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FUNCTIONS OF ORDER STATISTICS

By GALEN R. SHORACK!
University of Washington and Mathematisch Centrum

Two theorems on the asymptotic normality of linear combinations
of functions of order statistics are given. Theorem 1 requires a ‘‘smooth”’
scoring function but the underlying df need not be continuous even and

~ can also depend on the sample size. Theorem 2 allows general scoring
functions but places additional restrictions on the df. Applications
included.

0. Introduction. Let < denote the class of left continuous functions on
(0, 1) that are of bounded variation on (¢, 1 — #) for all > 0. (Associated
with any ¢ in < is a Lebesgue-Stieltjes signed measure g on (0, 1) and its
total variation measure |g|.) Letc,, ---,¢,, for n = 1 be known constants.
Letd,, ---,d,, forn =1 be known constants of a greater order of magnitude
that will be associated with the points 0 < p, < --- < p, < 1. Let [ ] denote
the greatest integer function. We will consider the limiting distribution of

(1) T,=n" 2201 Cus gn(’sm) + 2k dnkgn(’sn,[npklﬂ)

where each g, is a functionin £” and where 0 < &, < ... < &, < 1 are the
order statistics of » independent Uniform (0, 1) rv’s.

Remark 1. If g, = A(F,™") for some sequence of df’s F,, in the class .5
of all df’s, then T, has the same distribution as does n™' }* ¢, h(a,;) +

2idyh(e, ny,0) Where @, < .. < a,, are the order statistics of a random
sample of size n from F,.

For the mean or trimmed mean we have £ — 0, but for the Winsorized
mean £ = 2 and p, and 1 — p, are the Winsorizing percentages.

Theorem 1 and 2 below are both major theorems. Theorem 1 seems to be
the first good theorem for general g, though it does require somewhat regular
scores. Nonetheless, the rather minor Example 1 is probably sufficient for
most applications. Theorem 2 employs a different representation. It allows
very general scores, though g must now satisfy smoothness conditions. This
second theorem is the one that relates to other theorems for this problem; in
particular, it is an improvement on the theorems of [4]. See [4] for a dis-
cussion of the literature. The present Theorem 2 and the theorems of [1] and
[8] are approximately equally strong; though [1] is probably slightly weaker.
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Theorem 1 and its Corollary 2 are much cleaner than any of these. Never
use Theorem 2 unless Corollary 2 and Theorem 1 fail.

Theorem 1, Example 1 and Corollary 2 are the main results. Also the
parallel paper [7] applies the present technique to give the best results yet
obtained for the trimmed and Winsorized means.

We stress that the df F need not be continuous.

1. The first main theorem. Define a function J, on [0, 1] to equal c,; for

(i—Dn<t<imand 1 <i<n with J (0) =c,. Letd, -..,d, be finite
nonzero constants. We will consider n¥(T, — p,) where

here I denotes the identity function and § - dI denotes integration with respect
to Lebesgue measure.
For fixed b,, b, and M define a “scores bounding function” B by

B(t) = Mt=1(1 — )™ for 0<t<1.
For fixed 6 > 0 define
D(f) = Mt=30ato(1 — f)=itbats for 0<t<1.
Let g denote a fixed function in <" and let J denote a fixed measurable function
on (0, 1). Define ¢(¢t) = [#(1 — £)]*7%* on [0, 1].
AssuMPTION 1. (Boundedness) Let |g| < D, all |g,| < D, |J| < B and all
[/l £ Bon (0, 1).

AssUMPTION 2. (Smoothness) Except on a set of #’s of |g|-measure 0 we
have both J is continuous at t and J,—J uniformly in some small neighborhood
of tasn— oo.

AssuMPTION 3. (Convergence) {3 Bgd|g, — 9| — 0 as n — oo.

AssUMPTION 4. (r > 0) For 1 < k < « we have n¥(d,, —d,) -0 as n— oo.
In some small neighborhood of each of p,, - - -, p, the functions g,’ for n> 1 form
an equiuniformly continuous family and g,(p,) — 9(p.) and 9,'(p,) — 9'(p,) as
n— oo for each 1 <k < «. (If g, = g for all n we require at each of p,, - - -, p,
only that ¢’(p,) exist.)

