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LIMIT THEOREMS FOR MARKOV TRANSITION FUNCTIONS!

By RICHARD Isaac
Herbert H. Lehman College and Graduate Center, CUNY

New L, and pointwise limit theorems are proved for the transition
functions P»(x, E) of a Markov process with o-finite invariant measure
7 satisfying a recurrence condition. Also given are related results about
the operators on functions and measures induced by these transition
functions. The method depends upon the application of martingale
theorems, and the principal restriction concerns the structure of a
certain ¢-field.

1. Introduction. We study limiting behavior of stationary transition proba-
bilities P"(x, E) for Markov processes with o-finite stationary measure =,
satisfying

(1.1) m(E) >0 implies P{X, e E infinitely often |X, = x} =1
a.e. (m).

The background for our investigations is that of e.g. [5], [11]. Specifically,
the following ideas are needed: The process {X,,, n > 0} is defined on a mea-
surable space (2, X) and can be embedded in a process {X,, —co < n < + co}.
7 and the transition probabilities induce a measure 7, on bilateral sequence
space {, consisting of the sample sequences w = (- - -, x_j, X, X;, - - -), and =, is
invariant relative to the 1 — 1 invertible shift 7. (1.1) implies T is conser-
vative and ergodic relative to z,. For each fixed n, = is the projection of =,
on x,-coordinate space.

The following condition (condition of T. E. Harris) has been considered in
much recent work [11].

(1.17 Same as (1.1), except that “a.e. (x)” is replaced by “forall x ¢ Q.”

(1.1") implies indecomposability of the process in the sense of Doeblin, and
is a considerable strengthening of (1.1). Pointwise limit theorems (see Cor-
ollary 2.2) were proved for P*(x, E) under (1.1’) in [7].

In this paper we present pointwise limit theorems as well as certain L, limit
theorems for P*(x, E). Related results obtained give information about the
iterations pP" and P"g on certain classes of measures and functions re-
spectively (the operators P" are defined in (2.6) and (2.15). Other than (1.1)
or (1.1'), our conditions involve restrictions on the left tail o-field r__, of the
process (defined below). Since limiting behavior of P*(x, E) as n — + oo is
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determined by the structure of z__, it is suggestive to think of the asymptotic
future determined by the asymptotic past.

Letr_., = N,z (-, X_,_1» X_,) where ZZ( +) is the o-field generated
by the given set of variables. Similarly 7, = .50 % (X,, X,41> - - -)- These
are the left and right tail o-fields of the process {X,, —co < n < + co}. Under
(1.1") it is known, [8], that r,, = r__, = r and ¢ is X,-measurable and atomic,
the atoms consisting of a finite number of cyclically moving classes. Although
this fails to be true under (1.1), alternative behavior seems to be of a very
limited nature (in a forthcoming article we hope to analyze these possibilities).
For these reasons, (2.1) and (2.2) are more general than one might at first
think, for if r__, is atomic and consists of a finite number of cyclically moving
classes, behavior of P*(x, E) can be completely described by restriction to
each atom and consideration of the related aperiodic process for which (2.1)
or (2.2) holds.

The martingale method of this paper appears to be new in examining these
questions; see also [6].

Let A, = &(---,X_,_,, X_,) and let f be integrable. Set f, = E(f|4,).
Then TA, = A,_, and a simple computation using the invariance of z, shows

Tf, = T*E(f1A,) = B(T*fIT~*A,) = E(T*f14,) -
Moreover, setting f=1 Xoe B> the indicator of X, ¢ E, n(E) < oo, the Markov
property yields
(1.2) T, = ET"f| -, Xy, Xo) = E(ly 5| X)) = PY(X, E) .
Property (1.2) suggests a study of the backward martingale f, as a means of

learning about P*(x, E). Observe that z(w: T"f,(0) < y) = n(x: P*(x, E) < )
for all real numbers y.

LeMMA 1.1. For any integrable f, the sequence f, = E(f|A,) is a martingale
with respect to the decreasing sequence of o-fields A,,. If t__, is o-finite, lim,_,__, f,=
E(f|r_.)a.e. (r,). If Aer_,, is such that Ber_,, and B = A implies ,(B) =0
or co, then lim,___ f, = 0 a.e. (z,) on A.

Proor. The martingale relation is an immediate consequence of the defini-
tion of f,. For z,(Q,) = 1 the second assertion follows from the backward
martingale convergence theorem [1]; if r_,, is o-finite, restrict f, to each one
of a countable number of sets of finite measure to which the martingale
theorem just cited can be applied. The final assertion appears in [9].

