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1. Introduction. Let {X,};_, be a sequence of real-valued random variables
and let {p,}=_, be a sequence of real numbers such that lim, _, n~!log P(X, =
¢,) = ¢, where c is some negative constant. The evaluation of this limit is of
great importance in the calculation of eertain limiting efficiencies of tests of
statistical hypothesis [1], [2], [6]-

Several approaches have been taken in the evaluation of this limit. In
some cases it has been evaluated directly, which often leads to an exceedingly
difficult analysis [8]. In other cases it has been found using a moment
generating function technique [2], [12]. The approach taken in this paper is
entirely different and, when applicable, has important advantages over previ-
ous attempts. Using the method proposed, we are able to calculate the above
limit with very little effort and the approach offers some interesting insights
into the structure of the problem. In this paper, we consider conditions under
which the above limit can be evaluated using the density or probability func-
tion rather than the distribution function.

For example, if X, is normally distributed with mean 0 and variance n, then
it is well known [3] that, for a = 0,

(1.1) lim, ., n~'log P(X, = an) = —a*/2 .

n—rco

It is easy to verify that, likewise for a > 0
(1.2) lim,_, n'log f,(an) = —a’/2,

where f,(x) is the density of X,. We point out that the equality of the two
limits in (1.1) and (1.2) holds quite generally. Sufficient conditions for equality
are given and discussed in Sections 2, 3, and 4, and some examples illustrative
of our method are given in Section 5.

2. The main results. Let {X,}:_, be a sequence of random variables and
{f.)o, a sequence of real-valued functions defined on the real line. Let
{0.)-1s {@a)o, and {7}, be nonnegative sequences of real numbers with
n~*logd, = o(1) and n'logy, = o(1) as n — oo.
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THEOREM 2.1. Suppose for eachn = 1,2, ... that X, has an absolutely con-
tinuous distribution with density f,(x). If there exists an integer N such that for
n = N, f,(x) is non-increasing for x in [¢,, o) and if

(2.1) nt1og [ f(@n + 0.)/fulen)] = o(1) as n— oo
and

(2.2) lim sup, ., n7*log [P(X,, = 1,)/fu(¢)] = O,
then

(2.3)  mtlogfy(p,) —nlog P(X, 2 ¢,) = o(l) as n—co.

THEOREM 2.2. Suppose for each n =1,2, - .. that X, is an integer-valued
random variable with probability function p (k) = P(X, = k) and f,(x) = p.([x])
where [ ] is the greatest integer function. If the above conditions are satisfied
withé, = 1 forn = 1,2, - .., then (2.3) again follows.

Often, in examples, we find lim,__, n~*log f,(¢,) = ¢ > — oo. Thesequence
{r.)e_, can often be defined by y, = exp (n?). The existence of the above limit
along with
(2.4) lim,_, n'log P(X, = exp (n})) = — oo,

n—oo

imply condition (2.2) with y, = exp (n!). When the remaining conditions are
satisfied, lim,_,, n* log P(X, = ¢,) exists and is equal to c.

We conclude this section with a sufficient condition for (2.4) in terms of
moment generating functions.

THEOREM 2.3. Let {X,};_, be a sequence of random variables such that there
exists a © > 0 and M < oo such that E(exp [tX,]) < M for all n. Then (2.4)
holds.

