SYMMETRIC AND REVERSED MULTIPLE STATIONARY AUTOREGRESSIVE SERIES

By Jiří Anděl

Charles University and Mathematical Institute of the Czechoslovak

Academy of Sciences

Let $\{X_t\}$ be a *p*-dimensional stationary autoregressive series. The main result is the determination of the autoregressive matrices of the series which is reversed in time with respect to $\{X_t\}$. The series which is reversed with respect to itself is called symmetric. The conditions for the symmetry of $\{X_t\}$ are given in the paper. The inverse of the covariance matrix is evaluated for the finite part of the symmetric autoregressive series.

0. Summary. Consider a p-dimensional stationary autoregressive series $\{X_t\}$ of order n. Denote its matrix of covariance functions by $(R_{jk}(t))$. A p-dimensional stationary autoregressive series $\{Z_t\}$ is reversed (in time) with respect to $\{X_t\}$, if $\{Z_t\}$ is of the same order as $\{X_t\}$ and its matrix of covariance functions equals $(R_{jk}(-t))$. The series $\{X_t\}$ which is reversed with respect to itself is called symmetric. Obviously, $\{X_t\}$ is symmetric if and only if $R_{jk}(t) = R_{jk}(-t)$ holds for $1 \le j$, $k \le p$ and $-\infty < t < \infty$. Let $\{X_t\}$ have autoregressive matrices A_0, \dots, A_n . The autoregressive matrices B_0, \dots, B_n are found for $\{Z_t\}$ which is reversed with respect to $\{X_t\}$. Bartlett considered the same problem for n = 1 (see [3], Section 9.3, or [4]). In this special case our results coincide with his. Further, the paper contains necessary and sufficient conditions on A_0, \dots, A_n in order for $\{X_t\}$ to be symmetric. The explicit formula for the inverse of the covariance matrix $\text{Var}(X_1', \dots, X_N')'$ is given when $\{X_t\}$ is symmetric and $N \ge 2n$.

The results concerning the reversed series are applicable in the theory of tests of fit for multiple autoregressive series (see [4]). Another field of application is the "backward extrapolation", when $\{X_t\}_{t=0}^N$ is known and X_s is to be estimated for some s < 0.

- 1. Preliminaries. Let $\{Y_t\}_{t=-\infty}^{\infty}$ be a series of uncorrelated p-dimensional random vectors such that $EY_t=0$ and $Var\ Y_t=I$, where $Var\ Y_t$ denotes the covariance matrix of vector Y_t and I is the unit matrix. Let A_0, \dots, A_n be $p \times p$ matrices with real elements such that
 - (i) det $A_0 \neq 0$
 - (ii) $A_n \neq 0$
 - (iii) all the roots of equation det $(\sum_{i=0}^{n} A_i \lambda^{n-i}) = 0$

are smaller than 1 in absolute value.

Received March 3, 1971; revised December 10, 1971.

Define series $\{X_t\}_{t=-\infty}^{\infty}$ by the recurrent formula

$$\sum_{i=0}^{n} A_i X_{t-i} = Y_t, \qquad -\infty < t < \infty,$$

or equivalently

(2)
$$X_t = \sum_{j=1}^n U_j X_{t-j} + A_0^{-1} Y_t, \qquad -\infty < t < \infty,$$

where

(3)
$$U_{j} = -A_{0}^{-1}A_{j}, \qquad 1 \leq j \leq n.$$

Then $\{X_t\}$ is the *p*-dimensional autoregressive series of order *n*. It is stationary under above conditions, as is well known. A_0, \dots, A_n will be called the autoregressive matrices corresponding to $\{X_t\}$. Put $X_t = (X_t^1, \dots, X_t^p)'$, where the prime denotes the transposition. Covariance function $R_{jk}(t)$ is defined by the formula $R_{jk}(t) = EX_t^j X_0^k (1 \le j, k \le p; -\infty < t < \infty)$, as $EX_t = 0$ obviously holds.