Define
3) o' = 3§ (s At — st)I($)J(2) dg(s) do()
+ 2 2k d 9 (p) §o (8N pi — tp)J(2) do(2)
+ 2521 k=1 4;d 9" ()9 (P)(P; A P — PiPi) -
THEOREM 1. If Assumptions 1, 2, 3 and 4 hold, then
m(T, — p,) —4 N(0, %)
with p, of (2) and o* of (3) finite.
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Proor. We may assume that0 < §,, <. .. <§,,< 1 are the special Uniform
(0, 1) order statistics described in the Appendix. These have empirical df T,
empirical process U, = n¥(I', — I) on [0, 1] and satisfy po(U,, U) —,, 0 as
n— oo; here U is a special Brownian bridge and p denotes the uniform metric.
Other properties of these special &,,’s and U will be cited from the Appendix
as needed.

We give the proof first for t = 0. For 0 < ¢ < 1 define
) = —§1J,dl sothat ¢ fn = [¢(in) — ¢, ((i — 1)/m)]
for 1<i<n.
Summing by parts gives
T, = $ 9.0, ), dl = 51 9,(&,[¢.(n) — ¢,((i — 1)/n)]
—a.s. _gbn(o)gn(énl) - S:‘:Z? ¢n(Fn) dgn
where the second integral representation uses the fact that it is a.s. true that
no §,; takes on one of the countable number of values at which g, is discon-
tinuous. Integration by parts gives
Pn = SgZ? 9 dgbn + S[émyfnn)c g'rLJn al
as. T Sg:? ¢ndgn + ¢n(€nn)gn($nn) - Sbn(fnl)gn(fnl) + SHM.fnnlcgn d¢n :
Thus
n%(Tn - #n) = _(Sn + 71 —I_ 7 n2 + rn3)
where
S, = §imd,U,dg, = \;4,*U,dg, with 4, =[¢,T,)— ¢, —1),

where 4, * is equal to the difference quotient 4, on [£,,, §,,) and is equal to
0 otherwise, and where

rnl = nég(énl)[gbn(o) - Sbn(snl)] ’ T2 = n%gn(fnn)gbn(énn) ’
Tns = n% slfmf»,m)c gan dl’

(For each fixed w in the probability space, at the at most n points where I', =1
we define 4, to be 0.)
Define

“) §=JUdg + 2id.9'(p)U(pe)

so that S is a N(0, ¢%) rv; and ¢* is finite by Assumption 1. (We remind the
reader that we still have x = 0 for the time being.)
Let y,. denote the indicator function of the set S, , of Lemma A. 3; and
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note also the definition of 38, made there. Now
AneSn — S| = T + Tas = § 20 47ULN]9, — 9] + § |2, 4,7V, — JU[d|g| .
Also, by Assumption 1, when b,, b, > 0 we have

|4, = §i~J, dI[(T, — D| < {7~ BdI[(T, — I) < BV B(T,);

and since B is a reproducing u-shaped function (see Definition A. 3), Lemma
A. 3 gives the key equation of this proof

for some constant M, and for B as in Definition A. 3. Clearly, (5) also holds
for all other values of b, and b,.

For a.e. fixed o the functions U and U, for n = 1 are uniformly bounded
by M g; see Remark A. 5. Thus a.s.

[7nsl < M. M, \§ Bgd|g, — 9| — 0 as n— oo

using (5) and Assumption 3. Thus y,, —, 0 asn— co.

Integrate by parts and use Assumption 1 to find §jBgd|g| < co. For fixed @
the integrand of 7, is dominated by the |g|-integrable function (M, + 1)M Bgq;
and the integrand converges a.e. |g| to 0 since p(U,, U)—, ; 0 as n— co and
since A4,(f) — J(f) a.e. |g| as n — oo by Assumption 2 and the representation
A, = I J (s)ds/T", — I). Thus y,,—, 0 as n— co by using the dominated
convergence theorem once for each w.

Thus y,. S, —.. Sasn— oco. Thus S, —», S as n — co; since Ey, — 1 as
n — oo for each ¢ > 0 by Lemma A. 3.

