F,"1" x F¥'(and
hence also its symmetrization) assigns mass b(M,; £¥1)b(M,; £¥0') to the sym-
metric set of x in {0, 3, 1} with the frequencies M. For the r of Theorem 1,
a little algebra shows

(39) (I = &edM] = <%‘1 - NA—1|-1 1) b(My; EVo)b(M; E¥1+Y) .

Thus 2(1 — &)||*|| is seen to be E|€, — &,| where the ; are the independent
relative binomials indicated in (39). As both N;§(1 — &) — oo,

Xn = {[N7"+ IV, + DA — )&, — &)

converges in distribution to the standard normal since both {N,7¢(1 — &)}~ x
(é; — &) do. Since EXy* = 1, it follows from the Corollary to the Moment
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Convergence Theorem (page 184 Loéve (1963)) that
E|Xn| — §|2|(2n)te=* dz = (2/m)!

and therefore

1 ¢ 1 i
40 LI ).
(40) 1=l 2nl—E<N1-|-1+N0>

When ¢ — 0, the comparison is most favorable and the bound of Theorem 1
exceeds RHS (40) only by the factor 3.149. ...

5. m + 1 Distinct factors. We now obtain various extensions of Theorem
1 as corollaries to that theorem. Theorems 1, 2 and 3 represent successive
extensions each subsuming, yet corollary to, its predecessor. Theorem 3 is
useless unless the F; are pairwise non-orthogonal, and Theorem 4 is designed
to replace it in this case. Thus, as implied in the summary, our final results
are merely Theorems 3 and 4. Let

(41) T =X FYi — X, FY7, d;; = ||F; — Fjlj
0, =N, — N,, A=N/AN)+ 1, Lj=0,...,m.
THEOREM 2. Form =1,
(“2) eI < Kt (5 + )
Proor. Assume without loss of generality J, > 1 (we may rename N and
N’ otherwise), and for j =1, ..., d,, let
(43) t; = FNomi+l ) FVivi=t — FMoi x Mt

Since ¢ = Y t;, it follows from linearity of * and (10) that
(44) =¥ = o, 20 [l=5*]1* -
Applying Theorem 1 to each summand in RHS (44) completes the proof.

THEOREM 3. Let n = #[i|d; # 0} — 1 be positive (otherwise =* = 0), and let
d=V{d;|0; #0,0; + 0}. Then

|le*(]* < nK(d) 2 02N -

Proor. Given Nand N’ we construct a sequence of partitionsN = N, N, - -,
N, = N, for some r < n, as follows. To construct N; = (¥, - -+, Ny,,), let s
be such that |3,] = A{|d,]||d, # 0}, and let ¢ be such that d, has opposite sign
from é,. Let N, = N, + d,, N,, = N, — 0, and N,; = N, for the other j’s.
Thus N, stays between N and N’ coordinatewise and differs from N in two

coordinates. Repeating this construction, the process terminates in r < n steps
since each successive N, identifies at least one more coordinate with N’. Define

_ Ni1; N .
T, = X Fi-1 — X7 FVi, i=1,...,r.
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Since N; differs from N, , in two coordinates, say s and ¢, the fact that
(z:9)* = (7;)* enables us to use Lemma 1 to obtain

(45) el < (It X Fimuy* — (FMis X FMi*||

Applying Theorem 2 to RHS (45), we note that, since each N, stays between
N;_,and N;,, coordinatewise, the denominators in this application of RHS (42)
are bounded below by A, and A, respectively. Since K is increasing, we further
weaken this application of the bound (42) by replacing d,, by d. Thus

(46) [RHS(45)F < K@®M: . — N} (1 + 1) -

8

Since N,

1—17

= N,; except for j = s, t, RHS (46) is

K(d) 5o A7 (Nimay — Nyy)*
Since 7 = }7_, 7;, by (10) and the above representation of RHS (46),
(47) I < r |1 < rK(d) Zs A7 50 (Nimy — Vi)'

Since }3; (N;_,; — N;;) = d;and since N,_,; — N,; are of the same sign for fixed
J, the summation w.r.t. i in the last term of (47) is bounded by 4,2 Since
r < n the proof is complete.

—1j

THEOREM 4. Let F, F,, - - -, F, be internally connected by chains with succes-
sive elements non-orthogonal and let d = V{d,;| F, y F;}. Then

l|o*||F < $mK@)(3; 16:])* 5 A

Proor. For any connected graph of finitely many vertices there exists a
vertex whose removal leaves the remaining graph connected. We shall rename
F,, ..., F,insucha way that successive removal of F;, F, - . . leaves the remain-
ing connected. Foreachi < m — 1, let #(i) be such that #(i) > iand F,;, x F,.

