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LINEARIZED RANK ESTIMATES AND SIGNED-RANK ESTIMATES
FOR THE GENERAL LINEAR HYPOTHESIS'

By CHARLES H. KRAFT AND CONSTANCE VAN EEDEN
Université de Montréal

Linearized estimates, as functions of the ranks, are proposed for the
general linear hypothesis. These estimates can be computed after a
single ranking of the ‘‘centered” observations. The asymptotic distribu-
tion of the estimates is shown to be the same as the maximum likelihood
estimates for fairly general sequences of design matrices.

1. Introduction. The development of methods of estimation from ranks for
the parameters of the general linear hypothesis has Isroceeded rapidly since the
work of Hodges and Lehmann (1963) on estimates for one-sample and two-
sample problems. Univariate extensions of these estimates to k-sample problems
have been given by Lehmann (1963), and Bhuchongkul and Puri (1965); to
linear regression by Adichie (1967); and to regression on monotone functions
by Rao and Thornby (1969). Koul (1971) studied rank estimates for a wide
class of sequences of design matrices which are assumed to be perpendicular
to a vector of constants. He used an approximation theorem of Jureckova
(1969) for some of the asymptotic properties. In (1969), (1971) the present
authors utilized the theorem of Jure¢kova to study linearized versions of rank
estimates for one- and two-, sample problems. These linearized versions are,
in most cases, simpler to compute as well as asymptotically equivalent to the
non-linearized versions.

In the present paper linearized rank estimates are described for a sub-class
of the sequence of design matrices studied by Koul (1971). When Koul’s
estimates exist the estimates here can be considered as their linearized versions.
However, the proofs given here do not require their existence. Linearized
signed-rank estimates are given for an analogous sequence of designs and
supposing the observations have symmetric distributions. Koul (1969) has
studied estimates based on signed-rank statistics for more general sequences of
designs but with stronger assumptions on the distributions of the observations.

The sequences of design matrices considered here have, at least asymptoti-
cally, fixed rank. Thus, the results do not apply to sequences of designs in
which there are an increasing number of nuisance parameters as well as a fixed
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number of parameters of interest. Some of the recent results concerning rank
estimates for these more complicated designs can be found in Lehmann (1964),
Greenberg (1966), and Puri and Sen (1967).

Section 2 contains the assumptions and theorems concerning estimates based
on rank statistics. Section 3 contains the same for estimates based on signed-
rank statistics. The results of these two sections require certain initial estimates
and estimates of scale. Theorems establishing the existence and construction
of such estimates are given in Section 4. Section 5 contains the proofs of the
theorems in Section 2 and of those in Section 4 concerning estimates based on
rank statistics. Section 6 contains the proofs of the theorems in Sections 3
and 4 concerning estimates based on signed-rank statistics.

The basis of linearized estimates for a single parameter is the fundamental
theorem of Jureckova (1969). Section 7 gives a particular extension of this
theorem to multiparameter problems for rank-statistics and a multiparameter
extension of van Eeden’s (1971) analogue, for signed-rank statistics, of
Jureckova’s theorem.?

2. Linearized rank estimates. Suppose that, for each v = 1,2, ..., for an
n, X 1 vector of observations Y = (Y,*, ..., Y}»'), there exists an n, X
(p + ¢) design matrix, Z*, of known constants and a (p + ¢) X 1 vector g of
unknown constants such that the components of Y — Z*)8 are independently
and identically distributed as F(y/b) (b > 0) where F(y) is a completely speci-
fied distribution function. p and g will be fixed and limits will be as v — co.
(Super- and subscripts v will not be written).

The following standard reduction of the parameters will be convenient. For
the sequence of design matrices, Z, let Z — Z = (Z;; — n' 3,7, Z;;) and let
p be the rank of Z — Z. Then, if Z, — Z, is a set of p linearly independent
columns of Z — Z and Z, — Z, is the rest of the columns of Z — Z, Z — Z
can (after, if necessary, rearranging some of the columns) be written as
Z-2=Z,—-2,Z,— Z,) where Z, — Z, is of size n X p and rank p and
Z, — Z, = (Z, — Z))c, where c is a p X ¢ matrix. Hence Zg = (Z, — Z,) X
(B + cB) + (21181 + Zz B2) where § = (181” BY) COI‘l‘CSpOIldS to Z = (Z, Z,).
Let (Z, — Z))(B, + ¢B,) + (Z,B, + Z,B,) = (Z, — Z,)0 + 6, with 6, a vector
of constants and ¢ the parameter to be estimated.