In case £ = 0 it remains only to show that r,, 7,, and y,, are negligible.
Case 1: b, < 1. Then |r,| < ntD(£,,) \i= Bdl so that on the event &, <
(3 A p)) we have by Assumption 1 that |r,,| < Mn¥¢t}r? for some constant M,.
Since n¢,; = 0,(1) and since P(¢,, < (3 A p))) — 1 as n— oo, we havey,, —,0
asn— oco. Case 2: b, = 1. Then on the event £, < (3 A p;) we have

9,(0) = §,(E)| S S, | < Mfnit 4 nt Biini(ifn)
M= 4§ e de] < M + &)

IA N

(replace #~%1 by log ¢t when b, = 1) and also
[l S MpELHIHnn™ + &3]
= Mg [(nE,)"1 7 + (n€,1)!]
for constants M,, M,, M,. So again y, —,0 as n— co. Analogously y ,—,0
as n — oo by considering the cases b, < 1 and b, = 1. Also nt {§m |g,J,|dl <

nt (i MP[t(1 — t)]"#"°dt —,0 as n — oo; so that y,, —,0 as n— co without
resort to cases.
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This completes the proof for £ = 0. Assumption 4 was not used.

Suppose now £ > 0. Now 7, + 7., + 7. —,0 as n— oo by the above
proof. Without loss set « = 1, d,, =d,, d, = d and p, = p. In addition to
the term considered above, n#(T, — p,) contributes R, = nt[d,g,(, 1,,111) —
dg,(p)] and S contributes R = —dg’(p)U(p). But using only Assumption 4
we have

+dg'(p)U(p)| —4.5. 0 as n— oo
since o(V,, V) —,, 0 as n— co with V, =n¥(',™ —I) and V= —U by
(A. 4). []

ReMaRrk 2. For the special Uniform (0, 1) order statistics and the special
Brownian bridge U of the Appendix, we have in fact shown that

(6) (T, — p,) —,— 5 JUdg — Y5, d,g'(p)U(p) as n-— oo .

REMARK 3. A random vector converges in probability if and only if each
coordinate does. Thus the obvious vector analog of Theorem 1 follows
trivially from Remark 2.

ExamPLE 1. Let ay, - - -, a, be a random sample from an arbitrary df F for
which E|a|" < oo for some r > 0. Let
(7) Tn =nt ZIL J(tni)ani

where max,_,_, |t,; — i/n| — 0 as n — co and where for some a > 0
al(ilmy A (1 —im)] £ t,, <1 —al(ifn) A (1 — iln)] for 1<i<n.

Suppose J is continuous except at a finite number of points at which F~ is
continuous, and suppose

J(@) < M[t(1 — )] 7trur+e for 0<t<1
for some 6 > 0. Then
(T, — \t J F~dl) —, N, o?) as n— oo
with finite variance
o = §3\E(s At — st)J(s)J(t) dF~(s) dF (1) .

This result is deficient in that J, has not been replaced by J in the centering
constant; this is true likewise of Theorem 1. But this is a purely deterministic
problem, and it seemed advisable to separate it off. We now provide one
possible solution. Suppose J’ exists and is continuous on (0, 1) with

[J'()] £ M[t(1 — )] E+uir+s for 0<t<1;
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and strengthen the ‘“max-condition” to

nmax, ., |t,; — i/n] = O(1) as n— co.

Then our conclusion may be strengthened to
n(T, — \; JFdI) —, N(0, o) as n— oo.
Proor. We will apply Theorem 1 with k=0, g, =g =F'and b, = b, =

b=4—1/r —d. Since E|a|” < oo we have
HEY )| < S8 [FY(s)|mds < §E9 |s|"dF(s) — 0 as t—0
using F~'o F(t) < t for —oo < t < oo. Thus |g| < D with the choice — § 4
b+ 6= —1/r. By the “a-condition” on the ¢,’s we have |J,| < B=
M [t(1 —1¢)]~#+1r+ for some constant M,; see Definition A. 3. Thus Assumption
1 holds. The continuity of J and the ‘“max-condition” on the ¢,;’s together

imply Assumption 2. The first result now follows from Theorem 1. By the
mean value theorem and the “strengthened max-condition’” we have

n |1 (1) — J(O)]|g(t)] = n~tM,|J'(1%)]]9(2)]
< MM — )M — ]
< nMMM[H(1 — 0]+
where the final inequality uses Definition A.3 and the “a-condition” bound

on t*. The proof is easily completed using n~* {171 [¢(1 — £)]"#*°dt — 0 as
n— co. []

ExaMPLE la. Let a,, - - -, «, be a random sample from a df having E|a|" < co
for some r > 2. Then

ni(@ — E(a)) —, N(0, Var [a]) as n—oo.

This example shows that the ordinary central limit theorem “‘just fails” to be
a corollary to Theorem 1.