3. Proof of theorems.
Proor oF THEOREM 2.1. Using the fact that n~* log 7, = o(1) as n — oo and
condition (2.2) we have,
nilog fu(g,) — ntlog P(X, 2 ¢,)
= nt log [ fu(@)ru/P(X, = ¢)] + o(1)
= n7'1og [(fu(@u)rn + P(Xa Z 7.))/P(X, Z ¢4)]
— n7tlog(l + P(X, = 7.)/ful@a)ra) + o(1)
= m 10g [(fu( )7 + PX, = 1)/PX, = 0,)] + o(1) as n— oo
The non-increasing property of f,(x) implies that f,(¢,)r, + P(X, > r,) is an
upper bound for P(X, = ¢,) for sufficiently large n. It now follows that
(3.1)  nlogfi(p,) — nlog P(X, 2 ¢,) Z o(l) as n—oco.
Using the non-increasing property of f,(x) along with condition (2.1) yields,
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nt1og fu(p.) — n7'log P(X, = ¢,)
= n110g [fu(pn + 3.)3,/P(X, = )] + 0(1) as n—oo.
The non-increasing property of f,(x) further implies that f,(¢, + 0,)d, is a
lower bound for P(X, = ¢,) for sufficiently large n and we have,
(3.2) ntlog fi(¢.) — n~*log P(X, = ¢,) < o(1) as n—oo.

The proof is completed by combining inequalities (3.1) and (3.2).

The proof of Theorem 2.2 follows in a similar manner.

ProOF oF THEOREM 2.3. Since P(X, =7,) = P(exp(7[X, —r.) =1 =
E(exp t([X, — 7.]) < M exp[—rty,] for all n. It now follows from the defini-
tion of 7, that (2.4) holds. ‘ .

4. Examples on the necessity of the conditions. Each of the conditions places
necessary restrictions on a different part of the tail of the distribution of X,,.
In the examples of this section we let 6, = 1, r, = exp (n!), and ¢, = nt.

ExaMPLE 4.1. Condition (2.2) insures that there is not too much probability
in the extreme tail of the distribution of X, that is, for x > y,. For a counter-
example to the theorem if this condition is relaxed, let X, have density Su(X)
defined by:

f,x)=0 if x<0,

= (2r)texp(—x}2) if 0=<x=7,,

= )y texp(—r.f2) if 71, <x <7+ (72 exp (r./2)

= (2r)texp {—[x — (/2)} exp (7,/2)]'/2} otherwise.
Note that for large n we have f,(n*) = (2z)~% exp (—n/2) and the remaining
conditions are almost trivially valid. Further, P(X, = 7,) > 4 foralln =1,
2, ... which implies that lim,.,n 'P(X, = n?) =0 while lim, _n™"log
f.(nt) = —3%; hence, condition (2.2) and equation (2.3) fail.

ExAMPLE 4.2. The non-increasing property insures that f, behaves properly
in the medium tail, that is for ¢, < x < 7,. Again, the theorem is not true
without this condition, as can be seen by considering X, with density f,(x)
defined by:

f,(x)=0 if x<O0,
= (27)texp (—x*/2) + 1/2 if exp(n)) <x <exp(n)+1,
= (2n)texp (—x*/2) otherwise.

Clearly, conditions (2.1) and (2.2) are satisfied but not the non-increasing
property, and again we have lim,__ n~*log P(X, = n*) = 0 while lim,_ n~
log fu() = —3% .

ExaMmpLE 4.3. To demonstrate the necessity of (2.1) let X, be a normal
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random variable with mean 0 and variance 1. Further, let f,(n!) = 1, which
does not change the distribution of X, but does contradict condition (2.1) for
any 6, > 0. Now lim,__ n™log f,(nt) = 0.

5. Examples of large deviations. The large deviation results for a wide class
of distributions may be readily obtained by direct application of Theorem 2.1
or 2.2. For example, if X, has any one of the distributions: binominal with
parameters n and p, Poisson with parameter n4, chi square with n degrees of
freedom or Student’s ¢ with n degrees of freedom, with 6, = 1 and ¢, suitably
chosen, then routine calculations will yield the desired limit. Two of the
more interesting examples are presented here in detail.

ExaMpLE 5.1. Let X, have an F distribution with m and n degrees of
freedom, where m and n increasé in such a way that m/n tends to 2 and
0 < 2 < oo. The particular case where m = n has already been resolved by
Klotz [8]. We will let ¢, =  where > 1 and fixed. It will now be shown
that conditions of Theorem 2.1 are satisfied if we let §, = n~% and 7, =
exp (nt).