LEMMA 1. The series $\{X_i\}$ has the matrix of spectral densities

(4)
$$f(\lambda) = (f_{jk}(\lambda))_{j,k=1}^{p} = (2\pi)^{-1} [\bar{Q}'(\lambda)Q(\lambda)]^{-1}, \qquad -\pi \leq \lambda \leq \pi,$$

where

$$Q(\lambda) = \sum_{j=0}^{n} A_j e^{-ij\lambda}, \qquad \bar{Q}'(\lambda) = \sum_{j=0}^{n} A_j' e^{ij\lambda}.$$

PROOF. See [7] or [5]. Note that somewhat different notation was used in [7]. By $f(\lambda)$ we mean the matrix corresponding to $(R_{jk}(t))$ in the usual sense:

(5)
$$R_{jk}(t) = \int_{-\pi}^{\pi} e^{it\lambda} f_{jk}(\lambda) d\lambda, \qquad 1 \leq j, k \leq p; -\infty < t < \infty.$$

LEMMA 2. Let N > n. Denote $B = \text{Var}(X_1', \dots, X_n')'$, $G = \text{Var}(X_1', \dots, X_N')'$. The matrix B is regular and it is the unique solution of the equation

$$B = MBM' + \Lambda ,$$

where

(7)
$$M = \begin{pmatrix} 0 & I & 0 & \cdots & 0 \\ 0 & 0 & I & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & I \\ U_n & U_{n-1} U_{n-2} & \cdots & U_1 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & (A_0' A_0)^{-1} \end{pmatrix}$$

are the matrices of the type $p \times p$ written in terms of the blocks of the type $p \times p$. Put $B^{-1} = E = (E_{st})_{s,t=1}^n$, where E_{st} are $p \times p$ blocks. The matrix G is regular and for its inverse $G^{-1} = H = (H_{st})_{s,t=1}^N$ written in terms of the $p \times p$ blocks the following formulas hold:

(8)
$$H_{st} = E_{st} + \sum_{k=n+1}^{\min(n+s,n+t,N)} A'_{k-s} A_{k-t} \quad \text{for} \quad 1 \leq s, \ t \leq n,$$

(9)
$$H_{st} = \sum_{k=\max(s,t)}^{\min(n+s,n+t,N)} A'_{k-s} A_{k-t} \quad otherwise.$$

Proof. See [1].

Lemma 2 and Theorem 8 (see later) are generalizations of results for the onedimensional case. The references concerning this case are mentioned in [1]. Still further reference is [2].

LEMMA 3. The roots of the equation $\det \left(\sum_{j=0}^n A_j \lambda^{n-j}\right) = 0$ are the same as the roots of the matrix M.

Proof. See [1].

2. The reversed autoregressive series. Let $\{Z_t\}$ be the *p*-dimensional autoregressive series defined by

(10)
$$\sum_{j=0}^{n} B_j Z_{t-j} = Y_t, \qquad -\infty < t < \infty,$$

where

(11)
$$\det B_0 \neq 0$$

and

(12) the equation $\det \left(\sum_{j=0}^{n} B_{j} \lambda^{n-j} \right) = 0$ has all the roots smaller than 1 in absolute value.

Then $\{Z_t\}$ is stationary. Let $\{X_t\}$ defined by (1) have the matrix of the covariance functions $(R_{jk}(t))_{j,k=1}^p$. If $\{Z_t\}$ has the matrix of the covariance functions $(R_{jk}(-t))_{j,k=1}^p$, we say that $\{Z_t\}$ is reversed (in time) with respect to $\{X_t\}$. On the other hand, $\{Z_t\}$ is reversed with respect to $\{X_t\}$ when $\operatorname{Cov}(Z_t^{\ j}, Z_0^{\ k}) = \operatorname{Cov}(X_0^{\ j}, X_t^{\ k})$ for $1 \le j, k \le p$ and $-\infty < t < \infty$, where $Z_t = (Z_t^1, \cdots, Z_t^p)'$. We shall prove that the reversed series exists and derive its autoregressive matrices. We shall see that the assumption $A_n \ne 0$ implies $B_n \ne 0$ so that the reversed series is of the same order as the given one.

