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THE DIVISION OF A SEQUENCE OF RANDOM VARIABLES
TO FORM TWO APPROXIMATELY EQUAL SUMS

By AIDAN SUDBURY AND PETER CLIFFORD
Bristol University

The finite sequence of #» random variables Uy U;- -+, Ux is divided
into two complementary groups of random variables in one of 2» ways.
The random variables in each group are summed and the two sums are
compared. Let |S,| be the minimum of the difference of the sums out
of all the 27 possible divisions. A lower bound to all sequences {en} such
that P{|Sa| < en}—1 as n— oo is found in two cases:- U; = X;
i=1,2.--nand Ui = Xi/5", Xi,i=1,2---n where the X; are in-
dependent and identically distributed random variables which have
densities and satisfy certain regularity conditions.

The results lead to the solution of the particular problem of
minimising the difference between two sums formed from segments of
a fractured unit interval.

1. Introduction. The original version of this problem was proposed to one
of the authors by Dr. M. Kanter at the University of Tel Avivin 1969. To fix
ideas we will first of all formulate the problem in its original form. The unit
interval is broken into n segments by throwing down, randomly and indepen-
dently, n — 1 uniformly distributed breaking points. The n segments are then
reconstructed into two intervals of approximately equal length. We wish to
investigate exactly how close an approximation can be made. In particular
if |S,| is the minimum difference in length of the two reconstructed intervals
we will find a lower bound to all sequences {¢,} which have the property that
P{S,| < ¢,} —1 as n— co. We write G,(¢) = P{min, |37 . X;| < ¢}, 9; =
+1, and prove the following:

THEOREM. If {X}} is a sequence of independent and identically distributed
random variables such that each X, has a finite third moment and the vth power of
its characteristic function is integrable for some v > 1, then lim,__ G,(c,) = 1
for any sequence {e,} such that ¢,2"/(n)? — co. Furthermore, if the sequence {e,}
is such that

lim,__ (2"¢,/0(2nn)}) = 0, then (wj(w + %)) <lim,_, G,(c,) < ®.

COROLLARY. If ¢, (n)t2" — co then

lim, ., P{min, |37, 0, X,/ Xl < ¢u} = 1.

If U, U, ---, U, are the lengths of the broken segments we immediately
have the well-known result AU, U,, .-+, U,) = (X/T, X,/T, ---, X,|T)
where T = Y7, X, and X;, i = 1,2, ..., n are independent, identically and
exponentially distributed random variables. The minimum difference |S, |
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becomes min, | Y7, 6,X;/T | where , = +1,i= 1,2, -- -, n, and the required
result is a special case of the corollary.

Darling [1] has considered several other useful functionals on the lengths
of the intervals formed on a line by random division, and Flatto and Konheim
[3] have done much the same for the circle. The classical compendium of
results in geometric probability is that of Kendall and Moran [4], and more
recent results are presented in two review papers by Moran [5], [6].

2. The basic approach. Let X, - .., X, be a sequence of independent and
identically distributed random variables. We wish to determine

G,(e) = P{min, | T2, 3,X;| < ¢}

where 5«: =+1,i=1,...n.

Let x,, - - -, x, be a particular value of the sequence X, - - -, X, and consider
T,(x), the table of the 2" possible values of 3;%_, d,x;. Let N(x)be the number
of entries in the table which lie in (—e, ¢). Let

p. = P{N(X) = 2k}, k=0,1,...2*
then
0] G(e)=1—PINX)=0=p,+ps+--+ Py~
Instead of constructing the table we could toss a fair coin n times and
obtain the n independent outcomes I, - - -, I, where

P{Iizl}:P{L':_l}:%'

The sum Y., I, X; will then have the same distribution as a single random
sample from the 2" entries in 7,(X).
Let

Fie) = P{| Zi. L X:| <¢}s
then, since it is the chance of selecting an element less than ¢ from T,(X),
@) Fi(e) = Ex{N(X)/2"}
1

T -1

P42+ 4 27p, ).