The distribution function F of single observations will be assumed to satisfy
the regularity conditions of Hajek and Sidak [4], namely

2 We thank the referee for pointing out to us that Jureckova (1971) has recently obtained
extensions, to multiparameter models, of her theorem and used these extensions to find esti-
mates based on rank tests. Her conditions for rank tests are more general than those for rank
tests given here. The linearizations given here do obtain under her conditions.
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ASSUMPTION A.

(i) Aly) = dF(y)/dy exists and is absolutely continuous on (— oo, o)
(ii) the function ¢ (u) = — (f'/f)(F~*(u)) can be written as the sum of two
monotone functions each of which is square integrable on 0 < u < 1.

Let any two vectors u and v be called similarly ordered if (v, — u,)(v; — v,) =0
for all #, j. For the sequence Z of design matrices let z = Z, — Z,. Ttis sup-
posed that the sequence {z = (z{%')} satisfies

AsSUMPTION B.

. max, g, Zi; . )
() 2= . -0 j=1,.--,p,
i=1 Zij

(ii) —’lz—z’z — X where X is positive definite,

(iii) For each j, ji(ji # jis ji o = 1, -+ -, p) there exists a number 7, ; + 0
such that, for n > n,, z; and z; + 7, ; z; aresimilarly ordered, wherez,, - - -,
z, are the column vectors of z.

AssumpTioN C. It will be supposed that there exists a sequence 8, of initial
estimates of # which satisfies

() él<Y ; z0

(ii) P,{n¥@, — 6) e A} — P(A) for some fixed p-dimensional distribution P.

) = 0‘(YZ — 0 for all 6 and all @ > 0,

Note that C (i) is satisfied for the least squares estimates 4, and that, under
Assumption B (i) and (ii), C(ii) will also be satisfied if § y*dF(y) < co. In
Section 4 a class of designs is given for which a sequence 0, satisfying C can
be constructed from certain medians.

Define now an n x 1 vector

@.0) = {o(220)}

where R ;_,,. is the rank of the ith component of ¥ — zf among all n com-
ponents. A linearized rank estimate d will be defined by

s s b
(2.1) 0 =20, + %

FF

(# 27 P@(0))

where K,, = {} ¢, (u)du and where b is a consistent estimate of the scale
parameter b.
In Section 5 the following theorem will be proved.

THEOREM 2.1. If the components of Y — Zj have common distribution function
F(y[b), if F satisfies A, if z satisfies B, if 0, satisfies C and if b is a consistent
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estimate of b, then n¥(0 — 0), where 6 is given by (2.1), has asymptotically a
normal distribution with mean zero and covariance (b*|K, )X,

In order to find the asymptotic distribution of the estimate (2.1) when the
components of ¥ — Zp are independently and identically distributed with a
common distribution function G(y), the following assumption A, concerning
G(y) and assumption D concerning the initial estimate d, will be needed.

ASSUMPTION A,.

(i) Assumption A (i),

(ii) §5 po*(w)du < oco.
Let, for two distribution functions F, and Fy, K3, = {; @ (W), (W)du and

call two sequences of estimates 7, and /, G-equivalent if P{ni(|f, — #,|| > ¢}—0.
It will be supposed that the initial estimate 0, satisfies

ASSUMPTION D.

(i) @ < Zﬂ) = 01(12 — 0 for all # and all @ > O,

(i) if @ =0, 6, is G-equivalent to K}z’ z)~z' ®(0) for some distribution
function S satisfying Assumption A.

THEOREM 2.2. If the components of Y — Z have common distribution function
G(p), if F and S satisfy A, if G satisfies A,, if z satisfies B, if 0, satisfies D,
then, for 0 defined by (2.1), n¥(@ — 0) has asymptotically a normal distribution
with mean 0 and covariance

K cK,. P 2K, .c cK c?
(S-S B[] e
( ) KE'G KFF KSGKFF KFF K

where ¢ = Py-lim b.

Section 4 contains a method of constructing estimates b which are consistent
estimates of b if the components of ¥ — Z3 have distribution function F(y/b)
and for which ¢ can easily be found when the components of ¥ — Zp have
distribution G(y). Section 4 also contains examples of initial estimates 0,
satisfying Assumption D for wide classes of distribution functions G.

