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AUTOREGRESSIVE SERIES

By JiRf ANDEL

Charles University and Mathematical Institute of the Czechoslovak
Academy of Sciences

Let {X:} be a p-dimensional stationary autoregressive series. The
main result is the determination of the autoregressive matrices of the series
which is reversed in time with respect to {X;}. The series which is reversed
with respect to itself is called symmetric. The conditions for the symmetry
of {X;} are given in the paper. The inverse of the covariance matrix is
evaluated for the finite part of the symmetric autoregressive series.

0. Summary. Consider a p-dimensional stationary autoregressive series {X,}
of order n. Denote its matrix of covariance functions by (R;,(#)). A p-dimen-
sional stationary autoregressive series {Z,} is reversed (in time) with respect to
{X,}, if {Z,} is of the same order as {X,} and its matrix of covariance functions
equals (R;,(—1t)). The series {X,} which is reversed with respect to itself is
called symmetric. Obviously, {X,} is symmetric if and only if R;,(f) = R;,(—1)
holds for 1 <j, k<pand —o0 <t < 0. Let {X,}] have autoregressive
matrices 4,, - - -, A4,. The autoregressive matrices B,, - - ., B, are found for {Z,}
which is reversed with respect to {X,}. Bartlett considered the same problem
for n = 1 (see [3], Section 9.3, or [4]). In this special case our results coincide
with his. Further, the paper contains necessary and sufficient conditions on
Ay -+, A, in order for {X,} to be symmetric. The explicit formula for the
inverse of the covariance matrix Var (X/, ---, X))’ is given when {X}} is sym-
metric and N = 2n.

The results concerning the reversed series are applicable in the theory of tests
of fit for multiple autoregressive series (see [4]). Another field of application is
the “backward extrapolation”, when {X,}, is known and X, is to be estimated
for some s < 0.

1. Preliminaries. Let {Y,}i>_., be a series of uncorrelated p-dimensional
random vectors such that EY, = 0 and Var Y, = I, where Var Y, denotes the
covariance matrix of vector Y, and [/ is the unit matrix. Let 4, -.-, 4, be
p X p matrices with real elements such that

(i) det 4, 0
(i) 4,+0
(iii) all the roots of equation det (}7_, 4;4"~9) = 0

are smaller than 1 in absolute value.
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1198 JIRf ANDEL

Define series {X,}2_., by the recurrent formula

(1) i A X, =Y, —oco < tL oo,
or equivalently

(2) X, =25 UX_; + A47'Y,, —oo JtL oo,
where

3 U= —A,"4;, 1<j<n.
Then {X,} is the p-dimensional autoregressive series of order n. It is stationary
under above conditions, as is well known. A4, ---, 4, will be called the auto-
regressive matrices corresponding to {X,}. Put X, = (X}, - .., X,?)’, where the

prime denotes the transposition. Covariance function R;,(¢) is defined by the
formula R, (t) = EX/X (1 < j, k < p; —o0 < t < ), as EX, = 0 obviously
holds.

LeMMA 1. The series {X,} has the matrix of spectral densities
(4) f) = (f1(D)4mr = Q0[O (HQA], —7=<2=7,
where
0) = Xn_y Aje it Q') = Xty A’ et

Proor. See [7] or [5]. Note that somewhat different notation was used in
[7]. By f(2) we mean the matrix corresponding to (R;,(¢)) in the usual sense:

(5) Ry(t) = §7. 6, d2, 1Sjksp—co<t< oo

LemMMA 2. Let N > n. Denote B=Var (X/, ---, XY, G=Var(X/,---, X,/)’.
The matrix B is regular and it is the unique solution of the equation

6) B = MBM + A,

where
o I O 0 0 O 0 0
o o0 1 ...0 0 O 0 0

(7) M= ... ... |, A=
0O 0 O N § o o0 0 0
v, v,_U,, ..U 0 O 0 (4, 4,)!

are the matrices of the type np X np written in terms of the blocks of the type p X p.
Put B! = E = (E,,)*,_,, where E,, are p X p blocks. The matrix G is regular and
for its inverse G™' = H = (H,)¥,_, written in terms of the p X p blocks the
following formulas hold:

(8) H, = E, + Spagenon g A, for 1<st<n,
©) H, = Spinesmeon 4 A, otherwise.

Proor. See [1].
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Lemma 2 and Theorem 8 (see later) are generalizations of results for the one-
dimensional case. The references concerning this case are mentioned in [1].
Still further reference is [2].

LeMMA 3. The roots of the equation det (},%_, A; A"~7) = O are the same as the
roots of the matrix M.

Proor. See [1].

2. The reversed autoregressive series. Let {Z,} be the p-dimensional auto-
regressive series defined by

(10) 25082, ;=7Y,, —oco Kt o,
where

(11) det B, + 0

and

(12) the equation det (X7_, B; 2"~7) = 0 has all the roots smaller
than 1 in absolute value.