The first line of (2) tells us that the expected number of entries in 7,(X) of

size less than ¢ is 2" Fi(e).
We may also consider a series of trials in which we toss two fair coins n

times each to give us the two sums }; 7, X; and }; J; X; where
P, =1} =Pl = —1}=1}.

The two sums will have the same joint distribution as a pair of random samples
drawn with replacement from the table 7,(X).
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If follows that

3) Fye) = P{IZ L X)| < e | XX < ¢}
= E{((N(X)/2")} = 221—2 i kp,

-~

Using the functions defined above we may now determine an upper and
lower bound for G,(¢). Except for small ¢ the upper bound is greater than 1
and the lower is negative, however they will be used to give the asymptotic
behaviour as ¢ — 0.

For any »

E{(N(X) — 9| N(X) >0} =0,

and thus we have )
—E{(N (X))} + 27E{N(X)} = 7" P{N(X) > 0} ;

so using (1), (2) and (3) we may see that

(4) 2'TUE () Z Gy(e) = 72927 Fy(e) — 2 Fy(e)] -
3. Approximations for large n. We shall approximate P{|}] I, X;| < ¢} using
the central limit theorem. If Y,i=1, -..n is a sequence of i.i.d.r.v.’s

whose third moment g, exists and such that the vth power of the character-
istic function is integrable for some v > 1, then the density f, of ¥, ...+ Y,
exists for n > v, and as n — co we have

1 x x? x A
=t 55) = i~ ) )+
*) a(n)t ¢ o(n)t 60°nt \o’n *)¢ a(n)t + n
where ¢(x) is the standard normal density and 2,(x) — 0 as n — oo uniformly
in x. Feller [2] page 506.

If the X; satisfy the above conditions, then p, = 0 for the I, X;, and letting
f. now stand for the density of 3} I, X; we have that

(5) £ = g () 4 o).

a(n)t’ \o(n)
By the mean value theorem there exists an x in (—e¢, ¢) such that

(6) Fi(e) = P{IZ LX)| < ¢} =2¢efu(x)

2e 1
"~ o(2nn)t + eo<7> ’
using (5), where we are only considering ¢’s less than some fixed positive
number ¢,.
We now wish to find an approximation for Fyc). We note that
> (I + J)X,/2 and 3 (I; — J;)X;/2 never involve the same variables, and
are of the form 37,0, X; . Thus P{|¥ L, X;| <e, |X J;X| < ¢} is the sum
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over all possible subsets of X, - --, X, which we shall designate by X,
;,,» of the probabilities that 3 (Z; + J;)X;/2 involve exactly X, ---, X; and
that
|111X’L1 + + I X + + iy ’nl < e,
|I'1X11 + + I"’m im Iim+1Xim+1 - IinXin| < €.

Since the X,’s are identically distributed

1
Fye) = o Tr o MPTILX| <& | NP LX — YnaLX| <e},

=220 4 L SR @PISAX <o | DT LXK — T L X <o

We now find an approximation for the second term. Now X' I, X; and
.. I, X, are independent random variables with densities f, and f,_,; thus
by the mean value theorem there are values x,, and y,, such that |x,, + y,| <
and |x,, — y.| < ¢, and such that the second term, in the expression above
equals

1
2¢ n—l n) Efm(xm)fn—m(ym) *
Using (5) this becomes, for ¢ < ¢,

() 26 s )-[m—%+om-l][(n—m)i+o< I )]

2no? n—m

We will next show that

(8) lim, . 252 (%) £<m‘* + ﬁ“)((n —m)t 4 Anm ) =2,
2n m n—m
where 1, — 0 as n— co. Let 2,* = max, ., ., |4,|, then

A A

(9) (m(n — I‘}'l))_é —+ &.” ( m) H ._I__ n—m m—? + n—m " m
m —m m(n — m)
22,% 2%

<(n_1)—i+(n—l)* P

forl<m<n-—1.
Let & > 0 be arbitrarily small and N(9) be such that, for all n = N(9),

