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ON THE y-VARIATION OF PROCESSES WITH STATIONARY
INDEPENDENT INCREMENTS

By ITREL MONROE
University of Hawaii

Let {X:; ¢ = 0} be a stochastic process in RV defined on the probability
space (Q, &, P) which has stationary independent increments. Let v be
the Lévy measure for X; and let 8 = inf{a > 0: S,x|<1[x]au(dx) < oo}. For
each we Q, let Vi (X(+, w); a, b) = sup 17, | X(¢;, 0) — X(¢-1, »)|7 where the
supremum is over all finite subdivisionsa =ty < 1 < -+ < t,, = b. Then
if r > 8, P{V,(X(+, w); a,b) < oo} = 1.

1. Introduction. Let {X,; ¢ > 0} be a stochastic process in R defined on the
probability space (Q, &, P) which has stationary independent increments. It
will be assumed that X, has no normal component. Thus, if ¢, is the charac-
teristic function of X,, then ¢,(y) = exp[—1t¢(y)], where

(1.1) $0) = @)+ §[1 = e O T
with a ¢ R and v a Borel measure defined on RY with the property that
X v(dx
< oo
§ g Y

(Here (x, y) is the usual inner product and |x| = (x, x)*.) The measure v is called
the Lévy measure of X,.

We can assume that the sample functions of X, are right continuous and have
left hand limits. For a more complete discussion, see [3]-

In [2] Blumenthal and Getoor defined the index

(1.2) B = inf{a > 0: §, ., |x]*v(dx) < oo} .
They showed that if @ > §, then
(1.3) P{t/*X(t) >0 as t— 0} =

(Theorem 3.1), and if « < 8, then
(1.4) P{lim sup,_,, /% X(t)| = o0} = 1

(Theorem 3.3).
Actually their proof shows that if « < 3, then there is a sequence {s,} such
that s, — 0 and if {z,} is any subsequence of {s,} then

(1.5) P{lim sup, ., 2,77 X(t,)| = oo} =
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The subject of interest here however is the y-variation of X,. For a function
f:[a, b] — R, the y-variation of f over [a, b] is defined to be
(1.6) Vi(fs @, b) = sup 33, | f(t;) — [,

where the supremum is taken over all finite subdivisions a = £,< ¢, < - - - <¢, = b.
In [2] Blumenthal and Getoor showed that if y < j, then

(1.7) PV (X(+, ); a,b) = 0} = 1
(Theorem 4.1), while if 8 < y < 1, then
(1.8) PV (X(+, w); a,b) < o0} =1

(Theorem 4.2), and they conjecture that there is no need to assume that y < 1
in this last statement.

In this paper this conjecture will be verified. Note however that if 8 < 1,
then it is not necessary to assume that y < 1. It follows easily from the fact
that the sample paths of the process are right continuous and have left hand
limits, that, there is an upper bound to the number of terms |X(z;) — X(¢,_,)|
which are greater than one. Since y > 1, |X(¢;) — X(¢;_,)|" < |X(¢;) — X(¢;)]
if | X(2;)— X(¢;_))| < 1, it follows that if Vy(X; a, b)< oo, then V (X(-, w); a, b)< oo
for y > 1.

The method used to treat the case 8 > 1 is the one used by Blumenthal and
Getoor in [1] Theorem 4.1. There it was shown that if X(7) is a symmetric stable
process of index a and y > a, then V,(X) < oo with probability one. That
proof relied on the fact that the symmetric stable processes are “subordinated”
to Brownian motion. That is if W(¢) is a Wiener process, and 7(s) is a one
sided stable process of index «/2 independent of W(t), then W(T{(s)) has the
same distribution as X(s), the symmetric stable process of index . This proof
can now be extended to more general processes.

In [6] the following was shown. Let X(s) be a process with stationary inde-
pendent increments such that E{X(s)} = O for all s, and let (W,, &#,) be a Wiener
process. Then the g-fields ., can be extended (if necessary) to o-fields <, such
that (W,, <)) is still a Wiener process, and there are ¥, stopping time, TY(s),
such that W(T(s)) and X(s) are equivalent processes. This family of random
variables T(s) constitutes a right continuous stochastic process with stationary
independent increments. Moreover, as a stopping time, 7(s) is minimal for each
s, that is, the process W(t A T(s)) is uniformly integrable. It follows (see the
proof of Proposition 7 in [6]) that if E{|X(s)|} = E{|W(T(s))|} = M, then for any
constant K > 0

(1.9) P{T(s) > 2} < % + k2;”2.