ExampLE 1b. Let a,, - .., a, be a random sample from the N(0, 1) df ®.
For integral r > 0 let

T, =n Zp[@7((n + D))y -
(Or use (3i — 1)/(3n + 1) in place or if(n 4 1) as some would advocate.) Then
n(T, — E(a"*")) —, N0, E(a®?) — EXa™")) as n— oo .

ExampLE 2 (The linearly trimmed mean). Let 0 < a < } be fixed, and let
a, = [na]. Let ay, - -, @, be a random sample from F, = F(. — ) where F
is any df symmetric about 0. For n even we follow Crow and Siddiqui (1967)
and define

Tn = :L2+1 [2(1 - an) - 1](a'ni + an,n—-i+1)/2(n/2 - an)2 .
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(We omit n odd.) Then
n{(T, — 0) —,[4/(1 — 2a)*]2} §t (t — a)W(t) dF (1) as n— oo
where W is Brownian motion.

Proor. Letc,, =c, sy = n2(i — a,) — 1]/2(n/2 — a,)* for 1 < i < n/2.
Then J(t) equals 0 or 4(¢ — a)/(1 — 2a)* accordingas0 <t <aora<t<}
while J(£)=J(1 — t) for <¢t<1. Then by Theorem 1 and n? {}(J,—J)F~*dIl —
0 as n — oo we have

m(T, — 0) >, — \} UTdF~ = 24 {} WJ dF-
using the symmetry of F, where
(8) W(t) = —[U®#) + U1 — £)]/2* for 0<r=<1
is Brownian motion with Var [W(1)] = 1. []

ExampLE 3. Let a,, - - -, «, be independent Bernoulli (/) rv’s. Let g = F'.
Thus g(¢) equals —c0, 0,1 fort=0,0<t<1—-6,1 -0 <t<1. Let J(2)
equal 0, 1 for 0 < ¢t < 4,5 <t <1 and let ¢c,, = J(i/n). Then T, equals }
if more than } of the a,’s are positive; while T, equals the proposition of

positive a,’s if less than § of the «,’s are positive.

(a) Suppose § = 4. Then n¥(T, — p,) = n¥(T, — }) is asymptotically dis-
tributed as a rv having a N(0, 1) density on (— oo, 0) and having point mass
4 at 0. Note that J is not continuous a.e. |g|; and hence the hypotheses of
Theorem 1 fail to hold.

(b) Suppose ¢ < §. Then n¥(T, — p,) = n¥(T, — %) is asymptotically N(0, 0)
by Theorem 1.

(c) Suppose § < }. Then n¥(T, — p,) = n¥(T, — 0) is asymptotically N(O,
6(1 — 6)) by Theorem 1.

REMARK 4. The rv T, of (1) will be asymptotically normal provided there
is “not too much weight in the tails.” If |g| < D, then we only allow |J| < B
so that the rv S of (4) will have finite variance. This tradeoff between g and
J can be different in each tail (in that b, need not equal b,).

2. Variations on the first main theorem. In this section we consider (Corollary
2) the important weakening of Assumption 3 and (Corollary 1) the rather
minor dropping of the existence of a limit g. For these we strengthen As-
sumption 2.

AssUMPTION 2. (Strong smoothness) Let J be continuous on (0, 1) and
suppose that J, — J uniformly on [#, 1 — 6] as n — oo for each § > 0.

We say that g, converges weakly to g if g,(f) — g(f) as n — oo at each conti-
nuity point ¢ of g.
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AssumMpTION 3’. (Weak convergence) Let g, converge weakly to gasn — co .

CoROLLARY 1. Suppose Assumptions 1, 2’ and 4 (omit the conditions on g)
hold. Then

ng(Tn - /’tn)/on 4 N(O’ l)
provided liminf,__ o, > 0. (Replace g by g, in (3) to obtain ¢,2.)

n—reo n

Proor. In the proof of Theorem 1 let S, = +{;JUdg, + X;5d.9,'(p.)U(p.)-
Then when x = 0 we have

Xne Su—=Son| = |§0 2l 4,*U, — JU] dy,|

< 0(U,, U) §sgM Bdlg,| + 0U, 0) §s 1,.914,* — J|d|g,)|

= 0,()O(1) + Oy(1) §i Xacql 4™ — Jld|g,] -
Integration by parts and Assumption 1 shows that for any 7 > 0 there exists
6 > 0 such that ({J + §!_,)gM, Bd|g,| < n/2 for all n. Also on [§,1 — @] the
difference quotient 4,* converges uniformly to J by Assumption 2’. Hence
on subsequences r’ for which {;7¢ d|g,,.| remains bounded we have {;~’y,,..q| 4} —
J\d|g,| —.s 0. Thus {;~%y,.q|4,* — Jid|g,| —,0. Combined with the first
remark on the negligible contribution from the tails, this gives that {}y,.q|4,* —
J|d|g,| —,0 for all ¢ > 0. Hence y,.(S, — S,,) —,0. We can divide by o,
without destroying — , provided ¢, is bounded away from 0. []