3. Linearized signed-rank estimates. Let now, foreachv =1,2, ..., Y=
(Y, -+, Y)Y beann, x 1 vector of observations, let Z* be an n, X (p,+¢1)
design matrix and let 8 be a (p; + ¢;) X 1 vector of unknown constants such
that the components of Y — Z® g are independently and identically distri-
buted as F(y/b) where F(y) is a completely specified distribution function. p,
and ¢, will be fixed and limits are as v — co. Super and subscripts » will not
be written.

Let p, be the rank of Z. Then Z can be written as Z = (x, x;), where x is
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a set of p, linearly independent columns of Z and x,= xd, wheredisap, x ¢,
matrix.

Let 8 = (B84, B/) correspond to Z = (x, x;) then ZB = x(B, + dp,). The
parameter to be estimated is ¢ = §, 4 dp,.

Note that, in Section 2, Z8 = (Z, — Z,, 1)(0,, - - -, 8, 8,)’, where (Z, — Z,, 1)
isthen X (p + 1) matrix consisting of the p columns of Z, — Z, and a column
of 1’s; this matrix (Z, — Z,, 1) is of rank p 4+ 1. The estimation procedure to
be given in this section can thus be used to estimate the parameter (4,, - - -,
0, 6,) of Section 2. This leads to two different estimates for (4,, -- -, 6,)
which, as will be seen, have asymptotically the same distribution if the
underlying distributions are symmetric.

The distribution function F of single observations will be assumed to satisfy

ASSUMPTION A’

(i) f(y) = dF(y)/dy exists and is absolutely continuous on (— oo, co)

(ii) ¢p(u) = @4((u + 1)/2) can be written as the sum of two square integrable
functions ¢,(u) and ¢,(u), where ¢,(u) is non-decreasing and nonnegative and
¢,(u) is non-increasing and nonpositive,

(iii) 1) = f(— ) for all y.
For the sequence of design matrices it will be supposed that x satisfies

ASSUMPTION B’.
max, g, X3

O o,
(il) n7'x'x — Z,, where Z, is a positive definite matrix,
(iii) for each pair (j, )(jy # jis Jis o = 1, - -+, py) there exists a number
T, 7 0 such that, for n > ny, (1.) x;;, (x5, + 7;,5,%:;,) = 0 forall 4, (2.) |x; | and
lle + rjljzsz[ are similarly ordered, where x;, - - -, x, are column vectors of x.

—0foreachj=1,...,p,

AssumpTiOoN C’. It will be supposed that there exists a sequence of initial
estimates f2, of u satisfying
Y — xp

) a(——
(ii) P (n¥(@, — p) € A) — P(A) for some fixed p,-dimensional distribution P.

) - ”I(Yt)l— 2 for all prandalla >0,

Let ¥ ,(z) be the n x 1 vector

Vo) = {o (5"1—‘1;%’-') sgn (¥ — x,u)i} ,

where R,,_,, ., is the rank of the absolute value of the i** component (¥ — xp);
of Y — xp among the absolute values of all its components and
sgnx =1 if x>0;
=—1 if x<0.
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A linearized estimate 4 of p will be defined by

(3.1) £ =+ Kb

FF

(" %)X W(ay),

where b is a consistent estimate of b.
In Section 6 the following theorem will be proved.

THEOREM 3.1. If the components of Y — Z have common distribution function
F(y[b) if F satisfies A’, if x satisfies B', if p, satisfies C', if b is a consistent esti-
mate of b, then nX(f — p), with i given by (3.1), has asymptotically a normal
distribution with mean 0 and covariance (b*/K ) =,

In order to find the asymptotic distribution of the estimate (3.1) when the
components of ¥ — Zg are independently and identically distributed as G(y),
the following assumption A,’ concerning G(y) and assumption D’ concerning
the initial estimate /i are needed.

ASSUMPTION A/’.

(i) Assumption A’(i),
(i) §5 05"(u)du < oo,
(iii) Assumption A’ (iii).

AssuMPTION D’.

Q) 2, (Y;xf‘> - #,(Yl— £ forall pandalla> 0,

(i) if 4 =0, g, is G-equivalent to K32 (x' x)~'x’' ¢4(0) for some distribution
function S satisfying A’.

THEOREM 3.2. If the components of Y — Z have common distribution function
G(y), if F and S satisfy A’, if G satisfies A, if x satisfies B, if j, satisfies D’
then, for fi defined by (3.1), ni(@i — ) has asymptotically a normal distribution
with mean 0 and covariance

(3.2) {&[1 - &TJF _Z_Ksi[l - cﬁ’j‘ + _cz_}zl—l
Kg‘G KF'F KSG KFF 'KFF KFF

where ¢ = P,-lim b.

