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SENSITIVITY OF RAKED CONTINGENCY TABLE TOTALS
TO CHANGES IN PROBLEM CONDITIONS

By B. D. CAUSEY
Bureau of the Census

This paper describes a way of investigating how the entries in a
“‘raked”’ contingency table—one based on a given contingency table but
having row and column totals equal to specified quantities in such a way
as to minimize ‘‘discrimination information”’ between the two tables—
vary as functions of the entries of the original table and the quantities
to which the row and column totals of the ‘‘raked’’ table are constrained
to be equal.

1. Introduction. Suppose that we have a p X g contingency table with given
entries n(i, j), i=1,---,p,j=1,---, ¢, and that we find a corresponding
set of (noninteger) entries x(i, j) satisfying 3, x(i, j) = r(i) and }; x(i, j) =
c(j) for given r(i) and ¢(j). In practice we do not determine x(i, j) exactly
but use the fact [2] that x(i, j) = lim,__, z(i, j, k)—where, letting z(i, j, 0) =
n(i, j), v(i, k) = 33, 2(i, j, k), and w(j, k) = 33, z(i, j, k), we have for k odd
2(i, j, k) = z(i, j, k — 1)r(i)/v(i, k — 1) and for k even z(i, j, k) = z(i, j, k — 1) X
c(j)w(j, k — 1), k=1,2, ... We refer to the procedure of iteratively com-
puting the quantities z(i, j, k) from the quantities z(i, j, k — 1) as “raking”.
We may approximate the quantities x(i, j) as closely as we like by doing a
sufficiently large number of iterations. The chief topic of this paper is investi-
gation of the behavior of the quantities x(, j) (available only by approximation)
as functions of changing quantities r(i), ¢(j), and n(i, j). The investigation
described in this paper began as an attempt to estimate the variance of the
quantities x(i, j) as induced by variance in the quantities n(i, j); we deal with
this particular question in Section 3.

Letting u and v denote the grand totals 3 3 n(i, j) and }; r(i) respectively,
the quantities x(i, j) have the property [2] that for y(i, j) = x(i, j) the discrimi-
nation information function )3} y(i,j) log (uy(i, j)/vn(i, j)) is minimized,
subject to 3, y(i, j) = r(i) and 3, y(i, j) = ¢(j). It may be shown that x(i, j) =
a(i)b(j)n(i, j) for some quantities a(i) and b(j), so that our basic problem boils
down to investigating changes in the quantities a(i) and b(j) as functions of the
quantities (i), ¢(j), and n(i, j).

2. Basic problem and solution. We now allow the quantities r(i), c¢(j), and
n(i, j) to be given as known (noninteger) differentiable functions (i, ), ¢(J, ?),
and n(i, j, t) of a scalar ¢ in a neighborhood of ¢+ = 0; we must always, of
course, have 33, r(i, t) = 3}, c(j, t). We abbreviate r(i, 0), ¢(j, 0), and n(i, j, 0)
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to just r(i), ¢(j), and n(i, j), and denote the (known) derivatives dr(i)/dt, dc(j)/dt,
and dn(i, j)/dt evaluated at ¢t = 0 by R(i), C(j), and N(i, j).

We know that the products a(i)b(j) are unique. In order that the quantities
a(i) and b(j) may all be uniquely determined, we introduce the constraint
(1/p) ¥ a(i) = (1/g) X b(j). Suppose that a(i) = a(i, 0) and b(j) = b(j, 0) have
been explicitly found corresponding to t = 0; we let A(/) and B(j) denote the
(unknown) derivatives of a(i, f) and b(j, ) evaluated at t = 0. We thus may
obtain

(2.1) 0 = (1/p) X2 A() — (1/9) X2 B(j) -
Also,
(2.2) R(i) = A()(Z,; b(j)n(i, J)) + a(i)(Z; B(j)n(i, j))
+ a(@)( 2, b()ING, J)) » i=1,..-,p.

