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A NOTE ON FINE AND TIGHT QUALITATIVE PROBABILITIES

By ILkkA NIINILUOTO

Research Council for the Humanities Academy of Finland

Savaée (1954) has shown that fine and tight qualitative probabilities are
realizable by finitely additive probability measures. His proof for this
result is, however, in need of a correction. Fine qualitative probabilities
are either atomless or equivalent to the union of n equivalent atoms. Tight
qualitative probabilities are always atomless. Qualitative probability
structures, which are equivalent to the union of n equivalent atoms, are
realizable by a unique probability measure. Fine qualitative probabilities
are almost realizable. With these results, the proof for Savage’s theorem
can be worked out and a theorem of Villegas (1964) can be strengthened.

1. The problem and its solutions. Let 7 be a Boolean algebra and let > be a
binary relation on /. We shall say that the relation = is almost realizable if
there is a finitely additive probability measure P on I such that

P(A) = P(B) if A= B
for all 4 and B in I. If, in addition,
P(A) = P(B) onlyif 4= B

for all 4 and B in I, we shall say that the relation > is realizable (by the pro-
bability measure P).
Bruno de Finetti, in 1931, raised the following problem:

(P) Under what conditions is the relation > realizable?

de Finetti interpreted the relation > in the following way: 4 = B means that
the event A4 is not less probable than the event B for a person X. Similarly, the
relations

A>B iff not B> 4
A~B iff A=ZB and B= 4

mean that X considers the event 4 to be strictly more probable than the event B
and the events 4 and B to be equally probable (equivalent), respectively. For
this reason, the relation > is usually called a qualitative probability relation. For
de Finetti, a solution to the problem (P) gives an axiom system for subjective
probability. If we, however, give an objective interpretation for the relation =,
then a solution to the problem (P), by a measurement-theoretic representation
theorem, is of interest also to proponents of other interpretations of probability.

By Stone’s representation theorem for Boolean algebras, we may suppose that
the Boolean algebra I is an algebra of sets on a set X. de Finetti suggested the
following conditions for =:
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(Cl)y if A=z Band B= C,then4d = C
(C2) AzZBorBx= A

C3) Az ©

(C4) not @ = X

(C5) if AN C=Bn C= (g, then

A>B iff AUC=BUC.

The triple (X, I, =), where X is a non-empty set, [ is an algebra of sets on X,
and > is a binary relation on 7 such that the conditions (C1)-(C5) hold for all
A, Band C in I, is called a qualitative probability structure or a QP-structure.

de Finetti (1931) showed that a QP-structure (X, I, =) is realizable, if for
all n there is an n-fold partition of X into parts which are equivalent with
respect to the relation =. This condition required X to be an infinite set. A
related sufficient condition for the realizability of >, when X is infinite, was
given by Savage (1954). Sufficient conditions, allowing X to be infinite or finite,
were given by Luce (1967). Kraft, Pratt, and Seidenberg (1959) constructed ex-
amples of finite QP-structures which are neither realizable nor almost realizable.
Moreover, they gave the necessary and sufficient conditions for the realizability
of the relation > on a finite Boolean algebra. These conditions were reformu-
lated in a strikingly simple form by Scott (1964). Scott has also found a general
solution to the problem (P). His unpublished results can be found in the dis-
sertation of Domotor (1969). The basic idea of this solution is to translate the
conditions on the Boolean algebra I to conditions on the Banach space of con-
tinuous real-valued functions on the Stone space X of I, and to apply the
Mazur-Orlicz theorem to show the existence of a linear functional which will
correspond to a finitely additive probability measure P on I. With this method,
Domotor solves also problems which are more general than (P) above.! In
particular, Domotor gives the necessary and sufficient conditions for a binary
relation > on I x I (where I is a finite Boolean algebra) to be realizable by a
conditional probability measure. Villegas (1964) has found sufficient conditions
for a binary relation > on 7 to be realizable by a countably additive probability
measure.

2. Savage’s theorem. The general solution of Scott for the problem (P) is very
complex in the case of infinite Boolean algebras, and therefore of limited interest
to the theory of subjective probability. The conditions of Savage and Luce,
both of which are jointly sufficient but not necessary for the realizability of =,
can be more easily interpreted in terms of subjective qualitative probability.
For Savage, the problem (P) is only a part of a more general problem of finding
postulates for the so-called Subjective Expected Utility Model, where a pref-
erence relation between acts is a primitive concept and the qualitative proba-

1 Some of these have also been considered by Koopman (1940), Luce (1968), and Fishburn
(1969).
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bility relation is defined by a preference between gambles conditioned on events.