Examples of estimates 5 which are consistent estimates of b when the com-
ponents of ¥ — ZS have common distribution function F(y/b) and for which
¢ can easily be computed when the components of ¥ — Z8 have common
distribution function G(y), are given in Section 4. Section 4 also contains
examples of initial estimates g, satisfying D’ for wide classes of distribution
functions G.

4. Initial estimates of ¢ and ; and estimates of the scaleparameter b. Initial
estimates. Perhaps the two most well-known choices for initial estimates of
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6 and p are those corresponding to the mean and the median. The resulting
relatively efficiency of the linearized estimate can be found from Theorem 2.2
(resp. Theorem 3.2) if it is known that the initial estimate satisfies D (resp. D’)
for some ¢,. Identifying such initial estimates 6, (resp. f,) and the corre-
sponding ¢ is the purpose of the following four theorems which will be proved
in Section 5 for f, and in Section 6 for j,.

THEOREM 4.1. If the components of Y — Z§ have common distribution function
G(x), where G satisfies A, and has a variance, if z satisfies B (i) and (ii) then
0, = (2'z)7' 2’ Y satisfies D with ¢4(u) = G~'(u).

A construction of an initial estimate 4, corresponding to the median can be
most easily described for replicated designs. Suppose Z’' = (Z,/,Z,/, ---,Z,))
where, for each i, Z, = Z, where Z,is a k X (p + ¢g) matrix. Let z,spanZ, — Z,
so that z/z, > 0. Then z, is k X p so that the total number of observations is
nk. For simplicity suppose that the k rows of z, are distinct. Then the n ob-
servations corresponding to a given row in z,are a sample from a population
with the same location (If z, has some equal rows there will be available more
observations for a given “row”) Let m = (m,, m,, - - -, m,)’ be the medians of
the observations corresponding to each of the k rows of z,.

THEOREM 4.2. If the components of Y — Zj have common distribution function
G(x), where G(x) satisfies A, and has a positive density at its median, then 0, =
(20'20)™" 2, m satisfies D with S the double exponential distribution.

The corresponding statement for an initial estimate, based on the mean, of
p is Theorem 4.3.

THEOREM 4.3. If the components of Y — ZS have common distribution G(x),
where G(x) satisfies A, and has a variance, if x satisfies B’ (i) and (ii), then
£, = (X'x)71 X' Y satisfies D' with ¢g(u) = G((u + 1)/2).

For an initial estimate £, based on medians, consider again an n-times
repeated design matrix. Letx = (x,/, ---, x,’)’ with x, a k X p, matrix and
X/xy>0. Lett=(t,t, ---,t,) be the medians of the observations corre-
sponding to each of the k rows of x,.

THEOREM 4.4. If the components of Y — Z 8 have common distribution function
G(x), where G satisfies A,’ and has a positive density at its median, then fi, = (x,'x,)™"
x,'t satisfies D' with S the double exponential distribution.

Estimates of the scale parameter. Estimates of the scale parameter b can be
obtained as follows. Most measures of dispersion D, defined for distribution
functions H, H, on (— oo, o), have the following properties

(i) bD(H(y)) = D(H((y — a)/b)) for all a and all b > 0,
(ii) D(H,(y))— D(H(y)) whenever sup, |H,(y)—H(y)| —0and D(H(y))< co.
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Given such a measure of dispersion D, b, in Section 2, can be taken as
D(F,(y))/D(F(y)), where F,(y) is the empirical distribution function of the
components of ¥ — z0, and F(y) is the distribution function from which
¢p(u) is computed. Then, if the components of ¥ — Z8 have common distri-
bution F(y/b), if 0, satisfies C and if D(F(y)) < co, b is a consistent estimate
of b. If the components of ¥ — Z8 have common distribution G(y), if 6,
satisfies D, if D(F(y)) < oo and D(G(y)) < oo then, in Theorem 2.2, ¢ —
D(G(y))/D(F(y)). The same remarks hold for estimating b in Section 3. D
can be taken, for instance, as an interpercentile range or, if the observa-
tions have a variance, as the standard deviation.

In [11] some numerical values of the relative efficiencies of linearized esti-
mates are given; these relative efficiencies are computed as the ratio of the
Cramér-Rao lower bound (§} ¢,*(u)du)~, for the estimation problem, to

Koo 1 _oKn] | 2Mose [} K], 0
KE’G ‘KFF KSG ‘KFF ‘KFF ‘KFF

These efficiencies are given in [11] for several choices of F and G, for b as the
standard deviation or as the interquartile range, and for both choices of the
initial estimate given above.