P(X, = 7.)
= {5, [T((m + 2)/2)(m/[n)" 2y =2} {T (m[n)L(n[2)(1 + my[n)=+m1} dy .

Using Stirling’s formula on the gamma functions in the integrand and dis-
regarding higher order terms we get:

lim sup,,_,n*log P(X, = 1,)

= lim sup, ., n7'log {7 ((m + n)/(n + my))™ 2y dy .
Since we have, for large =,
(m + n)f(n + my) < (m + n)/my < (m + 2mi~")/my = (1 + 227%)/y,

by letting k = 1 + 2277, it follows that

lim sup,_., n~'log P(X, = r,) < limsup,_., n~"log {5 (k/y)m+™/* ymi* dy
= lim,__ n~tlog [((n — 2)/2)kim+mi2 y ~=D12] = _ oo .
Therefore, f,(x) satisfies (2.4). It is easy to verify that (n(m — 2))/(m(n + 2))
< 1, f,(x) is decreasing for all x > (n(m — 2))/m(n + 2)), and lim,,__, (n(m —
2))/(m(n + 2)) = 1. This implies that f,(x) satisfies the non-increasing prop-
erty. With §, = n~* a direct calculation will verify condition (2.1). Apply-
ing Stirling’s formula
(5.1) lim,_, n'logf,(r) = lim,_, n~"log {[(1 + 2)/(1 + Az)]*+Dn/2gin2)
=271 4+ A) log[(1 + A)/(1 + )] + Alog<z].

Now (5.1) and (2.4) imply that condition (2.2) is satisfied and hence
lim,_, n~*log P(X, = r) exists and is given by (5.1).
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ExampLE 5.2. Let X, have a hypergeometric distribution where
P(X, =x) = QGG x=0,1,...,min(r,n),
=0 otherwise.

Further, rand N are positive integers depending on z such that lim,__ »n/N = 2,
lim,_ ,r/N =p, and n < r for all n. Wealsoassume 0 <p <1, 1< pand
2<1—p. Let g, =nr, where p < 7 < L.

Clearly (2.2) is satisfied. To check the non-increasing property, let
x > ¢, = nr and note we need only consider x < n. For sufficiently large n

p(X, = [x] + D/P(X, = [x])
={(r — [xD(» — XDY{(Ex¥] + DNV —r — n + [x] + 1)}
<(p—2)(r—2r) < 1
and the condition is satisfied. Now
lim, ., n7tlog {P(X, = [nz] + 1)/P(X, = [nrc])}
= lim,_, n~log ({(r — [nz])(n — [ncDY{([nz] + YN —r — n + [nc] + 1)}),
= lim,__n'log[{(p — Ac)(A — Ao)}{Ac(l —p — 2 4 47)})] =0,
and (2.1) is satisfied. Therefore (2.3) holds. Now it remains to show
lim,_ n~'log f,(nr) exists and to calculate it. We use the following: If
lim,__,a/n = a,lim,_ b/n= 8,0 < 8 < a < co where a, b are integers, then
it follows from Stirling’s formula that
(5.2)  lim, . n7'log (5) = Blog(a/f) + (a — B) log (a/(a — B))-
We wish to evaluate
lim, . nlog P(X, = [rc]) = lim,_., n log{(7)(.* &)/ (2)} -

n—oo

By (5.2)
(5.3)  lim,__n'log(i),y) = —rlog (Ar/p) — ((p/4) — ) log (1 — Zz/p),
(5.4) — lim,_, n*log (¥) = log 2 4 {(1 — A)/A}log (1 — 2),