These results will be used to extend the proof in [1].
For more recent papers on the variation of processes with stationary inde-
pendent increments, see [4] and [5].
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2. The index of 7,. In this section, it will be shown that if X, has index §
and X, = W(T,) where the T, are minimal and have stationary independent in-
crements, then T, has index /2.

LEMMA 1. Let X, be a real valued process with stationary independent increments
whose characteristic function is exp [ — tg(y)] where ¢(y) is given by (1.1). Suppose
moreover that E{|X,|} < co. If X, has index 1 < § < 2 (as defined in (1.2)), then

(a) if &> B, lim, o B[ X,]} = 0

(b) if a < B, there is a sequence t, — O such that lim, _,, E{t,~/*|X, |} = oco.

Proor. Suppose first that &« > 5. Let us write X, = X,” 4 X,”” where the
characteristic function of X,” is exp[—t¢’(p)],

(2.1) ') = Siaraa 1l — & + 1 —l:)|)x|2 v(dx) ,

and the characteristic function of X,” is exp[—t¢”(p)],
. ix ixy
¢"()’) - l(a’)’) + Slegll — e+ 1+ |xlz v(dx) .
Then it is well known that E{|X,"”|} < kt for some constant k so lim,_, E{t~V*|X,"”|}=
lim,_, #~* = 0. Since

E{ee| X[} = (e X/} + E{eV (X}

and X/’ clearly has index $ also, it can be assumed that X, = X,’. That is, it can
be assumed that X, has characteristic function exp[— #¢(y)], where

$() = Sjojaa 1 — € + 1 —l:)l)xlz v(dx) .

The characteristic function of =X, is exp[(—&(y)] where
€(») = Siaisi-1/a [1 — e 4 %Jﬂ(dx) ,

and p{x: xe A} = nfx: t7*xe A}. Let us write for a fixed ¢
rveX, =Y + Y,
where both Y, and Y, are infinitely divisible with Lévy measures z, and p, where
mAd) = (AN {x: |3 1)),
() = (AN (x: x> 1))
Of course
E{r|X,} < BV} + E{|Y]}.

We will treat these separately but in both parts we will need the following. If
G(r) = v{x: |x| > r}, then (Theorem 2.1 of [2]) for y > B, r’G(r) —» 0 as r — 0.
In particular G(r) < kr~7 for k sufficiently large.
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Consider E{|Y,[}. It is well known that
BV} < §parns [¥]p(d)
= 1§ a5 va [17X]0(dX)
= — 7Y $/a rG(dr)
= Y §h/a G(r) dr 4 tG(£%) .
For y > B but y < a, we have for k sufficiently large

E{|Y,|} < kt'™Y* Sl/e r77 dr + tG(2V%)
é k(l _ 7,.)—ltl—l/a{l _ t(l—r)/a} + tG(tl/a)
— k(l _ 7,)—l{tl—l/c\' _ tl—r/a} + tG(tl/a) .
Now y < a so ##77/*— 0 as t — 0. Since a > 1, #7¥/* - 0 as t — 0. Finally
since s*G(s) — 0 as s — 0, tG(#/*) — 0 as t — 0. Thus E{|Y,|]} — 0 as t — 0.
Now consider E{|Y,|}. We show first that the variance of Y, converges to zero
as t — 0. Again, it is well known that the variance of Y, is
L, X2y (dx) = t §95a X2t *u(dx)
= — Ve (10 PG(dr) .
If & = 2, then #'~** remains bounded so the variance of Y, goes to zero as t — 0.
Ifa<?2
§1 X2 (dx) = 2677 (Y G(ryr dr 4 £V t/=G(£/%)
< 2ke¥a (B ot dr 1 tG(£7)
— 2k(2 _ 7,.)—1t1—2/¢xt(2—7')/c\' + tG(tl/a)
= 2k(2 — y)7er/* 1 tG(H)
where k is sufficiently large and 8 < y < a < 2. These last terms go to zero

as t — 0.

Now by (1.3), VX, -0ast— 0so ¥, — 0 as ¢t —» 0. But as the variance
of Y, goes to zero as t — 0, we must have E{Y,} — 0 as ¢t — 0. This completes
the proof of the case a > B.