5. Proof of Theorems 2.1, 2.2, 4.1, and 4.2.

ProoF oF THEOREM 2.1. Since b is a consistent estimate of b, it is sufficient
to prove that, for the estimate (2.1) with b replaced by b, the distribution of
n¥(@ — ) converges to a normal distribution with mean zero and covariance
(B/K ) 5.

The asymptotic distribution of ni(d — ) with b replaced by b can be found
as follows.

(a) For ¢ = (¢, -+, ¢,) # 0and 6 = 0 it follows from Hajek and Sidak
[4] (page 163) that (n~#h/K,,)c’z’®,(0) is asymptotically normal with mean
zero and variance (b*/K,,)c’Zc provided that (c’z’)’ satisfies B (i) and B(ii).
That it does if z satisfies B(i) and B (ii) is immediate upon noting that, for

(I/n) max, ., (X5, ¢;25)°
(A/n) X (X2=r¢52)

B (ii) implies that denominator converges to ¢’Zc > 0. Hence, by taking
¢=(,---,0,1,0,-..-,0), it follows from B(i) that n~! max,_,_, z% approaches
zero for each j. Butmax,_,_, (32, ¢,;z;;)* < M?p* max,_;_, max,_,., z%;, where
M? = max, ;¢ .

(b) It follows from C (i) that 6(Y — z0) = 6(Y') — 6 so we can suppose that
0 = 0. If 9, is defined by (b/K,,)(z' z)7'’®,(0) it is immediate from (a) nid,
is asymptotically normal with mean 0 and covariance (b*/K,, ).
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(c) Assummg 6 = 0it remains to show that n}||f — || converges to zero and
hence that #}d and n}, have asymptotlcally the same distribution. However

(5.1 ni||d — 6, = || né, + (zz) 2D (6 —z’@F(O)}'l

By C(ii) a number d can be chosen so that P{||f,|| < dn~%} is arbitrarily close
to one for all sufficiently large n. Hence the right-hand side of (5.1) will be,
with arbitrarily high probability, bounded by

SUP) ¢ san—t

nt —|— K (z 2) Mz @p(§) — z

which can also be written as

FF

Further, by an extension of the theorem of Jureckova [6], (see Section 7)

SUP) ¢ sdn—t

MHEDL(E) — Z0,(0) + Rerzzgy

SUDP| 11 <an—t

converges to zero in probability if # = 0. Since n(z’z)~* — Z7, it follows that
ni||@ — 6, — 0. This completes the proof.

Proor oF THEOREM 2.2. As in the proof of Theorem 2.1, we can suppose
that 6 = 0. By the extension of the theorem of Jureckova [6] (see Section 7)
we have, for § = 0,

(5.2) Po{supyeican—tl|nHZPp(§) — 2@ (0) + K, 2'2E)|| > ¢} — 0.

If Oy = (1—c(Kpo/Kpr))0, + (c/K F)(Z 2)712'®4(0) and 0§, = K}(z'2)"'2'@(0)
it follows from (5 2) and the fact that 5 — p, € as in the proof of Theorem 2.1,
that P,{n||0,, — || > ¢} — 0. Further, by Assumptlon D, Pa{n*llmﬁ — 0>
¢} — 0. Hence the asymptotic distribution of ##4 is that of n#f,,, where

b, = (1 — c%) (ZI'{Z) ZO0) + 5= (7977 D,0)

FF SG
It follows from Hajek and Sidak [4] (page 163) that the asymptotic distri-
bution of n*f,,, and hence that of n#f, is normal with mean 0 and covariance
given by (2.2). [J
Proor oF THEOREM 4.1. Obviously, 0, satisfies D (i). Further G~'(u) is non-

decreasing in u and {} (G™'(u))* du = §*2y*9(y) dy < oo so that § satisfies A if
G satisfies A, and has a variance. Further it follows from Hajek and Sidak

[4] (page 160) that (z'z)~'2’'®@(0) is, if & = 0, G-equivalent to
(Z'2) 72 (ps(G(Y))s -+ -, 05(G(Y,))) = (2'2)7'2'Y .
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Since K, = 1 the result follows.
For the proof of Theorem 4.2 the following lemma is needed.

LemMA 5.1. If the components of Y — z0 have common distribution function
G(x), where G satisfies A, and has a positive density at its median 7, then, for
0 = 0, each median m; is G-equivalent to y + n~'Kg}d; where S is the double expo-
nential distribution and where d; is the sum of + 1’s according as the observations
corresponding to the jth row of z, are =7).