A, n 1 0
10 <1 22,* n > —~_ < —, and furthermore
(19) + +(n—1)é (n_1)é4n%<
if |m/n — 3| < n~'%, then

o |2 ni, A 0
11 1— I DL L nomhm | O
(11) 101 =iy =2] < g 72t <O and | s
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Let B(m) = Y., (}) 3 n, so that B(m) is the distribution function of a
binomial distribution with variance n/4. We consider the integral

(12)  Sizmgns |7 <m‘* n %)((n —myt 4 ﬁ) _ 2‘ dB(m) ,

and divide it into two parts, the first of which is over the region [l < m =<
n— 1] N {{m/n — 3| < n~*}. From (11) we may see that thisis < 6/2. The
second is over the rest of the region 1 <m < n—1. By the Chebychev
inequality the probability of lying in this region is < 4n~%, and thus, using
(9) and (10), this part of the integral is also < d/2.

So given any & > 0, the expression on the left of (8) differs from

1
Sls'mgn—l 2dB(m) =2 — = ,
by less than 4 for all n > N(6). Thus
2 2
(13) Fye) = ﬁFI(e) 4 _e 2+ )],
nro

where d(r) — 0 as n — oo provided e remains bounded.

4. The limiting behavior of G,(¢). Using equations (4), (6) and (13), we have
that for all 5

n+ n+ n+1
Gz L[ 2 - B 22

7* Lo(2nm)? - o(2nr)} " hnd?

[~ 1) -] (2).
7 7 7 n

For a given 5 we maximise the first of this expression by putting

6.2”+1

=2 _=p—1.
o(2nm)t 7

(14)

We then have
o[ 3 (1= 2 3) (5 ot -t )

2n+1

So for any sequence f{e,} converging to zero such that e, 2"*(a?2nm) "t — oo
or equivalently ¢,2"*(n)"t — co we have
(15) lim, . G,(c,) = 1.

Also, since G,(¢) < 2"'F,(c), we may say that for any set of values 7, such
that

2'Th — o,

lim, ., =
o(2nm)t
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(16) (0f(0 + 3))* < lim,_, G,(1,) < @ .
Let us now consider random variables of the form
Y, ,=X/>L X, i=1,....,m;n=1,2,....
We will assume that the X’s satisfy the conditions leading to (15).
Consider
P{min,, |31,0,Y,,| < ¢,} = P{min,, |31, 6,X| < ng, | X, ]}
= P{min,, |31, 0, X < (¢ — o)ng,} — P{|X,| < |p| — 0}
where ¢ = E(X;) and X, = Y, X,/n.
Let 6 = 1/nt then using (15) and the law of large numbers we see that
Plmin, |32, 6,7, < $.}— 1
as n— oo and n¢g, — 0, provided ¢,(n)}2" — oo, but it is clear that only the
last condition is necessary.

5. Conclusion. Equations (15) and (16) for the asymptotic behavior can
hardly be improved on. (16) puts a lower limit on the ¢,’s such that
lim,__ G,(¢,) = 1, and (15) states that any sequence tending to zero ‘infinitely
more slowly’ than this value will have that property. However, in any
particular case where the distribution of the random variables is known,
the asymptotic behavior gives us no help in estimating the probability for a
given ¢ and n. This estimate can only be derived by calculating the various
terms that have been shown to tend to zero as r tends to infinity. In most
cases the error in (8) predominates, and for any numerical estimates it would
clearly be best to calculate the LHS directly. When the distribution function
is known, the error due to approximating by the central limit theorem may
also be calculated.

For values of ¢ not very small it appears that G,(¢) will be close to 1, and
the most interesting thing to calculate is the expected number of elements of
the form Y] ¢, X; which are of size less than ¢. From (2) we may see that this
is 2" F,(¢), which in many cases is not difficult to work out.
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