(5.5)  lim,_ n7tlog (,Mgry) = (1 — o) log {2(1 — 2)/(1 — p)}
— {((1 = p)/2) — 1 + 7}log (1 — A(1 — =)/(1 — p)) .
Summing (5.3)—(5.5) gives
(5.6) lim,_, n'log P(X, = nr) = —zlog(dz/p) — ((p/A) — 7)log (1 — Az/p)
+log 2 + ((1 — )/2)log (1 — 2) — (1 —7)log (A1 —=)/(1 — p))
—{((@ =p)/2) = 1 + 7}log (1 — 21 —7)/(1 — p)) -
6. An application of large deviations. In this section we apply the methods

of Example 5.2 to determine the Bahadur exact efficiency of Mathisen’s
median test [9] with respect to Mood’s median test [10]. The Bahadur exact
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efficiency is the ratio of exact slopes; for a discussion and definitions pertaining
to Bahadur efficiency see reference [1].

LetY, < --- < Y;and Z, < --. < Z, be the order statistics of samples of
size j and k from absolutely continuous distributions with distribution func-
tions G(y) and G(z — #), respectively. For testing the null hypothesis H,:
6 = 0 against the alternative hypothesis H,: # > 0, Mood proposed the
statistic M, the number of items of the Z sample that exceed the median of
the combined sample, and Mathisen suggested the statistic S,, the number of
items of the Z sample that exceed the median of the Y sample. When the
sample size is even, the sample median is taken to be the average of the two
middle order statistics.

The test defined by M is asymptotically optimum [5, p. 88] when G is the
double exponential distribution. Exact slopes (times %) of M for the normal,
logistic and double exponential distributions have been tabulated by Wood-
worth [13]. Gastwirth [4] has shown that in the case of curtailed sampling,
the test based on S, always reaches a decision before the test based on M.
When the Pitman efficiency [11] of S, with respect to M exists, it is equal to
1 and hence does not indicate which test is preferable.

Letj=2*+4+1,j+k=N,k/[N=p,0< p< 1. Then S, = number of
timesZ, > Y., §=1,2,...,kand

6.1 PB(S,=1)=@O0" + DIGHRIG+1+ D), =01,k

=0 elsewhere.
TABLE 1
3 Exact slope of Mathisen’s test for normal shift alternatives

o\o 1/2 1/4 1/8 1/16
0.25 0.004928 0.003710 0.002169 0.001163
0.50 0.019176 0.01460 0.008590 0.004624
0.75 0.041152 0.03189 0.01898 0.01028
1.00 0.06839 0.05426 0.03282 0.01796
1.25 0.09804 0.07997 0.04949 0.02740
1.50 0.1269 0.1066 0.06755 0.03814
1.75 0.1526 0.1319 0.08588 0.04957
2.00 0.1737 0.1541 0.1030 0.06099
2:25 0.18%4 0.1715 0.1175 0.07131
2.50 0.2003 0.1842 0.1286 0.07983
2.75 0.2072 0.1925 0.1363 0.08612
3.00 0.2115 0.1979 0.1415 0.09058
3.25 0.2136 0.2007 0.1442 0.09302
3.50 0.2148 0.2021 0.1458 0.09444
3.75 0.2154 0.2029 0.1466 0.09517
4.00 0.2156 0.2033 0.1469 0.09550

oo 0.2158 0.2035 0.1472 0.09574
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Using the techniques of Example 5.2,
(6.2) lim,_,, — N~'log P(S, = Nr)
= —(1 —p)log2 — ologp + tlogz + (p — 7)log (0 — 7)
— [ —7—(1—p)2]log[l —z — (1 —0)/2]
—[r + (1 —p)2]log[z + (1 — 0)/2] .

Further, when 6 >0 obtains, S,/N converges in probability to
p(1 — G(—0)). In the following discussion we assume G is a symmetric distri-
bution function and hence p(1 — G(—0)) = pG(0).

If we denote the exact slope of S, by C,(6, p), then substituting pG(6) for =
in equation (6.2) yields, after some manipulation
(6.3) C.(0, 0) = Ph(2G(0) — 1) — K(p[26(8) — 1))
where A(x) = (1 + x)In(1 + %) + (1 —x)In(1 —x)and 0 < x < 1.

