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ON SUBJECTIVE PROBABILITY AND EXPECTED UTILITIES

BY PEDRO E. FERREIRA
Facultad de Agronomia, Montevideo

The Anscombe and Aumann double relation approach for defining
subjective probabilities and utilities in terms of a person’s preferences is
generalized for the case in which the set of states of the world is unrestricted
(finite or not). A monotone continuity condition enables us to prove ¢-
additivity; the necessity of this condition is also proved if our other as-
sumptions hold.

Although the single relation approach used by Fishburn appears to be
more elegant, the present approach has the advantage of showing how the
subjective probabilities arise.

1. Imtroduction. A theory about subjective probability and expected utilities
for decision under uncertainty has been presented by Fishburn [3]. Let X be
the set of consequences and .7 the set of all simple probability distributions
over X, that is probability distributions that give all their mass to a finite subset
of X. Let O be the set of states of the world and 57 the set of all functions on
0O to . Fishburn proved that certain axioms imply that there exists a real
valued function #, on &, and a finitely-additive probability =, on the set & of
all subsets of O, such that, for all P, Q ¢ &

(1) P <,Q ifandonlyif §u(P(6))dr(0) < §u(Q(0))dr(d)

where <, is a binary preference-indifference relation assumed on 2. He also
proved that each P e 52 is bounded in the sense that there exist numbers a, b,
depending on P, such that

) tff0:a < u(P(B)) < b} =1.

In a recent paper [4], the same author generalizes the approach of [3] and, in
particular, he introduces a preference axiom that implies that z in (1) is countably
additive.

In this paper, on the basis of an axiomatic method characterized by a double
use of von Neumann and Morgenstern theory of utility, [7], and a monotone
continuity condition on <,, similar to the one used by Villegas [6], we give a
constructive definition of subjective probability like Anscombe and Aumann [1],
and prove that (1) holds. Monotone continuity enables us to prove g-additivity.
The necessity of this condition is also proved.

2. Basic assumptions. We assume the existence of a weak order (transitive and
linear, or complete) <, on ., that reflects a “rational” man preference pattern
among simple distributions over consequences.

Let us use p, q, p,, ¢,, and so on, to denote elements of .. If p, < p, holds,
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but p, < p, does not, we shall say that p, is preferred to p, and write p, < p,. If
P < p,and p, < p,, we say that p, and p, are equivalent and write p, ~ p,.

A utility on .7 is a real-valued function u, defined on .Z°, and linear, that is,
if p,p,e &, 0 <2< 1, then

u(dp, + (1 — )p,) = Au(p,) + (1 — u(p,) .
We say that a weak order <, and a utility u, on &, agree if for all p,, p, e &
p < p, if, and only if u(p,) < u(p,) -

From the expected utility theorem proved by Jensen [5] it follows that a weak
order <, as the one assumed on .7, has an agreeing utility #, uniquely determined
up to a positive linear transformation, if the following hypotheses hold

(H1) If 2¢€ (0, 1], and p, < p,, then Ap, + (1 — A)g < Ap, + (1 — 2)q.

(H2) If p, < p, < p,, then there exist numbers 4, # € (0, 1) such that 2p, +
(I = 2p, < py < pps + (1 — p)py.

Let us consider now the set 57 of all functions on © to Z?, which we shall
call horse lotteries, as do Anscombe and Aumann [1], and denote them by P,
0, P, Q,, and so on. To understand the meaning of a horse lottery P, we must
consider an experiment whose space of outcomes is ©, and the gamble whose
payoff is P(f) when 6 occurs.

Let &77* be the set of all simple probability distributions over 7~ and denote
by (fiPy, - - -, fi P,) that element of &Z7* which chooses P; with probability f;.
Although &7 is not, properly speaking a subset of 57°*, we shall abuse the
notation by treating &#” as a subset of 57”* under the obvious isomorphism that
maps P € &7 into (1P) e S£°*.

We assume the existence of a weak order <,, on &Z * that reflects the rational
man’s preferences, and that both < and <, satisfy H1, H2, and are connected
by the following reasonable hypotheses

(C1) If P(6) < Q(9) for all 4, then P <, Q.
(C2) If p, < p,and P,(0) = p,, P,(6) = p,, for all 6, then P, <, P,.
(C3) (fiPys -+, [x Pi) ~, P, where P(0) = f,P,(0) + --- + f, P(6) for all 6.

Under the given assumptions, there exist utilities # and u, agreeing with <
and <,. The idea of subjective probability arises when we ask for the relation
between u, and u in light of the concept of horse lottery explained above.

We shall prove that if a monotone continuity condition on <, is added, then
there exist utilities #, and , and a ¢-additive probability measure = : &“— [0, 1],
such that for all P e 57, the following relation holds

3) uy(P) = § u(P(0)) dn(0) -

We say that the sequence P, converges from above to P, and write P, | P if
P, >,P,>,--- and {0: P,(0) + P()} | @, where = means “is not identical
to.”
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The monotone continuity condition announced, is the following
(MC1) If P, | P and P, >, P for all n, then P >, P.