THEOREM 4. The series $\{Z_t\}$ is reversed with respect to $\{X_t\}$ if and only if its autoregressive matrices satisfy (11), (12) and

(13)
$$\sum_{k=0}^{n-h} A'_{h+k} A_k = \sum_{k=h}^{n} B'_{k-h} B_k, \qquad 0 \leq h \leq n.$$

PROOF. The conditions (11) and (12) are self-evident. Denote the matrix of spectral densities of $\{Z_t\}$ by $g(\lambda)$. According to Lemma 1

$$g(\lambda) = (2\pi)^{-1} [\bar{S}'(\lambda)S(\lambda)]^{-1}, \qquad \qquad -\pi \leq \lambda \leq \pi,$$

holds, where

$$S(\lambda) = \sum_{i=0}^{n} B_i e^{-ij\lambda}, \qquad \bar{S}'(\lambda) = \sum_{i=0}^{n} B_i' e^{ij\lambda}.$$

Clearly, $\{Z_t\}$ is reversed with respect to $\{X_t\}$ if and only if $f(\lambda) = \overline{g(\lambda)}$, i. e., if and only if $\overline{Q}'(\lambda)Q(\lambda) = S'(\lambda)\overline{S}(\lambda)$. This leads to the condition

$$\begin{array}{l} \sum_{h=-n}^{n} e^{ih\lambda} \sum_{k=\max(0,-h)}^{\min(n,n-h)} A'_{h+k} A_k = \sum_{h=-n}^{n} e^{ih\lambda} \sum_{k=\max(0,h)}^{\min(n,n+h)} B'_{k-h} B_k , \\ & -\pi \leq \lambda \leq \pi . \end{array}$$

Thus the coefficients of $e^{ih\lambda}$ must be the same on both sides, $-n \le h \le n$, and we obtain (13). The proof is finished.

Put

$$(14) V_{i} = -B_{0}^{-1}B_{i}, 1 \leq j \leq n.$$

The relation (10) may be written equivalently in the form

(15)
$$Z_{t} = \sum_{j=1}^{n} V_{j} Z_{t-j} + B_{0}^{-1} Y_{t}, \qquad -\infty < t < \infty.$$

LEMMA 5. Let $B = \text{Var}(X_1', \dots, X_n')', B^{-1} = E = (E_{st})_{s,t=1}^n$. Put $E_{st} = 0$ if $\max(s, t) > n$. Then

(16)
$$A'_{n-s}A_{n-t} = E_{st}E_{s+1,t+1} + (E_{s+1,1} + A'_{n-s}A_n) \times (E_{11} + A'_{n}A_n)^{-1}(E_{1,t+1} + A'_{n}A_{n-t})$$

holds for $1 \leq s, t \leq n$.

PROOF. Denote $G = \text{Var}(X_1', \dots, X_{n+1}')'$. According to Lemma 2

$$G^{-1} = H = egin{pmatrix} (E_{st} + A'_{n+1-s} + A_{n+1-t})^n_{s,t=1} & (A'_{n+1-s}A_0)^n_{s=1} \ (A'_0A_{n+1-t})^n_{t=1} & A'_0A_0 \end{pmatrix},$$

where H is divided into the four submatrices so that H is of the type

$$\begin{pmatrix} np \times np & np \times p \\ p \times np & p \times p \end{pmatrix}.$$

Now, introduce matrices $Q=(Q_{11}, Q_{12}, \dots, Q_{1n})$, $R=(R_{st})_{s,t=1}^n$, where Q_{1t} and R_{st} are the blocks of the type $p\times p$ defined by the following formulas:

$$Q_{1t} = E_{1,t+1} + A_n' A_{n-t}, \qquad R_{st} = E_{s+1,t+1} + A'_{n-s} A_{n-t}, \qquad 1 \leq s, t \leq n.$$