COROLLARY 2. Suppose Assumptions 1, 2', 3’ and 4 hold. Then
n(T, — p,) —4 N(O, o) as n— oo
with p,, of (2) and o* of (3) finite.

Proor. In addition to the proof of Corollary 1 we need only show that
§s UJd(g, — 9) —,0 as n — oo. But we simply repeat the type of argument
used in Corollary 1. That is, truncate off ({J + §1_,)|UJ|d|g, — g| since it
makes a small contribution with high probability; and then use weak con-
vergence of g, to g on [¢, 1 — #] and the continuity of Jon [, 1 — §] to show
that §;~¢JUd(g, — g) —,...0 as n— oo for any ¢ > 0 by the Helly-Bray
theorem. ]

3. The second main theorem. We will start fresh in regard to notation. The
Appendix is rather more heavily relied on.
We now fix g in the class of all left continuous functions and consider

(9) Tn = n_l ZI‘ Cnig(eni) .
We suppose throughout that there exist functions C, on (0, 1) and a signed
measure v on (0, 1) such that

(10) ¢,n = §il,, C, dv for 1

GG=1[n"n

IA
IA
S

where §} - dv = §,, - dv.
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ExAMPLE 4. Let v denote Lebesgue measure and let C,(f)=c,; for (i—1)/n<
t<i/nand 1 < i < n. Call these “simply generated scores.”

EXAMPLE 5. Let v put mass 1 at + =1 and zero mass elsewhere. Let

C.(3) =1. Then T, is g evaluated at a sample median (at the sample median
for n odd).

In general
Tn = S(l) g(F;l)Cn le *

Let C denote a fixed measurable function on (0, 1) and let

(11) ¢ = §1gCdy
and
(12) o' = §i §5 (s At — st)g'(s)9"(1)C(s)C (1) d(s) du(t)

provided these exist. Let * now restrict functions on (0, 1) to [1/r, 1 —1/n].
If C,* replaces C in (11) and (12) the resulting quantities will be called s,

and ¢, °
Now
(13) T, — ) =T, + 7+ 7w+ 0,
where
Tn* = S* VnAnC'ﬂ le ’
4, = [, —gl/(T,7 = 1),
rnl = n_tcnlg(énl) ’ T'ﬂ2 = n—%c"‘”g(enn)
and

0, =nt§5(C,* — C)gdv .

(Left continuity is used to define 4, at the at most finite number of points,
for each fixed w, at which it might otherwise be undefined.)

(E1) (i) For all large n we have |C,| < ¢ a.e. |v| where {} g|¢’|¢d|v]| < oo
for some ¢ in &.

(i) §iq|4,* — ¢'|¢d|v| —,0 as n — oo, for this same gq.

(Ela) g is absolutely continuous on (¢, 1 — ¢) for all ¢ > 0. ¢’ exists a.e.
|v| and |¢’| £ R a.e. Lebesgue measure where R is a reproducing u-shaped
(or increasing) function. For all large n we have |C,| < ¢ a.e. |v| where
{1 gR¢d|v| < oo for some g in &

(E2) 7,1+ 7n2—p0as n— co.

(E2a) |g| < M[1 — I)]=« for some M > 0 and (|c,,| V |c,,|) = o(nt™).

(E2b) |g| £ M(1 — I)™= for some M >0 and |c,| = o(nt) and |c
o(nt=%).

nn| -



FUNCTIONS OF ORDER STATISTICS 421

(E3) C, > Ca.e. |v] as n— co.

(E4) nt§3(C,* — C)gdv — 0 as n — oo.

(Roughly speaking, use R increasing in (Ela) and use (E2b) for distributions
on [0, c0).) See below for conditions (E1b) and (Elc).

THEOREM 2. Conditions (Ela), (E1b) and (Elc) each imply (El). Conditions
(E2a) and (E2b) each imply (E2). If (El), (E2), (E3) and (E4) hold, then

(T, — 1) =4 N(O, o?)
with p of (11) and o* of (12) finite. If only (E1) and (E2) hold, then
n(T, — p,)[0, —4 N(0, 1)

provided lim inf __ o > 0.