2. Limit theorems. Now consider those processes satisfying (1.1) and one
of the following conditions:

(2.1 7(Q) =1 and r_, is trivial, or

(2.2) 7(Q) = oo and r_, consists only of sets of measure 0 or oo.
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THEOREM 2.1. Under the condition (1.1) and either (2.1) or (2.2), if E is a
fixed set, then whatever subsequence {n} is given, there is a further subsequence
{m,} such that

(2.3) Under (2.1), P™i(x, E) — n(E) a.e. (7).
(2.4) Under (2.2), if n(E) < oo, P™i(x, E) >0 a.e. (x) .

PROOF. Proof of (2.3). Lete > 0; by Lemma 1.1, if f= lxer,fn converges
and by ergodicity the limit must be 7(E) a.e. The sets B, = {f, > n(E) + ¢}
satisfy = (B,) — 0, and f, — =(E) converges to zero in the mean. Then
(2:5) 0 S§|f, = 7(B) dz, = § T"| f, — =(E)| dm,

= § |/, — n(E)| dr, = § |P*(X,, E) — n(E)| dr,
= {|P*(x, E) — =(E)| dx ,
so P*(x, E) — n(E) in mean (x). For any subsequence {n;} there is then a
further subsequence {m,} such that P™i(x, E) — n(E) a.e. (x).

Proof of (2.4). The sets B, = {f, > ¢} for ¢ > 0 fixed satisfy =,(B,) — 0 as
above; this follows from the relation

emy(B,) < 5, fodm, = § 5,/ dr,

where the right side tends to zero because f is integrable and limsup, B, is
z;-null. Then f, converges to zero in z, measure, and there is a subsequence
{m;} of {n;} such that > 7,(B,,) < oo, hence ¥, 7(T"™B, ) < co. T his
means that the set limsup, 7-"iB, is z, null; that is, limsup, T™if, =
lim sup, P™i(X,, E) < ¢ a.e. (x,), or lim sup, P"i(x, E) < ¢ a.e. (m).
Since ¢ is arbitrary, a decreasing sequence ¢, converging to 0 may be chosen,
and the argument may be repeated to yield a subsequence, say m,, with
Pmi(x, E) — 0 a.e. (7).

Define the measure

(2.6) (P = g, = § PA(x, )u(d)
where ¢ is a probability measure.

COROLLARY 2.1. Let p be any probability measure absolutely continuous with
respect to w, and let E be fixed.
(2.7) Under (1.1) and (2.1), Px, E) > n(E) in Ly(p), p(E) — n(E)
forall E, and foreach a.e. (r) bounded g, §gdy,— §gdr.
(2.8) Under (1.1) and (2.2), if =n(E) < oo, PYx, E)—0 in L,(y),
that is, p,(E)—O0, and for each a.e. bounded g in L(m),
§gdp,—0.

Proor. Proof of (2.7). (2.5) showed L,(x) convergence of P*(x, E) to n(E),
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and there is convergence in = measure. Then, by finiteness and absolute
continuity, there is convergence in p measure and hence convergence in
L,(p). Then

|n(E) — a(E)| < § |P(x, E) — a(E)|p(dx) 0.
Now let g be a.e. bounded. § gd¢ is a continuous linear functional on the
space of all signed measures with finite total variation and p, — r in the sense

of weak convergence of measures ([3] page 308) so that § gdy, — § g dr (al-
ternatively, there is a simple direct proof of this last assertion).

Proof of (2.8). =(f, > ¢) — 0 for ¢ fixed, and then z,(T*f, > ¢) -0 or
n(P™(x, E)>¢)—0, so by finiteness of 1 and absolute continuity, x(P"(x, E) >¢)
— 0. P"(x, E) then converges to 0 in L,(p) since p is finite, and

0 § P*(x, E)u(dx) = 1,(E) -
Now it is sufficient to consider positive g. Let g < L except on a z-null set

N, and let g be in L,(r). Then x(N) = 0 and P*(x, N) = O for all n a.e. (x)
by stationarity so that x,(N) = 0 for all n. Then

(2-9) Sgdp, =S,9dp, + §,9dp, < e+ Lp,(B)

where 4 = {g < ¢}, B={¢ < g < L} and we have used the fact that p,(N) = 0.
Since g € L,(x), n(B) < oo and p,(B) — 0 by the preceding part, hence (2.9)
— 0.

Now the question of almost everywhere convergence will be considered.
We have found it necessary to impose (2.10) below, a restriction related to
condition (D’) of Doeblin (see [7] page 210; also [2]). We have no example in
which (2.1) or (2.2) holds but (2.10) does not hold, and so (2.10) may be
superfluous, though necessary for the assertions of Theorem 2.2 to be valid.