Then

$$H = \begin{pmatrix} E_{11} + A_n' A_n & Q \\ Q' & R \end{pmatrix}.$$

Consider this division and evaluate H^{-1} as the inverse of the matrix divided into the four blocks. The well-known formula gives (see [6], Chapter 1b, Example 2.7, for example)

$$H^{-1} = \begin{pmatrix} * & * & * \\ * & [R - Q'(E_{11} + A_n'A_n)^{-1}Q]^{-1} \end{pmatrix},$$

where the symbol * denotes the blocks which are not important for our purpose. Since $H^{-1} = G$, we have

$$\operatorname{Var}(X_2', \dots, X_{n+1}')' = [R - Q'(E_{11} + A_n' A_n)^{-1} Q]^{-1}.$$

Because $\{X_t\}$ is stationary, we have $\operatorname{Var}(X_2', \dots, X_{n+1})' = \operatorname{Var}(X_1', \dots, X_n')' = B$ and $E = R - Q'(E_{11} + A_n'A_n)^{-1}Q$ holds. Writing this equality in the blocks we obtain (16).

THEOREM 6. The autoregressive matrices B_0, \dots, B_n belong to the series $\{Z_t\}$ reversed with respect to $\{X_t\}$ if and only if

(17)
$$B_0' B_j = E_{1,j+1} + A_n' A_{n-j}, \qquad 0 \leq j \leq n,$$

holds, where $E_{1,n+1} = 0$.

Any solution B_0, \dots, B_n of (17) has the following properties.

- (i) B_0 is regular.
- (ii) The roots of the equation $\det\left(\sum_{j=0}^{n}B_{j}\lambda^{n-j}\right)=0$ are the same as those of $\det\left(\sum_{j=0}^{n}A_{j}\lambda^{n-j}\right)=0$.
 - (iii) If $A_n \neq 0$, then $B_n \neq 0$.

The matrices V_i introduced in (14) are defined by (17) uniquely. It holds that

(18)
$$V_{j} = -(E_{11} + A_{n}'A_{n})^{-1}(E_{1,j+1} + A_{n}'A_{n-j}), \qquad 1 \leq j \leq n,$$

where $E_{st} = 0$ for max (s, t) > n.

PROOF. First we prove the necessity of the condition (17). Let $N \ge 2n$ and put $G = \operatorname{Var}(X_1', \dots, X_N')' = (G_{st})_{s,t=1}^N$. Let the series $\{Z_t\}$ defined by (10) be reversed with respect to $\{X_t\}$. Denote $K = \operatorname{Var}(Z_1', \dots, Z_N')'$ and introduce matrix L of the type $Np \times Np$ written in terms of the $p \times p$ blocks

(19)
$$L = \begin{pmatrix} 0 & 0 & \cdots & 0 & I \\ 0 & 0 & \cdots & I & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ I & 0 & \cdots & 0 & 0 \end{pmatrix}.$$

Then G = LKL holds and it implies $G^{-1} = LK^{-1}L$ because of $L^{-1} = L$. Write $G^{-1} = H = (H_{st})_{s,t=1}^N$, $K^{-1} = C = (C_{st})_{s,t=1}^N$ in terms of $p \times p$ blocks. The relation H = LCL implies $H_{st} = C_{N+1-s,N+1-t}$ for $1 \le s$, $t \le N$. Using (8) and (9) for s = 1; $t = 1, 2, \dots, n$ we get (17) for $0 \le j < n$. The condition (17) for j = n follows from (13) as the special case for h = n.