Proor. We first prove that n¥(T, — p) —, N(0, ¢%). Let T = {} Vg'Cdy,
which is a N(0, ¢%) rv with ¢* finite by (E1) (i). Also
T =T =GV = V)4 =g + ¢)C, + V(4,* — g)C,
+ Vg€, = O)ldv| = p (V" Vo ql4,* — ¢'|¢d]]
+ $09l9'|¢d]v[] + 0,(V, 0) §sq14,* — ¢'|¢d]¥]
+ 0.V, 0) 0 99'|C, — Cld]y| .
Now p,(V,*, V) =0,(1), o(V,0) = 0,(1) and §; q|¢9’||C, — C|d|»| — 0 by (EI)
(i), (E3) and the dominated convergence theorem. Thus 7,* — T under (E1)
and (E3). Referring to (13), (E2) and (E4) show that n¥(T, — p) —, T.
The proof for n¥(T, — p,)/0, is even easier. Note that we can divide by o,
without destroying — , since ¢, is bounded away from 0.
We now show that (E2a) implies (E2). Using Stirling’s approximation
E(ra) = e So[((1 — 07" n(1 — o)*~ di/n
=Ml T'(n—2a)T'(n+1—4a) < M, /n -0 .

1%nl

Likewise (E2b) implies (E2).

We now show that (Ela) implies (E1). Now (El) (i) is trivial. Since ¢’
exists a.e. [v| we have for every o that the difference quotient 4, converges to
¢’ a.e. |v| (since p(I';, I) —, .. 0). Also

4.l = i g'(s)ds/(T', — D)] < [§7 R(s)ds/(T', — 1)l < RV R(T",).
Thus for the set S, , of Lemma A.3
XnEIAn*I é Rﬂe é MeR M

Thus we may for each fixed w apply the dominated convergence theorem to
conclude

Xne S})q|A’IL* - g'|¢d|v| a.e. 0.
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Thus §j g|4,* — ¢'|¢d|v| —, 0.

To show that (Elb) implies (E1), work Remark A. 4 into the first paragraph
of this proof. That (Elc) implies (E1) is also easy. Conditions (E1b) and
(Elc) are in the spirit of [1]. They are not stated until after Theorem 2 be-
cause they are long, and because I feel that (Ela) is a better condition. []

(E1b) (i) ¢ is absolutely continuous on (¢, 1 — ¢) for all ¢ > 0. (ii) For all
positive 8 in some neighborhood of 0 there exists 0 < M; < co such that
|9'(5)/9'(1)] < M, whenever gt < s< t+ f and ¢ < } and whenever (1 — 1) <
1l —s< (1 —1¢)+ Band ¢ < . (iii) For all large n we have |[C,| < ¢ a.e. |v|
where ! g|g’'|¢d|v| < oo for some g in &

(Elc) (i) g satisfies a Lipschitz condition on (¢, 1 — ¢) for all ¢ > 0 and ¢’
exists a.e. |v|. (ii) There exists ¢ > 0 such that for all positive 8 in some
neighborhood of 0 there exists 0 < M, < co such that |g'(s)/9'(¢)| < M when-
ever ft<s<t+pBand ¢t < 0and whenever (1 — ) <1 —s< (1 -1+
and ¢t < d; and |v|([6,, ] — 6,]) < oo for some 0 < J, < §. Or there exists
d, > 0 such that ¢,, = 0 for i < nd,and { = n(1 — d,) and » exceeding some
ny; and |v|([dy, | — J,]) < oo. (iii) For all large n we have |C,| < ¢ a.e. |y|
where {{ q|g’'|¢d|v| < oo for some g in &.

REMARK 5. A version of Theorem 2 in which g depends on r» may be proved
with the aid of Corollary 3 of [6].

APPENDIX
A UNIFORMLY CONVERGENT EMPIRICAL PROCESS

Al. Definition of the basic rv’s &,, - .., £, and processes U, , U. There is a
probability space (22, .97, P) with the following very special random quantities
defined on it.

¢, -+, &, are independent Uniform (0, I) rv’son Qand 0 < §,, < --- <
&,.< 1 for all @ in Q, where the £,,’s denote the ordered &;’s. We let ",
denote the empirical df of these rv’s.