Then {Z,} is stationary. Let {X,} defined by (1) have the matrix of the
covariance functions (R;(?))?,-,- If {Z,} has the matrix of the covariance func-
tions (R;,(—1))? .., we say that {Z,} is reversed (in time) with respect to {X,}.
On the other hand, {Z,} is reversed with respect to {X,} when Cov (Z,4, Z}) =
Cov (Xi, X)) forl <j,k <pand —co < t < oo, Wwhere Z, =(Z}, ---, Z}).
We shall prove that the reversed series exists and derive its autoregressive
matrices. We shall see that the assumption 4, # 0 implies B, + 0 so that the
reversed series is of the same order as the given one.

THEOREM 4. The series {Z,} is reversed with respect to {X,} if and only if its auto-
regressive matrices satisfy (11), (12) and
(13) w20 Al A = Dkon Bio By O<shs=n.
Proor. The conditions (11) and (12) are self-evident. Denote the matrix of
spectral densities of {Z,} by g(1). According to Lemma 1

9(3) = Qo) [S(D)S(AH] —r<A=n7,

holds, where
S(A) = X Bje ¥, §'(2) = Xn_, B eiit.

Clearly, {Z,} is reversed with respect to {X,} if and only if f(2) = g(2), i.e., if
and only if 0’(2)Q(2) = §'(2)S(2). This leads to the condition
ZL_n ettt Zl?l:;x(:é?oj)h) A;H—Ic A4, = Z;:=—n ettt Z;‘J‘:‘&‘Zﬁé?oﬁf‘f B, B,
: —nr <A<,

Thus the coefficients of ei** must be the same on both sides, —n < & < », and
we obtain (13). The proof is finished.
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Put
(14) V,= —B,'B;, 1<j<n.
The relation (10) may be written equivalently in the form
(15) Z,=31.,V,Z,_; + B'Y,, —o0 Lt <L oo,
LemMA 5. Let B= Var (X/, --., XY, B' = E = (E,)",.,. Put E, =0 if
max (s, t) > n. Then
(16) A':L—sAn—t = Est Es+1,t+l + (Es+1,l + A’:L—SA'II:)
X (Ell + An,An)_l(El,t+1 + An,An—t)
holds for 1 < s,t < n.
Proor. Denote G = Var (X/, ---, X, ,,)’. According to Lemma 2
G—l — H — <(Est + A':L+1—s + An+1—t)?,t=1 (A':L-Fl—s AO)?=1> s
(AOI An+1—t)?=l AOI AO
where H is divided into the four submatrices so that H is of the type
<np><np anp)_
pXnp pXp

Now, introduce matrices Q = (Qy;, @y, *+ -, O1,), R = (R,,)*,_,, where Q,, and
R,, are the blocks of the type p X p defined by the following formulas:

Qlt = El,t+1 + An,An—t ’ ‘Rst = s+1,t+1 + A:L—sAn—t > 1 é S, té n.
Then
H = <E11 + 4,4, Q> X
(04 R
Consider this division and evaluate H-! as the inverse of the matrix divided into

the four blocks. The well-known formula gives (see [6], Chapter 1b, Example
2.7, for example)

H—l _ <* k > ’
* [R—Q(E,+ 4,4,)7 0]
where the symbol * denotes the blocks which are not important for our purpose.
Since H~! = G, we have
Var (X, -+, X)) = [R— Q'(Ey + 4,/4,)7' 0.

Because {X,} is stationary, we have Var (X;/, - - -, X,,,) = Var (X/, - - -, X,)Y = B
and E= R — Q'(E,, + 4,’ 4,)*Q holds. Writing this equality in the blocks we
obtain (16).

THEOREM 6. The autoregressive matrices B, - .., B, belong to the series {Z}

reversed with respect to {X,} if and only if
(17) B/B; = E, ;;, + 4,/ 4,_;, 0<j=n,
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holds, where E, , ., = 0.

Any solution B, - - -, B, of (17) has the following properties.

(i) B, is regular.

(ii) The roots of the equation det (3,%_, B;2"~9) = O are the same as those of
det (250 4;4"7%) = 0.

(iii) If A, #+ O, then B, + 0.

The matrices V introduced in (14) are defined by (17) uniquely. It holds that
(18) V= —(Ba+ AJA)(Euj + 4/ 4,.),  1<j=n,
where E, = 0 for max (s, t) > n.

Proor. First we prove the necessity of the condition (17). Let N = 2n and
put G = Var (X/, - -+, X)) = (G,,)¥,_,. Let the series {Z,} defined by (10) be
reversed with respect to {X,}. Denote K = Var(Z/, ---, Z,’) and introduce
matrix L of the type Np x Np written in terms of the p X p blocks

0o 0.--0 I
N

(19) L= o 0 0

I 0..-0 O
Then G = LKL holds and it implies G™* = LK~'L because of L™ = L. Write
G'=H=(H,)" _, K'=C=(C,),., in terms of p x p blocks. The relation
H = LCL implies H,, = Cy,,_, vy, for 1 < s, ¢t < N. Using (8) and (9) for
s=1t=1,2,...,nweget (17) for 0 < j < n. The condition (17) forj =n
follows from (13) as the special case for & = n.