Given N and N’ we consider the partition which differs from either N (if
d, £ 0) or N’ (if 9, > 0) only on the Oth and the #(0)th coordinates, where the
Oth coordinate is N, A N,/ and the #(0)th coordinate, compared to that of N
or N, is increased by |J,|. By weakening Theorem 3 on both K and the second
denominator (1 4 the #0)th coordinate of the new partition > A,,), we see
that the square norm of * of the difference between the product measures
associated with the two partitions is bounded by

(48) K(d),? <_1_ 4 1 ) .
AO t(0)
Iterate the process. Letting ,'” be the difference in the jth coordinate at
the ith iteration of this process, we see that 9, = 0 for j < i and

(49) ;" =3d; + X {0, |0 = r < i, #(r) = J}
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for j = i. We also note that the 4, above are disjoint sums of ¢’s from
{00+, 0,1}

Since A;? — 1, the minimum of the jth coordinates for the two partitions
at ith iteration, is increasing w.r.t. i, the bound corresponding to (48), further
weakened by A, = A, is

TR T 1
(50) K@)o:F (- + ) -

1 t(4)

Since each iteration results in reducing one coordinate difference to zero,
the process terminates in m steps. By (10) as in the proof of Theorem 3, we
see that, by (50),

(51) el < mK(d) B0, (- + )
A, A

1

The coefficient of 1/A; in the summation above is, with 4, = 0,

(32) 0, + 2, {0, #(r) = i} .

By (49) and the note following it, complementing in 6, by Y} J, = 0, we see
that 6, and the 4, in (52) are disjoint sums of {d,, - -+, d;,_;, 0,4, - -+, J,,}.
Thus the maximum of (52) over all is < (3 0" — ;") + (X0~ — 9,7 ) <
3(22 19])*, and the proof is complete.

The hypothesis of Theorem 4 fails to hold if and only if .7” is disconnected.
Then either (i) there exists a component, i.e., a maximal connected set of
factors, whose N-multiplicity differs from its N’-multiplicity, in which case it
follows easily that ||z*|| = 1, or (ii) every component has identical N- and N'-
multiplicity, in which case |[z*|| is simply related to the [|(z,)*|| corresponding
to the separate components:

(33) Vell)*I] = (1] = Ze M) ™11
where the second inequality follows from Lemma 1 and the triangle inequality.

Addendum. After this paper was submitted, Hornand Schach (1970) obtained
qualitative results of a more general character as a corollary to their 0-1 law
(a product probability measure with each factor recurring i.o. takes only the
values 0 or 1 on sets invariant under all finite permutations): if 2and v are prob-
ability measures such that - = 2 — v is dominated by a recurring ¢ = X;{° p,,
then, reinterpreting our choice of £in Section 3 as transformations on (2] <Z)~,

(54) lI=*]] 1 O as Nloo.

ReMARK 1. This result is self-strengthening in that the conclusion (54) con-
tinues to hold if only there is a finite permutation of v, say v/, such that 2 — v/
is dominated by a recurring p.

REMARK 2. With the same reinterpretation of &, our proof of Lemma 1
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continues to apply provided that the domain of # <&~ and shows that equality
here implies equality in the lemma. Thus, recognizing the “z” in Theorems
3 and 4 as present 7, the bounds of these theorems apply to [|z*|| with r =
7 X P, whatever be the probability measure P on <&'=,

REMARK 3. When 2 and v are product probability measures with factors in
a fixed set & = {F,, F,, - - -, F,}, then it follows easily by a Kakutani (1948)
criterion that ||z*|| = 1 unless

(55) ;, =v; except f.o.
When (55) obtains, the hypothesis of the (strengthened) Horn-Schach result
holds iff

(56) there exists v’ such that each 4, 4 v,/ is doeminated by a recurrent
factor of 1.

If, for example, F;  F; only if i = j, then (55) and (56) will hold only if
* = 0 except f.0. although the bounds of Theorems 3 and 4 will converge to
0 much more generally.

If, on the other hand, F, > {F,, - - -, F,}, then (55) and (56) may hold without
any of the A, - .. A, going to co with N, so that all these terms of the bounds
of Theorems 3 and 4 fail to converge to 0.

In the presence of special domination assumptions, some improvements in
our bounds are readily obtainable. For example, the proof of Theorem 1 used
P, — P, < d. Since P, = F(ph,h,™") | Fi[h, = 0] as p | 0 the bound of Theo-
rem 1, strengthened by the insertion of (P, — P))/d in RHS(15), is o(1) if
F,>» F, and only N, T co.
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