Proor. By applying Markov’s inequality conditionally it follows that it is
sufficient to show that, assuming 7 = 0,

ga{[né <Zg(O)mj _ il'm m, } 1,0 since Ky, = 29(0) > 0 .
n

Let n;* be the number of observations corresponding to the jth row of z, which
are between O and m;. Then d; = + 2n,;* according as m; = 0. The conditional,
given m;, distribution of n;* is B(n/2, p;) where p; = |G(m;) — G(0)|/G(m;).
Hence

0,
&o{n| 2000m; = %5 m} = m20@m| — p1t + 2,01 = p)
which can be written as
nm,? fo0) - |G(m,) — G(0)| . G(0) Pt -,
R A R 0] S

Since n*m; has an asymptotic distribution and |G(m;) — G(0)|/Im;| — ., 9(0)

the result follows.

Proor oF THEOREM 4.2. Since, for the double exponential distribution,

ps(u) =1 if u>4%;

= —1 if u<i.
®,(0) is a vector of +1’s according as Y, = med(Y,, ---, ¥,,). Letting
0’ = (0,, -+, 0,), with d, as in Lemma 5.1, it follows from the lemma that

4, is G-equivalent to [note that z'(y, - - -, 1)’ = (0, - - -, 0)'] K53 ((2,/2,) 7}/n)z,'d.
However z,’0 = z’A (see Section 4) where A is an nk X 1 vector of +1’s
according as Y; = 5. The conclusion of the theorem will follow if it is true
that

(5-3) (nk)~H|2/(A — @5(0)[| —5,0 -

From Hajek and Sidak [4] (pages 61 and 160) it follows that the conditional,
given Y, expectation of the square of each element of z’/(A — ®(0)) is bounded

by

nk 2
i=1Zij »

4{# of Y, between 7 and M}
nk
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where M = med(Y,, - --, Y,,). Since (nk)™* 3 ¥, 2}, — Z,;, (5.3) and the theo-
rem follow.

6. Proof of Theorems 3.1, 3.2, 4.3, and 4.4. The following proofs of Theorems
3.1 and 3.2 are the analogues for signed rank statistics to those of Theorems
2.1 and 2.2 for rank statistics. Accordingly they require a linearization
theorem for signed rank statistics. Such a linearization theorem has, for
p, = 1, been given in [16]; for an extension to p, > 1 see Section 7.

Proor oF THEOREM 3.1. Since 5 is a consistent estimate of b, it is sufficient
to prove that, for the estimate (3.1) with b replaced by b, ni(2 — ) has
asymptotically a normal distribution with.mean 0 and covariance (b*/K )X, .

The asymptotic distribution of n#(4 — p) with b replaced by b can be found
as follows. .

(@) Forc= (¢, -++,¢,) #0 and ¢ = 0, it follows from Hajek and Sidak
[4] (page 166) and the Assumptions B’ (i) and (ii) that (n~tb/K,,)c'x'¥ ,(0) is
asymptotically normal with mean 0 and variance (b*/K,)c’'Z,c.

(b) It follows from C’(i) that (Y — xg) = fi(Y) — g so we can suppose
¢ = 0. With g, defined by (b/K,,)(x'x)"*x'¥ ,(0) it follows from (a) that ntg,
has asymptotically a normal distribution with mean 0 and covariance
(BYK pp) 2

(c) Assuming p = 0, it remains to show that n}||@ — f,|| converges to zero.
However

wa — = [mgs + 2 T () — X

FF

so that, using Assumption C’ (ii) it is sufficient to show that

ni {x’WF(G) X (0) + ”xx&} L0 if p=0.

(6.1)  SUPyiigan—t

(6.1) follows from the linearization theorem for signed rank statistics proved
in Section 7 (see also [16]).

ProOF OF THEOREM 3.2. As in the proof of Theorem 3.1 we can suppose
that 4 = 0. Let

. K,
Loy = <1 — CK )#1 + = (x’x) x'W .(0)

FF F

(x'x)"1x'¥ (0)

™

01

‘S:;

1
Ko
( ) (G2 ) + 2 (R L0)

SG F'
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then it follows from (see Theorem 7.2)
(6-2)  Pefsupyeycan-slln ™ {(Tr(€) — ¥ We(0) + KpoX'xE}|| > ¢} — 0

and the fact that b —p, € that the asymptotic distribution of ngi is the same
as that of nigi,. From Hajek and Sidak [4] (page 166) it follows that the
asymptotic distribution of nt,, is normal with mean 0 and covariance given
by (3.2).