Suppose that « < 8. Choose a < 7 < f and a sequence s, such that 5,7X,
has no subsequence which converges to zero (see (1.5)). If

lim inf, ., E{s, (X, |} < oo,
then a subsequence {z,} can be selected such that
B, X, [} < M
for some M and all n. But then
E{t,”11X,, |} =0

since y > a, and this means that {z,} has a subsequence , such thatu,7|X, [|—0
almost surely which cannot happen. Thus
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lim infE{sn—l/“|Xsn[} = 00 .
This completes the proof of the lemma.

THEOREM 1. Let (W,, &) be a Wiener process and T(s) be a family of right
continuous minimal <, stopping time such that W(T(s)) and T(s) are both processes
with stationary independent increments and such that W(T(s)) is a martingale. If
the index (1.2) of W(T(s)) is 8 = 1, then the index of T(s) is 8/2.

Proor. First it will be shown that the index of T{(s) is less than or equal to
B8/2. According to (1.5), it is enough to show that if « > 8, then s,~%*T(s,) — 0
in probability for every sequence s, — 0. Indeed if 5,~**7T(s,) — O in probability,
then there is a subsequence {z,} of {s,} such that ¢,~%=T(¢,) — 0 almost surely.
This clearly contradicts (1.5).

To show that s~¥2T(s) — 0 in probability choose 4 > 0 and recally that by (1.9)

P{s‘z/"T(s)l = 2} = P{T(s) = s¥*4}
< 1k + ks~ 2 E{| W(T(9))|}? ,

where k is any positive number. Let k = 22~'. Since a > $, by Lemma 1, if
s is small enough then
E{|W(T(s))|} < 27tk AsV= .
Thus
P{s~*T(s) = 2} < 2/2 + K™Y 2~ (A2s¥°27k™%) = 4.
As 2 > 0 was arbitrary, the proof that s=¥*T(s) — 0 in measure if a > § is
complete.

To show that the index of T(s) is not smaller than §/2, it will be shown that
if s,7%*T(s,) — 0 in probability, then for any y > a, 5,77 W(7{(s,)) — 0 in proba-
bility. If a/2 is larger than the index of 7(s), then by (1.3) s,~*/*T{(s,) — 0 for
all sequences s, — 0. But if @ < y < 8, then by (1.5) there is a sequence s, — 0
such that s,~"7W(T(s,)) does not converge to zero even in measure. Thus if
a/2 is larger than the index of T(s), then a cannot be smaller than the index
of B.

Suppose that s, — 0 and s,~%*T(s,) — 0 in probability. Choose ¢ > 0. Since
the index of W(t) is 2, for any y > « there is a 4 such that

PUW(T(0)] = /005 1 < 2} < ¢f2..
For n large enough, by assumption,
P{T(s,) = s,7%"/*} < ¢/2.
We can assume that s,%%*/* < 2 also. Thus

PIW(T(s,))| < [T(s)]*"75 T(s,) < 8,7} > 1 — e,
or
PIW(T(s.))| < s5,7¢} > 1 — ¢,
or
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Ps,1|W(T(s,))| > ¢} <e,

so s,”Y7|W(T(s,))| — O is probability which was to be proved. This completes
the proof of the theorem.

3. The y-variation of X,.

THEOREM 2. Let {X,; t = 0} be a process in RY with stationary independent in-
crements whose characteristic function is exp[ —t¢(y)] where ¢(y) is given by (1.1).
Let 3 be the index of X, as defined in (1.2) and suppose that 1 < 8 < 2. If v > B,
then

PV (X(+, w); a,b) < o0} =1,
where V., is defined in (1.6).

Proor. It is enough to treat the case [a, b] = [0, 1]. The proof will be broken
into several parts, each one depending on the preceding.

Assume that X, is real valued, has index 8 < 2 and that E{X,} = O for all ¢
This means that X, is a right continuous martingale so there is a Wiener process
(W, Z,) and a family of minimal &, stopping times 7(s) which forms a right
continuous process with stationary independent increments such that W(T(s))
and X(s) have the same joint distributions. It is therefore enough, in this case,
to show that

PV, (WoT(+,0);0,1) < 00} = 1.

By Theorem 1, the index of T'is 8/2 < 1.

The proof now is exactly as that given in [1] page 270.