Although axiom MCI looks like a stronger version of axiom ACA in Fishburn
[4], on the basis of our second theorem it can be proved that they are equivalent
conditions if H1, H2, and C1, C2, C3, hold.

3. Theorems.

THEOREM 1. Let the weak orders < on F° and <, on SF* satisfy H1 and H2,
and let C1, C2, C3 and MC1 hold. Then there exist utilities u on F and u, on 57 *
agreeing with < and <,, and a o-additive subjective probability = on &, such that
(3) holds for all P e 57 .

Furthermore, if for p,, p, € & such that p, < p, we define P,, P, ¢ 57 as Py(0) =
Po> Pi(0) = p, for all 6, and take u,(P)) = u(p,) = 0, u,(P,) = u(p,) = 1, then (3)
holds with n(S) = u,(Py), where S is an arbitrary subset of © and

(@) P(0)=p, if 0eS
= D lf 0¢sS.
In addition, every horse lottery is bounded for = and u, and if there exists a de-

numerable partition of © such that each event in this partition has positive probability
under w, then u is bounded.

Proor. If p ~ g forall p, g€ &, then by Cl all P, Q € 57 satisfy P ~, Q and
taking constant utilities, the conclusions follow immediately.

Now let p,, p, € & be such that p, < p,, define P,, P, as above and take u(p,) =
u(Py) = 0, u(p,) = u(Py) = 1.

For all P, Q € &7, Cl implies that if u(P(8)) = u(Q(0)), then P ~, Q; hence
the equivalence class of functions {r: r(f) = u(Q(0)), Q ~, P} determines the
class of horse lotteries equivalent to P. This allows us to abuse our notation
and write r in place of P where r(6) = u(P(9)).

We shall now divide the proof in several steps.
(a) Additivity. The set function n(S) = u,(Ps), with Pg defined as in (4), is
an additive probability on .&*.

Proor. Since u,(P;) = 0and u,(P,) = 1 it follows immediately that z() = 0
and 7(0) = 1; and, in addition, C1 implies 0 < #(S) < 1 for all S < ©.

Let 4, B be two disjoint subsets of ® with C = 4 U B. Also let Pe 57 be
defined by P(6) = 4p, + 4p,if6 € 4 U B, and P(6) = p, otherwise. Then by C3,
3P, 3Pp) ~, P ~, (3P, §P,), and by linearity it follows that Lu,(P,) + Lu,(P,) =
(3P $P5)] = u(P) = t,[(3Pg, $P)] = 41,(P) + 4 (P). The definition of
n then gives 4n(4) + 4n(B) = 4n(C) + 4n(@) = 4n(C) and the additivity is
proved.

(b) o-additivity. z(S) = u,(P;) is a o-additive probability on .&.

Proor. In order to prove the ¢-additivity, it is sufficient to show that the
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additive probability r is continuous from above at . That is, if S, € 0, n =
1,2, .. and S, | @, then (S,) | 0.

If we set P, = Pg , then n(S,) = u,(P,) is a monotone decreasing sequence.
Let us call ¢ = lim u,(P,) and consider P ¢ 27 such that P(6) = ¢p, + (1 — c)p,
for all . Hence P, | P, P, >, P and therefore by MC1 P, >, P. From this
last relation we conclude that ¢ < 0, but on the other hand ¢ = lim »,(P,) = 0,
thus ¢ = lim =(S,) = 0.

(c) If Pe & satisfies p, < P(0) < p, for all 6 € ©, then (3) holds.

Proor. Let us call r(f) = u(P(6)) and for every S C O, define (S) = u,(xs7).
By similar arguments as those given aboye, it can be proved that x is a g-additive
measure on .~ Obviously y is absolutely continuous with respect to 7 (¢ « 7)
and hence by the Radon-Nikodym Theorem there exists a real function »(6)
uniquely determined modulo = such that u(S) = {sr'(f) dr forall S < 0. It
remains to prove that r'(8) = r(0) [x].

Let S be an arbitrary subset of ©, then by C1

%) n(S) infy s r(0) < §5r'(0) dn < n(S) sup,.s r(0) .
Now, for every positive integer n, let uscall 4, ; = {0: r(f) e (i — 1)/27, i/2")},
i=1,2,...,2"and 4, , = {6 : r(¢) = 0}, and let us consider the functions r,(9),

r*(¢), constant on each A4,; defined by r,(0) = inf{r(0):60"e 4, }, (@) =
sup{r(¢):¢0'e 4, ;},for6e A, ;i=0,1,2,...,2" Thenr,0) 1 r@), r(6) | r©)
and by the Lebesgue Dominated Convergence Theorem we have that for every 4

(6) Sara0)dn 1 §,r(0)dn,  §,r(O)dn | §,r(@)dr .
But

SarO)dr = 20 Suna,, ra0) dr < Do w(4 N A4, ) inf {r(0): 0 e AN 4, ;)

=25 SAnA,M r@)de = §,r0)dn
where the last inequality follows from (5). By similar arguments on r(6) it
can be shown that
§arn(0)dr < §,r@)dn < §,r*(0)dn
and then from (6) it follows that for every 4
§.r(@)dn = §,r0)dn.