PROOF OF THEOREM 4.3. Obviously g, satisfies D’ (i). That S satisfies A’
follows from the fact that G™((u + 1)/2) is non-decreasing and nonnegative,

55[6“‘ <u “ZL I)T du = §2 y(y) dy‘< oo

and that symmetry for G implies symmetry for S.
From Hajek and Sidék [4] (page 166) it follows that (x'x)"'x'W(0) is, if
¢ = 0, G equivalent to
(X)X ($5(2G(Y)) — 1), -+, §(2G(Y,) — 1)) = (¥x)"X'Y .
The result then follows from the fact that K, = 1.

Proor oF THEOREM 4.4. Obviously 4, satisfies D’ (i) and the double expo-
nential distribution satisfies A’.
To prove D’ (ii) it needs to be shown that, if p = 0,

P8 51 — L ()X (O)) |, 0.
KSG
Let ¢; be the sum of +1’s according as the observations in the jth row of

x, are =0, lete = (¢, - - -, ¢,)’, then X¥¥(0) = x,'c and

P ), — 751“ () W (O) = M sy (e f«» )

Hence it is sufficient to prove that

6.3) n'&, {(ntj — Eg_t(_))—e’)z t; } —p 0

and (6.3) follows, as in the proof of Lemma 5.1, from the fact that the
conditional, given ¢; distribution of 1¢,(2,/|t,]) is B(in, p;) where
p, = 160) = GO)|
G(t)
7. An extension and an analogue of a Theorem of Jureckova [6]. The following
theorem is an extension to more dimensions of Theorem 3.1 of Jureckova [6].

THEOREM 7.1. If the components of Y have common distribution function G(x),
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if F satisfies A, if G satisfies A,, if z satisfies B, if
Ry zp_n
Sj(é) =2t Z;;Pr (YT_;——llﬂ)
then, foreachj=1, ---,p,
(7.1) lim,_,P{sup, Isdn—élSj(S”—*) —8;(0) + Kpgn 37 6 300, Z;Zy| >e} =0
for each d > 0 and each ¢ > 0.

Proor. For p =1Theorem 7.1, isa special case of Theorem 3.1 of Jureckova
[6]. In the following it will be supposed that p> 1L

The proof will be given for j = 1. As ¢,(u) is the sum of two monotone
square integrable functions it is sufficient to prove (7.1) for the case where
¢ p(4) is non-decreasing. The proof consists of two parts. It will first be shown
that, under A and B (i) and (ii), for any fixed set of r points (§,, ..., &%),
k=1,...,r

(7.2) P{n~}|S,(§®¥n~t) — §,(0) + Keon 310,86 Nt 1252y S ¢
foreach k=1,...,r}>1.

Jureckova [6] proves (7.2) for p = 1 in her Lemmas 3.1—3.8. That (7.2)
holds for p > 1 can be seen by noting that JureCkova’s lemmas 3.1—3.8
hold for S,(én~?) if z satisfies
(7-3) n~lmax, g, zi; — 0 foreachj=1,...,p

ln—l ?:1 Z?il é M
for each j =1, - - ., p where M is a positve constant.

Then (7.2) follows from the fact that (7.3) is implied by B (i) and (ii).
In the second part of the proof it will be shown that for each d > 0 there
exists a set of r fixed points ¥, k=1, .-, r such that, for n > n,,
(7.4) [n4Sy(E%nY) — §,(0) + Kpgn™ 206" Dhoazazay S ¢
foreach k=1,...,7r]
= [supy ¢ <atHSi(En7Y) — 8$i(0) + Kpon™ 30506 Xher ZaZa| < 277%] .

The theorem then follows from (7.2) and (7.4).
The set of points §&#, k = 1, .- ., r satisfying (7.4) can be found as follows.
By B(iii) there exists, for each j = 2, ..., p, a number y; # 0 such that, for

n> n,
(7.5) (Zip — Zip) (@i — Zig + 7420 — z;;) = 0 for all i, i, .