TABLE 2
3 Exact slope of Mathisen’s test for logistic shift alternatives
o\ 1/2 1/4 1/8 1/16
0.50 0.007633 0.005758 0.003371 0.001809
1.00 0.02854 0.02188 0.01294 0.006983
1.50 0.05774 0.04538 0.02727 0.01486
2.00 0.08954 0.07245 0.04447 0.02456
2.50 0.1194 0.09957 0.06263 0.03518
3.00 0.1449 0.1241 0.08013 0.04591
3.50 0.1651 0.1449 0.09579 0.05607
4.00 0.1804 0.1614 0.1090 0.06513
4.50 0.1915 0.1739 0.1195 0.07281
5.00 0.1993 0.1830 0.1276 0.07901
5.50 0.2048 0.1895 0.1335 0.08380
6.00 0.2085 0.1941 0.1378 0.08738
6.50 0.2110 0.1972 0.1408 0.08999
7.00 0.2126 0.1993 0.1429 0.09183
7.50 0.2137 0.2008 0.1443 0.09311
8.00 0.2144 0.2017 0.1453 0.09399
8.50 0.2149 0.2023 0.1459 0.09458
9.00 0.2152 0.2027 0.1464 0.09498
9.50 0.2154 0.2030 0.1466 0.09525
10.00 0.2155 0.2032 0.1468 0.09542
10.50 0.2156 0.2033 0.1469 0-09554
11.00 0.2157 0.2034 0.1470 0.09561
11.50 0.2157 0.2034 0.1471 0.09566
12.00 0.2157 0.2034 0.1471 0.09569
12.50 0.2157 0.2035 0.1471 0.09571
13.00 0.2157 0.2035 0.1471 0.09572
13.50 0.2158 0.2035 0.1471 0.09573
o 0.2158 0.2035 0.1472 0.09574
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Let S, = number of times Y, < Z,.,,, § = 1,2, ..., j where k = 2k* + 1.
Then a similar argument shows the exact slope of S, to be
(6.4) Cy0, p) = (1 — p)h(2G(0) — 1) — h([1 — p][2G(0) — 1])
=C/ 0,1 — p).
It is shown in the following paragraph that if G is a symmetric distribution
function and 0 < p < 1, then

(6.5) C,(0,0) > C,(6, 1 — p).
It follows from (6.4) and (6.5), under the same assumptions, that
(6.6) C,(6, 0) > C0: 0) -
TABLE 3
% Exact slope of Mathisen’s test for double exponential shift alternatives
6\p 1/2 1/4 1/8 1/16
0.50 0.02029 0.01546 0.009103 0.004902
1.00 0.05710 0.04485 0.02694 0.01468
1.50 0.09422 0.07658 0.04717 0.02611
2.00 0.1262 0.1059 0.06706 0.03784
2.50 0.1516 0.1309 0.08510 0.04907
3.00 0.1708 0.1509 0.1005 0.05925
3.50 0.1848 0.1662 0.1130 0.06803
4.00 0.1947 0.1776 0.1227 0.07526
4.50 0.2016 0.1857 0.1300 0.08096
5.00 0.2063 0.1915 0.1353 0.08529
5.50 0.2095 0.1954 0.1391 0.08848
6.00 0.2117 0.1981 0.1417 0.09077
6.50 0.2131 0.2000 0.1435 0.09238
7.00 0.2140 0.2012 0.1448 0.09349
7.50 0.2146 0.2020 0.1456 0.09426
8.00 0.2150 0.2025 0.1461 0.09475
8.50 0.2153 0.2029 0.1465 0.09510
9.00 0.2155 0.2031 0.1467 0.09532
9.50 0.2156 0.2032 0.1469 0.09547
10.00 0.2156 0.2033 0.1470 0.09556
10.50 0.2157 0.2034 0.1470 0.09563
11.00 0.2157 0.2034 0.1471 0.09567
11.50 0.2157 0.2034 0.1471 0.09569
12.00 0.2157 0.2035 0.1471 0.09571
12.50 0.2157 0.2035 0.1471 0.09572
13.00 0.2158 0.2055 0.1471 0.09573
13.50 0.2158 0.2035 0.1471 0.09573
14.00 0.2158 0.2035 0.1471 0.09574
14.50 0.2158 0.2035 0.1471 0.09574
15.00 0.2158 0.2035 0.1471 0.09574
o 0.2158 0.2035 0.1472 0.09574
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Hence, the more efficient of the two forms of Mathisen’s test uses the median
of the smaller sample.