U denotes a Brownian bridge on Q. That is {U(f): 0 < ¢ < 1} is a normal
process with all sample paths continuous, E(U(f)) = 0 for 0 < ¢ < 1 and the
covariance function of the U process is

s N\ t— st.
Note that ' = — U is also a Brownian bridge.
For n = 1 we define the “uniform empirical process” U, by
(Al) U,(1) = [T, (¢) — 1] for 011,
We also define the “uniform quantile process” ¥V, by

(A2) V(1) = [T, (t) — 1] for 0<r=<1
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(the inverse of a df will always be the left continuous one).

For functions f, f, on (0, 1) let o( f,, f;) = sup,.,<, | fi(?) — fo(?)|. The special
property referred to is

(A3) o(U,,U)—,0 as n-— oo
and
(A4) oV,, V)—,0 as n— oo .

Equation (A3) says that every sample path of the U, process converges uni-
formly as n — oo to the corresponding sample path of the U process.

That the U,’s exist was shown in Pyke and Shorack (1968). The &,’s are
introduced here in the hope of making this approach more easily understood.
Lemmas Al, A2 and A3 and Theorem Al were proved or referenced in [3].

Though supressed in the notation, the §,’s are actually a triangular array.

A2. The basic convention. Let Z,, ..., Z, be independent rv’s having df F
in the class . of all df’s. Let [¥, denote their empirical df. Let

(AS5) n(F, —F)  on (—oco, o0)
be the “empirical process”; and let

(A6) n(F, — F7) on (0, 1)
be the “quantile process.”

PROPOSITION Al (The inverse transformation). Let & be any Uniform (0, 1) rv.
For an arbitrary F in 7 define X = F~(§). Then for all real x we have

(A7) [X < x] = [§ < F)].
Also, X has df F.

For 1 < i < n define X; = F~'(§;), where the §,;’s are our special Uniform
(0, 1) rv’s. Then X, ---, X, are independent rv’s having df F. Moreover,
from (A7) we see that the X,’s have empirical process

(A8) U,(F) on (—oo, o)
and quantile process /
(A9) m[F(T ") — F7'] on (0,1).

Thus the processes (A8) and (A9) have the same finite dimensional distribu-
tions as do the processes (AS) and (A6).

Also, a statistic T, = T,(Z,, - - -, Z,) has the same distribution as does the
statistic T, = T,(X,, ---, X,). We can use the second representation in at-
tempts to show T, is asymptotically normal; and if the statistics we consider
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can be represented as functionals on certain stochastic processes, (A3) and
(A4) will prove fundamental in our proofs.

Because of the above correspondence, we will simply identify the X;’s with
the Z;’s. With this convention we then have

(A10) m(F, — F) = U (F) and F,™' = FT,™).

Also, the i** order statistic X,,; is equal to F~(§,;) for 1 < i < n. Note that
all random quantities are now defined on Q.

Let I denote the identity function and let § - dI denote an integral with
respect to Lebesgue measure. We write —, to denote convergence in distri-
bution. Let x(S) denote the indicator function of the set S. For function f
on (0, 1) and a signed measure v on (0, 1) with total variation measure |v| define

A1l = Sa 1] -
A3. The g functions.

DerINITION Al. Let &() denote the class of positive, strictly increasing
continuous functions ¢ on [0, 1] for which {} g72dl < . Let & denote the
class of all ¢ such that ¢(f) = q(1 — ) = g(¢) for 0 < t < } and some 7 in
&(,/"). Let & () denote the class of all ¢ such that g(1 — I) is in &( ).

For functions f], f, and ¢ on (0, 1) we let

(A11) oS f2) = SUPocicr |(S(1) — S))/q(D)] -

REMARK Al. By far the most important members of & are [I(1 — I)]*~?
for 6 > 0. A function ¢ having ¢(f) = q(1 — t) = —ttlogt for 0 <t < e
is also in &

REMARK A2. For all g in & we have
[ntq(1/n)]* — 0 as n— oo,
since g~*(1/n)/n < §i" g2 dI .
A4. Some properties.

ProrosiTION A2 (Glivenko-Cantelli Lemma). Asn— oo we have o(IF,,, F)—,0
uniformly in all F in 7. Also

oL, I)=pl,, I)—,0 as n-—oco.
LEMMA Al. Let q in &(,). Then
P(U(t) < q(t) for 0<t1<0)=1—§q=dl
for n = 0 where U, = U.
REMARK A3. p (U, 0) = O,1) for any ¢q in &
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DEFINITION A2. We will say that “* restricts function fon [0, 1] (or (0, 1)
etc.) to the interval [a, b] (or (a, b] etc.)” if we mean f*(¢) equals f{¢) for
a < t < b and equals 0 otherwise. We write {* fdI for {j f*dlI.