And now the sufficiency of (17). We use Theorem 4. (17) gives for j =0
that BB, = E,, + A,’ A,. The matrix B is regular according to Lemma 2 and
thus it is positive definite. The same is true for £ = B~ and for E,. Then
E, + A, A, is positive definite and B, must be regular. The relation (11) as
well as assertion (i) of our theorem is proved. As for (13), we get from (17)

B/ B; = (Eypry + Ao A)Ey + A A)E, 10 + A Auy) s
l<jk=n,

because E.,,, = E,,,, with regard to the symmetry of the matrix E. (Re-
member, that E,, = 0 for max (s, ) > n.) Making use of formula (16) we have

wt Ay = A A+ XS T (Easikn—k — Bacickrinoin)
+ 27 Bacpennn + A ) (B + A A) Ny + A2 A
= A, Ay + B + 20207 By Bay = 2k Bica B
The condition (12) follows from assertion (ii) and, therefore, let us prove (ii).

Suppose first that the matrix 4, is regular. Then U, is regular, too. Let us
start with equation (6). By evaluating the inverse matrices on both sides, we
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obtain
(20) E= (M + EM-'A\)EM~,
It may easily be proved that

o= (AU

D, 0
where 4 = —-U,"(U,_,, --+, U,), D, =diag(/, - - -, I). Let L be defined by (19)
for N = n. We have from (20) ‘ \

(1) L(M + AME)L = LE-'M'EL .

Put D, = U, + (4/4)*U,7"E, ,_;,forl <j<mandlet D=(D,_,, ---, D).
After some computation we get :

M+ AM"‘E:(O Dl).
D, D

n

Further

LM + AM'E)'L = (g . l]){’ ).

n

where R = —D, (D, ---, D,_;). In view of (3) and (18), which is an easy
consequence of (17) and (i), we come to ’

D, = [U, + (A/A) U,/ E 7' = —(E, + 4,’4,)7*4,/4, = V,,
—D,7'D; = (B, + A,/A,)7 A ALU; + (A A) U TE, o jn] = Ve
for 1<j<n.

We know that L = L-'. Relation (21) implies that the matrix L(M 4
AM'-*E)~'L has the same roots as the matrix M’, which has the same roots as
M. Denote §=(V,,, ---,V;). Obviously, M has the same roots as the

matrix
< 0 D, )
v, s /7
which has the same roots as the equation det (}7_, B;4"~/) = 0 according to
Lemma 3. But the roots of M are the same as those of det (};7_, 4;4"7) = 0.

If 4, is not regular, we obtain the proof of (ii) by the well-known limit
procedure, when a sequence of regular matrices tending to 4, is chosen. We
omit the details.

The assertion (iii) follows from (17) immediately, when we put j= n.
Theorem 6 is proved.

The matrix B, may be an arbitrary solution of B B/ = E,, + 4,'4,, €. g.
B, = (E, + A4,’A4,)}. If B, is chosen, then B, --., B, are determined by (17)
uniquely.

In the special case n = 1 put U, = U, V;, = V. After some computations we
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obtain V' = BU'E, (B, B)™' = B — BU'EUB, which is the same as the results
derived by Bartlett in [3], Section 9.3, and in [4].

3. Symmetric autoregressive series. The p-dimensional stationary autoregres-
sive series {X,} is called symmetric, if it is reversed with respect to itself. We
give a simple condition for such a symmetry.

THEOREM 7. The stationary autoregressive series {X,} is symmetric if and only if
(22) 2kzs Av A = 2050 A A s l=sh=n.

Proor. Theorem 7 follows immediately from Theorem 4.

For example, the autoregressive series of the first order is symmetric if and
only if the product 4,4, is the symmetric matrix. For p = 1 the problem is
trivial because every one-dimensional stationary series is symmetric, as is well

known.
If {X,} is symmetric, then the blocks H,, and E,, mentioned in Lemma 2 may

be evaluated explicitly.

THEOREM 8. Let {X,} be symmetric. Then
(23) Hy, = Hyo i for 1<st<N,
(24) E, = Spned (A A, — Ayy Ay

for 1 <s,t<n.
If N = 2n, then
(25) H, = Yminen g 4, for 1

Proor. Write G in terms of the p x p blocks G, G = (G,)Y,_,. If {X,} is
symmetric, then G, = G,, for 1 <5, < N. It is easy to see that G = LGL,
where L is defined in (19). Since L™ = L, we get G™' = LG~'L. This implies
formula (23). If N = 2n, then (25) is the consequence of (23) and (9). Finally,
(24) follows from (8) and (25). It is clear that E , does not depend on N.

IA

s, t

IA

n.
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