Choose 4 < 1 such that 1 = y4 > B/2. Given 6 > 0, there exists a K < oo
and a set Q, c Q with P(Q,) > 1 — /3 such that T(1, 0) < K if 0 € Q,. Lévy’s
theorem on the modulus of continuity of the Brownian sample path shows that
there are random variables M(w) and () such that M(v) < oo and ¢(w) > 0
almost surely and such that

|W(ty, w) — W(t,, w)] £ M(w)|t, — t|*

forall0 <t <t < Kand|t, — t| < ¢(w). In particular, there is an M < oo,
ane¢ > 0, and a set Q, ¢ Q with P(Q,) > 1 — 4/3 such that M(w) <M and e(w) = ¢
if € Q,. Finally, there exists a J < oo and a set Q, ¢ Q with P(Q,) > 1 — §/3
such that |W(t, )| < J for all t < k provided w e Q,. Let Q= Q, N Q, N Q,
PQ)>1—90. f0<t, <t < -+ <t, <1 is any finite subset of [0, 1], then
at most K’ = [K/e] 4+ 1 of the differences T(¢;,,, o) — T(¢;, ) can exceed e
provided w € Q,. Thus if & € Q,, we have

231 [WAT()) — WAT(4; )"
< QIYK' + M7y T() — T(-0)|™

where the last sum is taken over those j’s for which T(¢;, w) — T(¢,_;, 0) < e.
Thus if w € Q,, we have
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r — Var Wo T(+, 0) < QJ)'K' + M1[dy — Var T(+, v)] .

But 1 = 4y > /2 so by Theorem 4.2 of [2] the last term is finite for almost all
o. Thus P[y — Var Wo T(-, w) < oo] = 1 — d and since  was arbitrary, this
completes the proof of the case when X, is a real valued martingale.

Now suppose that X, is any real valued process with stationary independent
increments which has index g < 2. Then X, can be decomposed into the sum
of two process Y, and Z, such that Y, has finite expectation and Z, has only a
finite number of jumps on t e [0, 1]. In particular, if g is the Lévy measure of
X,, let Y, have Lévy measure ,(4) = (4 n (—1, 1)) and Z, have Lévy measure
to(A) = (A N (—1, 1)). The argument is familiar. Clearly the y-variation of
X, is finite if and only if the y-variation of Y, is finite. Thus we can assume
that E{X,} exists. )

In actual fact we can assume that E{X,} = 0. Indeed if E{X,} = mz, then let
Y, be a Poisson process with parameter —m. That is, E{Y,} = —m. Then if
Z, = X, + Y,, we have E{Z,} = 0 and the Lévy measures of Z, and X, are the
same on the open inverval (—1, 1). By the argument above X, has finite y-varia-
tion if and only if Z, does.

To complete the proof in the case X, is real valued of index 8 < 2, we need
only note that Z,, and indeed any process whose Lévy measure agrees with the
Lévy measure on a neighborhood of zero, also has index g.

Suppose that X, is real valued and has index 2. Then the proof just given
applies except for the assertion that the index of the subordinator is less than
1. Thus Theorem 4.2 of [2] does not apply. However we now see that we need
only assume that 1y < 2 in order to assert that

P{iy — VarT(+, w) < oo} = 1.

This can always be achieved by choosing 4 small enough so the proof of the
theorem in the case X, is real valued is.complete.
If X, takes values in R", let X (¢) be the ith component of X(f). Since for

r> B,

X, —»0 a.s. as t—0,

we have
X% -0 a.s. as t—0,
so the index of X, does not exceed 8. Thus if y > § the y-variation of X, is

finite for all i.
Let0=¢t,<t,< --- <t,=1. Thenify > 8,
G=1 [ X(8) — X(0)]" < 25 NP max gy [X () — X0 (t;_))7
SN2 DL XOW) — X0 )l
< N2 3N | p-variation (X9) < oo

almost surely. This completes the proof of the theorem.



1220 ITREL MONROE

REFERENCES

[1] BLUMENTHAL, R. M. and GETOOR, R. K. (1960). Some theorems on stable processes. Trans.
Amer. Math. Soc. 95 263-273.

[2] BLUMENTHAL, R. M. and GETOOR, R. K. (1961). Sample functions of stochastic proc. with
stationary independent increments. J. Math. and Mech. 10 493-516.

[3] BLUMENTHAL, R. M. and GETOOR, R. K. (1968). Markov Processes and Potential Theory.
Academic Press, New York.

[4] GrEENwOOD, P.E.(1969). The variation of a stable path is stable. Z. Wahrscheinlichkeitstheorie
und Verw. Gebiete 14 140-148.

[5] MiLLER, P. W. (1971). Path behavior of processes with stationary independent increments.
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 17 53-73.

[6] MoONROE, I.(1972). Onembedding right continuous martingales in Brownian motion. Ann.
Math. Statist. 43 0000-0000.