According to [4], if E is any set, (1.1) implies lim sup, P*(x, E)=c, constant
a.e. (m).

(2.10) For every decreasing sequence of sets A4, with z(4;)]0,
lim; lim sup, P*(x, 4;) = 0 a.e. (n) .

For each i, the limsup is a.e. constant by the preceding remark; (2.10) requires

that these constants converge to zero.

THEOREM 2.2.
(2.11) Under (1.1), (2.1), and (2.10), PX(x, E) — n(E) a.e. (7).
(2.12) Under (1.1), (2.2), and (2.10), if n(E) < oo, P"(x, E) —>0a.e. (7).

Proor. First we prove (2.12). Lete >0and B, =[P*(x, E) > ¢]. The proof
of (2.8) shows z(B,) — 0, so there is a subsequence m, such that the sets

A, =B, UB u...
i i

mjt1



LIMIT THEOREMS FOR MARKOV TRANSITION FUNCTIONS 625

form a decreasing sequence with n(4,,) | 0. If i = j, P"i(x, E) < ¢ on 4], ..
Let i and j be fixed with i > jand let r be any integer. Then,

Prmi(x, E) = (SA;nj + SAmj)Pr(x, dy)P™(y, E) < ¢ + P'(x, 4,,)) ,
implying,
lim sup,, P*(x, E) = limsup, P"*™i(x, E) < ¢ + lim sup, P"(x, 4,,)) .

Using (2.10) and letting j — oo shows lim sup, P"(x, E) < ¢ on a =z-full set.
Since ¢ is arbitrary, (2.12) readily follows. The proof of (2.11) is almost
identical except for the obvious changes.

LEMMA 2.1. Processes satisfying (1.1') satisfy (2.10).

Proor. It follows from a result of Doeblin, [2], that processes satisfying
(1.1’) have the property: If {4} is a decreasing sequence with

lim; lim sup, P*(x, 4;) = r a.e.
then there is a subsequence {m,;} and a set V, 0 < =(¥), with
lim inf; P™i(x, 4;) = 7
for all xe V (see e.g. [7] p 212). Now let 4; be the decreasing sequence of
(2.10). By Fatou’s lemma,
0 = lim; n(4;) = § lim inf P™i(x, 4;) dr = yz(V), implying y = 0.
LEMMA 2.2. Processes satisfying (1.1') with z(Q) = oo satisfy (2.2).

Proor. (1.1’) implies the equality of r__, and r,. and that they are X,-
measurable and atomic with a finite number of atoms, each of infinite measure

[8], [11].
COROLLARY 2.2. [7]. For processes satisfying (1.1"),
(2.13) Under (1.1') and (2.1), P*(x, E) > n(E), forall xeQ.
(2.14) Under (1.1'), if zn(E) < oo and n(Q) = oo, P(x, E)— 0 for all
xeQ.

Proor. By Lemmas 2.1, 2.2, and Theorem 2.2, it follows that the assertions
hold a.e. (r) for each E, say on a set. V' = V(E). Since (1.1') guarantees that
each point will enter ¥ and stay in it, a standard argument involving the
Chapman-Kolmogorov equation completes the proof.

(2.15) Let Prg = § P*(+,dy)g(y).

THEOREM 2.3. Let (1.1), (2.2) and (2.10) be satisfied, and let g be a.e. bounded

and in L (). Then

(2.16) Prg >0 a.e. (r).
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Proor. Let g < L except on a z-null set N. Since P*(x, N) = 0 for all »
a.e. (r), we may assume g < L everywhere in (2.17).
Let 4 = {|g| < ¢}, B={c < |g| £ L}; then

(2.17) [Prg(x)] = §4 + §5{P"(x, dp)lg(»)}} < ¢ + LP™(x, B),
and P*(x, B)— 0 a.e.

by Theorem 2.2, concluding the proof.

Whether (2.16) holds for any g in L,(x) is an open question.

We conclude with an example of a process satisfying (1.1), (2.1) and (2.10)
but not (1.1). Let Z, be a sequence of independent variables, —co < n 4 oo,
with common distribution: P(Z, =0) = P(Z,=1)=4. Let X, on Q =
[0, 1] be given by the binary expansion: X, = -Z,Z, ,Z, ,---. X, is Markov,
= = Lebesgue measure on Borel sets, (1.1) is satisfied, but not (1.1’) since the
orbit of each point is countable, and r__, is the tail o-field of independent
variables, so is trivial. It follows readily that each point spreads its con-
ditional mass in so regular a way that the limit on each set is Lebesgue
measure, and so (2.10) is satisfied.
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