And now the sufficiency of (17). We use Theorem 4. (17) gives for j=0 that $B_0'B_0=E_{11}+A_n'A_n$. The matrix B is regular according to Lemma 2 and thus it is positive definite. The same is true for $E=B^{-1}$ and for E_{11} . Then $E_{11}+A_n'A_n$ is positive definite and B_0 must be regular. The relation (11) as well as assertion (i) of our theorem is proved. As for (13), we get from (17)

$$B_{k}'B_{j} = (E_{k+1,1} + A'_{n-k}A_{n})(E_{11} + A'_{n}A_{n})^{-1}(E_{1,j+1} + A'_{n}A_{n-j}),$$

$$1 \leq j, k \leq n,$$

because $E'_{1,k+1} = E_{k+1,1}$ with regard to the symmetry of the matrix E. (Remember, that $E_{st} = 0$ for max (s, t) > n.) Making use of formula (16) we have

$$\begin{split} & \sum_{k=0}^{n-h} A'_{h+k} A_k = A_n' A_{n-h} + \sum_{k=0}^{n-h-1} (E_{n-h-k,n-k} - E_{n-h-k+1,n-k+1}) \\ & + \sum_{k=0}^{n-h-1} (E_{n-h-k+1,1} + A'_{h+k} A_n) (E_{11} + A_n' A_n)^{-1} (E_{1,n-k+1} + A_n' A_k) \\ & = A_n' A_{n-h} + E_{1,h+1} + \sum_{k=0}^{n-h-1} B'_{n-h-k} B_{n-k} = \sum_{k=0}^{n} B'_{k-h} B_k \,. \end{split}$$

The condition (12) follows from assertion (ii) and, therefore, let us prove (ii). Suppose first that the matrix A_n is regular. Then U_n is regular, too. Let us start with equation (6). By evaluating the inverse matrices on both sides, we

obtain

(20)
$$E = (M' + EM^{-1}\Lambda)^{-1}EM^{-1}.$$

It may easily be proved that

$$M^{\scriptscriptstyle -1} = \left(egin{matrix} A & {U_{\scriptscriptstyle n}}^{\scriptscriptstyle -1} \ D_{\scriptscriptstyle I} & 0 \end{matrix}
ight),$$

where $A = -U_n^{-1}(U_{n-1}, \dots, U_1)$, $D_I = \text{diag}(I, \dots, I)$. Let L be defined by (19) for N = n. We have from (20)

(21)
$$L(M + \Lambda M'^{-1}E)^{-1}L = LE^{-1}M'EL.$$

Put $D_j = U_j + (A_0'A_0)^{-1}U_n'^{-1}E_{1,n-j+1}$ for $1 \le j \le n$ and let $D = (D_{n-1}, \dots, D_1)$. After some computation we get

$$M + \Lambda M'^{-1}E = \left(egin{array}{cc} 0 & D_I \ D_x & D \end{array}
ight).$$

Further

$$L(M + \Lambda M'^{-1}E)^{-1}L = \begin{pmatrix} 0 & D_I \\ D_{\sigma}^{-1} & R \end{pmatrix},$$

where $R = -D_n^{-1}(D_1, \dots, D_{n-1})$. In view of (3) and (18), which is an easy consequence of (17) and (i), we come to

$$\begin{split} D_n^{-1} &= [U_n + (A_0'A_0)^{-1}U_n'^{-1}E_{11}]^{-1} = -(E_{11} + A_n'A_n)^{-1}A_n'A_0 = V_n \,, \\ &- D_n^{-1}D_j = (E_{11} + A_n'A_n)^{-1}A_n'A_0[U_j + (A_0'A_0)^{-1}U_n'^{-1}E_{1,n-j+1}] = V_{n-j} \\ & \text{for} \quad 1 \leq j < n \,. \end{split}$$

We know that $L=L^{-1}$. Relation (21) implies that the matrix $L(M+\Lambda M'^{-1}E)^{-1}L$ has the same roots as the matrix M', which has the same roots as M. Denote $S=(V_{n-1},\cdots,V_1)$. Obviously, M has the same roots as the matrix

$$\begin{pmatrix} 0 & D_I \\ V_n & S \end{pmatrix}$$
,

which has the same roots as the equation $\det\left(\sum_{j=0}^{n}B_{j}\lambda^{n-j}\right)=0$ according to Lemma 3. But the roots of M are the same as those of $\det\left(\sum_{j=0}^{n}A_{j}\lambda^{n-j}\right)=0$.