Let N denote an integer and let n = n(N) be a sequence of integers such
that n — oo as N — co. Let {K,(#): 0 < ¢t < 1} be a process on Q for which

(i) For any ¢ > 0 there exists 8 = 8, > 0 such that
P(K,(t) < pt forall t=1/N)>1—¢ and

(ii) o(Ky, K) —,, 0 as N — oo where K is a positive, increasing continuous
function on [0, 1] having K < MI for some M > 0.

Lemma A2. If (i) and (ii) hold, then for any q in &’( /) we have
0 (U.(Ky)*, UK)) —,0 as N — oo
where * restricts functions on [0, 1] to [1/N, 1].

LEMMA A3. Given ¢ > 0 there exists 0 < 8 = B, < 1 and a subset S, , of Q
having P(S, ) > 1 — ¢ on which

I—(1—0/p<T,()< B foro<t<1,
Bt < T (1) for all t such that 0 < T (%)
r.(ms1—-31 -0 for all t such that T (f) < 1,
g, (<1l — B —9) foro<t<1,
L, < ¢B fort=1/n and
1 -1 -0/, (9 fort <1 —1/n.

We may also require that for all n exceeding some n, we have
T,—I|<g and [0, —I|<8 on [0,1]
provided w is in S|, ..

REMARK A4. On the set S, , of the previous lemma we have for n = n, and
for all s between tand I',7*(f) that St < s <t + Bfor r < § and B(1 — 1) <
l—s< (1 -6+ pfort <.

THEOREM Al (p,-convergence of U, and V,). For any q in & we have
0 (U,, U)—,0 and p(V,*,V)—,0 as n— co
where * restricts functions on [0, 1] to [1/n, 1 — 1/n].
REMARK AS. 0,(U,,0) = O,(1) and p(V,*, 0) = O,(1) for any ¢ in &

LEMMA A4. For all q in & there exists a continuous function § on [0, 1] such
that £(0) = 0 and (q is in &.

Proor. For example, when ¢ = [I(1 — I)]#%, let { = [I(1 — I)]">.
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It suffices to show that if f is a continuous, strictly positive, strictly de-
creasing function on (0, 1) such that {§ fdI < oo, then there exists a positive,
continuous decreasing function ¢ on (0, 1) such that ¢(#) — oo as t — 0 and
(2 fpdl < oo.

Let a, = §!n ., fdl and let ¢, = ¢(1/n) for any fixed positive, continuous,
decreasing function ¢ on (0, 1) such that ¢(f) — co as t—0. If b, = §i/t.,.,, f 1,
then b, < ¢,..a, for all n. It thus suffices to show that if };;a, is any con-
vergent series, then there exists a sequence ¢, — co such that 3 ¢,a, < oo.

Let ¢, = @ with 0 < a < 1. Choose a strictly increasing sequence n,, such
that 317 a, <, forallm. Letc, =¢,tforn, <k <mn,,, and m =1 with
¢, =+ =¢,_,=0. Then

2T = Dina Z;"f’;—l Cl = me1€n® Dienp B
é Z::lem% == Z;oam < o .
This proof was suggested by Jap Fabius. []
AS5. Reproducing u-shaped function.

DEFINITION A3. A positive function R on (0, 1) will be called “u-shaped”
if for some 0 < a < 1 the function is decreasing on (0, a] and increasing on
(a, 1). We introduce the notation R; for

Ry = R(Br) for 0<t<4
= R(1 — B(1 — 1)) for J<t<1.
If for all 8 in a neighborhood of Q there exists a constant M, such that R; <
MR on (0, 1), then R will be called a “reproducing u-shaped function.”

For any ¢ > 0 the function R = [/(1 — I)]"’ is a reproducing u-shaped
function.

In certain problems there is a natural asymmetry.

DEerFINITION A4. For increasing (decreasing) functions R on (0, 1) we define
R, = R(1 — (1 — 1)) (="R(py). If forall fina neighborhood of 0 we have
R; < M,R on (0, 1) for some M, then R will be called a “reproducing in-
creasing (decreasing) function.”

Coupled with Lemma A3 this concept yields a powerful tool.
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