Rearranging (2.2), multiplying it on both sides by a(i)r(i) for i=1, ---, p,
adding (2.1), and in general letting d(h, k) = 1 for h = k and 0 for h + k,
we obtain

(@@/r)R(E) — a(i)(Z; bGINE 1))
(2.3) = 2 (d@ 1) + (1p)Ad) + X, (@(@)n(, j)[r(D)
— (1/9)B(j) , i=1..p.
Likewise we may obtain (this time subtracting (2.1))

b))/ DINCG) — bUNZ: a(DN(, /)
(2.4) = i (@*()n(E, Ple()) — (1/p)AG)
+ 2,0, ) + (19)B(J) j=1 9.
Thus we have a linear system of p 4 ¢ equations in the p 4 ¢ unknowns A(j),
i=1,.--,p,and B(j),j=1, - - -, g. Once having found these, we easily have
that X(i, j)—i.e. dx(i, j)/dt at t = 0—equals A(i)b(j)n(i, j) + a(i)B(j)n(i, j) +
a(i)b(J)NG, j)-

The coefficient matrix M does not depend on the problem derivatives, so
that one may find its inverse M, or, better yet, transform it to a new matrix
L for use in conjunction with the Crout procedure [1] for solving simultaneous
linear equations, and then use either M~ or L in conjunction with as many
sets of R(i), C(j), and N(i, j) as we like, to find the corresponding quantities
A(i) and B(j).

We may express M in block form as ({3} %G:3) where (1) M(1,1) is a
p X p matrix with entries 1 + 1/p along the diagonal and 1/p off, (2) M(2, 2)
isa g X g matrix with entries 1 + 1/q along the diagonal and 1/g off, and (3) in
the particular situation where the quantities a(i) (b(7)) are all the same the aver-
age of the entries in M(1, 2) (M(2, 1)) is exactly zero, while when these quanti-
ties are not all the same these entries should tend to be centered around zero.



658 B. D. CAUSEY

3. Corollary results. For most cases of interest, the functions r(i, t), c(j, ?),
and n(i, j, t) should be simply linear, with at most one or two of them varying
in terms of ¢ in a simple fashion such as r(i, ) = r(i) + t. We may make a
first—order approximation that for a change 4 in ¢ from 0, x(i, j) will change
by an amount X(i, j)d. If ¢ can be construed as a random variable with mean
0 and variance v, and f is a differentiable function of the quantities x(i, j), we
may estimate Var f by

df\* _ daf C G\
v(;ﬂ) = U<ZZ dx(i, J) X(”])> :
more generally, if #(k), k = 1, - - -, m(?), is a series of random scalars defined
like ¢, and f(h), h =1, --., m(f), is a series of functions defined like f, we
may estimate Cov ( f(h), f(H)) by

2k Zxdf(h) AH) coy (t(k), t(K)), with dafth) _ 7,3 dfth) dx(i, j)

di(k) di(K) dt(k) Tdx(i, j) dt(k)

One can easily investigate special cases of interest such as the quantities #(k)
corresponding singly to the quantities n(i, j), the quantities f(h) corresponding
singly to the quantities x(i, j), and/or the covariances Cov (n(i, j), n(1, J)) (cor-
responding to Cov (¢(k), t(K))) based on simple random sampling.

4. Generalizations. The ideas of this paper extend in principle from two-way
contingency tables to tables of higher order, where marginal sum constraints
(corresponding to r(i) and c(j)) may be at any level.

Also, in Section 2 we may consider a series of scalars #(1), - - -, #(m(?)), and
solve for second derivatives d*a(i)/dt(k)dt(K) and d*b(j)/dt(k)dt(K ) after finding
the first derivatives. Using this information, the first-order estimates of Sec-
tion 3 may be replaced by second-order estimates. Such derivatives may be
found in principle to as high an order as we like, although beyond even the
first order it might not be worthwhile to do all the necessary computations.
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