If A_n is not regular, we obtain the proof of (ii) by the well-known limit procedure, when a sequence of regular matrices tending to A_n is chosen. We omit the details.

The assertion (iii) follows from (17) immediately, when we put j = n. Theorem 6 is proved.

The matrix B_0 may be an arbitrary solution of $B_0B_0'=E_{11}+A_n'A_n$, e.g. $B_0=(E_{11}+A_n'A_n)^{\frac{1}{2}}$. If B_0 is chosen, then B_1, \dots, B_n are determined by (17) uniquely.

In the special case n = 1 put $U_1 = U$, $V_1 = V$. After some computations we

obtain V = BU'E, $(B_0'B_0)^{-1} = B - BU'EUB$, which is the same as the results derived by Bartlett in [3], Section 9.3, and in [4].

3. Symmetric autoregressive series. The p-dimensional stationary autoregressive series $\{X_i\}$ is called symmetric, if it is reversed with respect to itself. We give a simple condition for such a symmetry.

THEOREM 7. The stationary autoregressive series $\{X_i\}$ is symmetric if and only if

(22)
$$\sum_{k=0}^{n-h} A'_{h+k} A_k = \sum_{k=0}^{n-h} A'_{k} A_{k+h}, \qquad 1 \leq h \leq n.$$

PROOF. Theorem 7 follows immediately from Theorem 4.

For example, the autoregressive series of the first order is symmetric if and only if the product $A_0'A_1$ is the symmetric matrix. For p=1 the problem is trivial because every one-dimensional stationary series is symmetric, as is well known.

If $\{X_t\}$ is symmetric, then the blocks H_{st} and E_{st} mentioned in Lemma 2 may be evaluated explicitly.

THEOREM 8. Let $\{X_t\}$ be symmetric. Then

(23)
$$H_{st} = H_{N+1-s,N+1-t}$$
 for $1 \le s, t \le N$,

(23)
$$H_{st} = H_{N+1-s,N+1-t} \qquad \text{for} \quad 1 \leq s, t \leq N,$$
(24)
$$E_{st} = \sum_{k=1}^{\min(s,t)} (A'_{s-k} A_{t-k} - A'_{n+k-s} A_{n+k-t})$$

$$\text{for} \quad 1 \leq s, t \leq n.$$

If $N \geq 2n$, then

(25)
$$H_{st} = \sum_{k=1}^{\min(s,t)} A'_{s-k} A_{t-k} \qquad \text{for } 1 \le s, t \le n.$$

PROOF. Write G in terms of the $p \times p$ blocks G_{st} , $G = (G_{st})_{s,t=1}^N$. If $\{X_t\}$ is symmetric, then $G_{st} = G_{ts}$ for $1 \le s$, $t \le N$. It is easy to see that G = LGL, where L is defined in (19). Since $L^{-1} = L$, we get $G^{-1} = LG^{-1}L$. This implies formula (23). If $N \ge 2n$, then (25) is the consequence of (23) and (9). Finally, (24) follows from (8) and (25). It is clear that E_{st} does not depend on N.

REFERENCES

- [1] ANDEL, J. (1971). On the multiple autoregressive series. Ann. Math. Statist. 42 755-759.
- [2] ARATO, M. (1961). On the sufficient statistics for stationary Gaussian random processes. Theor. Probability Appl. 6 199-201.
- [3] BARTLETT, M. S. (1955). An Introduction to Stochastic Processes. Cambridge Univ. Press.
- [4] BARTLETT, M. S. and RAJALAKSHMAN, D. V. (1953). Goodness of fit tests for simultaneous autoregressive series. J. Roy. Statist. Soc. Ser. B 15 107-124.
- [5] HANNAN, E. J. (1969). The identification of vector mixed autoregressive-moving average systems. Biometrika 56 223-225.
- [6] RAO, C. R. (1965). Linear Statistical Inference and its Applications. Wiley, New York.
- [7] WHITTLE, P. (1953). The analysis of multiple stationary time series. J. Roy. Statist. Soc. Ser. B 15 125-139.