(For simplicity of notation the first subscript on 7, ; is omitted).
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By the transformation

(7.6) n= 6 — X5
J
nl g é. l: 2, . ,p
T

S(én~) can be written as

S ™) =get 21120 Pr <Ryi_n_t(z“’“+2f=2"i1+7,z’il)’m>
T de =141 .
n+41

By (7.5) and Theorem 2.1 of JureCkova [6], S,(yn~?) is, for n > n,, for
fixed values of ,, - - -, m;_1, 9;,,, -, 9, With probability one, a non-increasing
step function of 7, (j=1, ..., p). Now choose the r fixed points £* as
follows. Let C and ¢ be fixed positive numbers. Let R be an integer and let
r = (2R + 1)*. Dividethecube —C <9, < C (j=1, .., p) into (2R)? cubes
by dividing each axis into 2R equal pieces and choose (2R 4- 1)? points 5*
on the corners of these cubes. These (2R + 1)* points »* define, by (7.6),
(2R + 1)» points £*. By choosing R in such a way that

(o

1
(7.7) Kl n azh- =e

R
C
— = alll=2,~.-,
R_E ?

1
K pel n 2itm1Za(Za + 1iZa)

these points £ satisfy, for n > n,,
(7.8)  [nHSUEWn™Y) — $1(0) + Kegn™? 7, 6% Dkazazy| < ¢
foreachk =1, ...,7]

=[sup,,ﬁ|§0n""’[sl(6n"’f) = 810) + Kpen™ 17, &, Xi1 20z S 2770
j =1, ... P
That (7.8) holds if R satisfies (7.7) can be seen by using the above mentioned
monotonicity of S, (yn~*) and by using the fact that (see also Jurec¢kova [6])
if, for a monotone function h(¢) of one variable, |h(&) — mé| < ¢ for & = &,
and for § = §,(§, < §&,), then sup, ... |h(§) — m&| < 2¢ provided |m|(§,— &) <e.

That R can, for n > n,, be chosen such that (7.7) is satisfied can be seen as
follows. Let

7= MaXeg g7yl
0 = max,.;.,|Z,, where & = (Z,)) ,
then, by B(ii), there exists », such that for n > n,
ntyr 22 <20,
7! Dt za(Za + 1iza)l < 20(1 + 1),
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so that, by choosing R such that

R> [Krel26C(1 4 1) ,
B

(7.7) is satisfied for n > n,.

Further (7.4) follows from (7.8) by choosing 4 such that
(7.8) (D& < @] =7 =C forall j=1,...,p]
and a d > 0 satisfying (7.9) is given by

4 = C [min,_;,7,[ .
1+[min,g; 7,
The next theorem is a linearization theorem for signed rank statistics and
is an extension of Theorem 3.2 in [16].

THEOREM 7.2. If the components of Y have common distribution G(x), if F
satisfies A, if G satisfies A,' if x satisfies B', if
7 RlYi‘Zf=1zilfll
T(§) = ZiaXi9r <—‘—"~) sgn(Y; — 2o xu€,)
n+ 1
then, foreachj=1, ..., p,
(7.10)  lim, ., P{supyes,n~HT(En7%) — T4(0)
+ Kpen™ 201 & Dl XXy > e} =0

for each d > 0 and each ¢ > 0.

y—00

Proor. The following proof is analogous to the proof of Theorem 7.1. For
p.= 1 the theorem is a special case of Theorem 3.2 of [16]and in the following
it will be supposed that p, > 1. The proof will be given for j = 1. As ¢,(u)
is the sum of two square integrable functions, one non-decreasing and non-
negative, the other non-increasing and nonpositive, it is sufficient to prove
(7.10) for the case where ¢ ,(u) is non-decreasing and nonnegative.

It can be shown, analczgously to JureCkova’s Lemmas (3.1)—(3.8) and using
the results of Hajek and Sidak [4] (page 219-221) that, under the assumptions
A’, A/ and B’ (i) and (ii), for any fixed set of points ¥, k =1, ..., r,

P{n_é'Tl(S(k)n_t) — T,(0) +Kpent 37, & Nt Xux,; S ¢
foreach k=1,..-,r}—>1.

Further, by B’ (iii), there exists, for each j =2, ..., p;, a number y; such
that

(7.11) 1. xy(xy + 7;%;) =0 forall i,
20 (el = X)X + 75%05] — % + 75%,;0) 20 forall 4, 4, .
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By the transformation (7.6) T,(én~t) can be written as

R - P
i 1¥i=n— @5+ B]_gza+7 25001
Tyt = Xy xu¢1~*< .

n41
sgn(Y; — mH(x, 7 + 20s (X + 7i%)7)

and it follows from (7.11) and Theorem 3.1 in [16] that, for n > n,, T, (yn~?)
is, for fixed values of #,, -+, 9;_1, 941, * -+, 1, With probability 1 a non-
increasing step function of »; (j=1, ---, p,).

The rest of the proof is identical to that of Theorem 7.1.
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