Define for 6 > 0, fixed,

o0, p) = C,(0, ) — C,(6, 1 — p)
= (1 — 20)h(B) — ([1 — p1B) + h(0B)

where 8 = 2G() — 1 is fixed between 0 and 1. Now e(6,07) = e(f, 3*) =0
and #”(x) = (1 — x*)~' imply that e(f, p) is a strictly concave function of p for
every fixed § > 0- Hence 0 < e(0, p) forall0 < p < 3, for every fixed & > 0.

Tables 1—3 give the exact slope (times }) of Mathisen’s S, for various

2.25 |-

p=1/16

| 1 1 |
1 2 3 4

Fic. 1. Bahadur efficiencies for normal shift alternatives
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values of p < i corresponding to Woodworth’s tables [13]. The exact
Bahadur efficiency of the appropriate form of Mathisen’s test with respect to
Mood’s M is shown in graphs 1—3 and indicates for the normal, logistic and
double exponential distributions that M is preferable for values of p around
1 but the appropriate form of Mathisen’s test is preferable for the more
extreme values of p.

va |

0=1/16

| |
5 10 15

Fic. 2. Bahadur efficiencies for logistic shift alternatives
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p=1/16

l ] ]
5 10 15

Fic. 3. Bahadur efficiencies for double exponential shift alternatives

REFERENCES

[1] BanADUR, R.R. (1967). Rates of convergence of estimates and statistics. Ann. Math.
Statist. 38 303-325.

[2] CuernNoFF, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based
on the sum of observations. Ann. Math. Statist. 23 493-507.

[3] FELLER, WILLIAM (1957). An Introduction to Probability Theory and Its Applications. 1
(3rd ed.). Wiley, New York.

[4] GasTWIRTH, J.L. (1968). The first median test: A two sided version of the control
median test. J. Amer. Statist. Assoc. 63 692-706.

[5] HAJek, J. and SipAk, Z. (1967). Theory of Rank Tests. Academic Press, New York.

[6] Hopges, J.L. and LEHMANN, E.L. (1956). The efficiency of some nonparametric com-
petitors of the ¢ test. Ann. Math. Statist. 27 324-335.



192 TIMOTHY J. KILLEEN, THOMAS P. HETTMANSPERGER AND GERALD L. SIEVERS

[7
(8]
1%]
[10]

(1]
[12]

[13]

KroTz, J. (1965). Alternative efficiencies for signed rank tests. Ann. Math. Statist. 36
1759-1766.

Krotz, J. (1967). Asymptotic efficiency of the Kolmogorov—Smirnov test. J. Amer.
Statist. Assoc. 62 932-938.

MATHISEN, H.C. (1943). A method of testing the hypothesis that two samples are from
the same population. Ann. Math. Statist. 14 188-194.

Moob, A.M. (1954). On the asymptotic efficiency of certain nonparametric tests. Ann.
Math. Statist. 25 514-522.

NOETHER, G.E. (1955). On a theorem of Pitman. Ann. Math. Statist. 26 64-68.

SIEVERS, GERALD L. (1969). On the probability of large deviations and exact slopes. Ann.
Math. Statist. 40 1908-1921.

WoopwoRTH, G.G. (1970). Large deviations and Bahadur efficiency of linear rank
statistics. Ann. Math. Statist. 41 251-284.