Hence r(f) = r'(6) [] and (3) is proved.

(d) Until now, we have proved (3) provided that p, < P(6) < p, for all 4.
Consider the set &7 of all Pe 2% such that there exists an interval [p,, p/]
depending on P, that contains P(f) for all §. Then by similar arguments as
those given in Ferguson [2], it can be shown that (3) remains true for all P ¢ 57,
with 7(S) = u,(Ps) as above.

(e) Let 57 be the set of all Pe &7 such that there exists an interval [a, b],
depending on P, that contains u(P(f)) for all . We shall show that (3) holds
for all Pe 57,
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ProoF. Let us call I = inf {u(P(#)): 6 € ©} and S = sup {u(P(0)): § ¢ ©}. As-
sume for definiteness, that u(P(f)) > I for all § and that there exists some 6,
such that u(P(9,)) = S.

If weset S, = {0:1 < u(P@0) <1+ 1/n}, then S, | @ and #(S,) | 0. Letus
callp = P(¢,) foranarbitrary 6, € ® and define P,(6) = pford ¢ S, and P,(0) = P(6)
elsewhere. Since S, + @ and for a given ¢’ € S,, w(P,(6)) = inf {u(p), u(P(0"))}
for all 6, then P, satisfy the assumption of boundedness in (d) and it follows
that

™) wy(P,) = {5, u(P(0)) dz + u(p)x(S,) — § u(P(9)) dr .
Notice that if # > N, then 6, ¢ S, and C1 leads to
(®) 0 < u,(P,) — t,(P) .

Obviously u(P,(6)) — u(P(9)) < (u(p) — I)xs,(0) and then P, + }P, <, 4P +
3Pz, where u(P,(0)) = (u(p) — D) ().
Thus

®) w,(P,) — w,(P) < (u(p) — Dx(S,) 0.

From (7), (8) and (9), (3) follows immediately. Analogous extensions can be
proved for the other cases.

(f) We shall show in this last step that (3) holds for every P e 57 with z(S) =
,(Ps). This extension is based on the fact that every horse lottery is bounded
in the sense of (2). The proof of this property, as that of the boundedness of
u when there exists a denumerable partition of © such that each event has posi-
tive probability, can be achieved in a similar way as in Fishburn [3].

Proor. The definition of boundedness of a horse lottery P says that there
exists a pair of real numbers @, b, depending on P, such that z{0 : a < u(P(0)) <
b} = 1.

If weset ©, = {f#: —2" < u(P(6)) < 2"}, then there exists a positive integer
N such that for all » > N, [a, b] C [—2", 2"] and then 7(©,) = 1. Let us define

P"(0) = P(0) if 6¢0, and P.(0) = p, if 6e0,
=P if 6¢0, = P(9) if 6¢0O,,
hence, {P + {P, = 1P" + 1P, and then
(10) u,(P) = u,(P*) + u,(P,) forall n.

Now P"e &7, and then by (e)
u,(P*) = § u(P*(0)) dx = §o, u(P(0)) dr .
But if n > N, then #(0,) = 1 and then
(11) u,(P") = §o, w(P(0)) dr = §o u(P(0)) dr .

From (10) and (11) it follows that u,(P,) does not depend on # if n = N,and
therefore it only remains to prove that u,(P,) = 0 if n > N.
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Now obviously, for alln > N, P* | P and P >, P", so that, by MC1
u,(P) = u,(P) .

From (10) and this last relation, it follows immediately that u,(P,) = 0.

Let us assume that u,(P,) = ¢ > 0 for all n = N; then it is easy to see that
there exists p, € “such that u(p,) = ¢ so if we take P,(f) = p, for all 6, it follows
that P, >, P, for all» > N. Since P, | P,and P, >, P, for all n = N, then by
MCI1 P, >, P, and this contradicts the assumption that «,(P,) = ¢ > 0.

THEOREM 2. Let the weak orders < on & and <, on 52 * satisfy H1 and H2,
and let C1, C2 and C3 hold. If there exist utilities u on & and w, on S& * agreeing
with < and <, and a c-additive probability = on & such that (3) holds for all
P ¢ 57, then MC1 holds. :

Proor. Let us assume that P, | P and P, >, P. If we set 4, = {0: P,(0) +
P(9)}, then by (3)
u(P,) — w(P) = §,, {u(Py(0)) — u(P(0))} dr
where the right hand member converges to zero because 4, | @. If we notice
that u,(P,)= u,(P), it obviously follows from u,(P) — u,(P) = (w,(P) — u,(P,)) +
(4y(P,) — w,(P)) that

u,(P) — u(P) 2 0
and MC1 follows immediately.
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