Let (X, I, =) be a qualitative probability structure. Following Savage (1954),
we shall say that the qualitative probability relation > is fine if forall B > ¢,
Be I, there is a partition {X}, - - ., X,} of X such that X, e I and

(1) B=X;, forall i=1,---,n.
Two events B and C are almost equivalent if
BUEZ=C and CUF=B

forall E> @, F> @ inIsuch that BN E= CN F= . This will be denoted
by B ~*C. Trivially, B~ C implies B ~* C. The qualitative probability
relation > is tight if B ~* C implies B ~ C.

The main result of Savage ((1954) page 38) is the following:

THEOREM 1. Let (X, I, =) be a fine and tight QP-structure, where I = 2* = the
set of all subsets of X. Then the relation = is realizable by a unique probability
measure P. Moreover, for this P

(i) B~*Ciff P(B) = P(C)
(i) P(B)>0if B> @
(iii) for all B in I and for all real numbers a, 0 < a < 1, there is a set C < B,
Cin I, such that

P(C) = aP(B) .

A proof of this theorem can be found in Savage ((1954) pages 33-38) and in
Fishburn ((1970) pages 194-199). The strong consequence (iii) is needed in the
construction of a utility function in Savage’s system.

In this note we shall show that Savage’s proof for his theorem is in need of
a minor correction, which can be effected by joining an additional premise to
his Theorem 3 ((1954) page 37). In our argument, the following notions are
used. An event 4 in [ is an atom of the QP-structure (X, I, =)if A > ¢ and
for all B& A4, Bel,

B~ or B~ A.
The relation > is atomless in X if there are no atoms of (X, /, =). A QP-struc-

ture (X, I, =) is atomless if the relation > is atomless in X. Two events Band
C in I are almost incompatible if BN C ~ .

3. Fine, tight, and atomless QP-structures. The following lemma is a simple
consequence of the definition of QP-structures.

Lemma 1. If (X, I, =) is a QP-structure, then for all A, B, C, and D in I
(a) if B A, then B< A
(b) if ANB=p,A=C,and B= D, then AU B> CUD

(c) if A> Pand ANB= g, thenAU B> B
(d) for BS A, A> BiffA— B> .
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By C3, Lemma 1(a), 1(c), and 1(d), we have
LeMMA 2. Let (X, I, =) be a QP-structure. Then

(@) anevent A> @ inIis an atom of (X, I, =) iff there is no subset B of A
such that () < B < A.

(b) the relation = is atomless in X iff every event A > @ in I can partitioned
into B and Cin I such that A= BU C,BNC= @, B> @ and C > .

LEMMA 3. Let (X, I, =) be a fine atomless QP-structure. For every G in I,
G > ), there is a sequence of events {G,}, n=1,2, ... inI such that G, = G,
G, EG,, G, > @ foralln, and G, | @, i.e. for all H > @ there is n,, such
that G, < H for n = n,,.

ProOF. Because G > ¢ is not an atom, there is an event A, € G such that
@ <4, <G =G. If 4, <G, — 4,, we choose G, = A4,. Otherwise we choose
G, = G, — 4,. Continuing in this way we get a sequence {G,}, n=1,2, ...
such that G, = G, G,,, £ G,, G, > ¢ for all nand

Gn+1 é Gn - Gn+1 .

Then G, | » when n — co. Namely, by the fineness of =, for every H >
there is a partition {X,, - .., X,} of X such that ¢ < X, < Hforalli=1, ...,
m. If we now choose k so that 2¢-! > m, then the assumption G, = H for all
n leads to a contradiction X < G, (with Lemma 1(a)) by using Lemma 1(c),
because G, contains 2*~! pairwise disjoint events which are at least as probable
as G,.

LEMMA 4. Let (X, I, Z) be a fine QP-structure. Then the following conditions
are equivalent:

(i) = is atomless in X
(ii) forall B> @ and C > ( in I, there is D = C in I such that o <D<B
(iii) X is not equivalent to a union of n equivalent atoms.

ProoF. (i) implies (ii). This is trivial, if @ < C< B. If C= B> @, use
Lemma 3. .

(i) implies (i). By choosing B = C and Lemma 2(a).

(i) trivially implies (iii).

(iii) implies (i). This is proved by showing that if there is one atom in
(X, 1, =) then X is equivalent to the union of n equivalent atoms, for some n.
Let 4 be the only atom of (X, 1, =). If 4 < X, then > is atomless in X-A4 > 0.
Take B < X-Asuchthat oy < B< 4 (by the last part of the proof of Lemma
3). Then there cannot exist a partition {X, - - -, X,} of X such that X, < B for
alli=1, ..., m, because

X;,nA4>9p for some i =i,
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whence
Xio_z_XionA~A>B

(A is an atom). Because = was supposed to be fine, we have a contradiction.
Hence, 4 ~ X. If there is more than one atom, then by the fineness of > they
must all be equivalent. Thus, by the fineness of =, X must be equivalent to the
union of » atoms, for some n.

LemMma 5. If (X, I, =) is a QP-structure such that X is equivalent to a union of n
equivalent atoms, then the relation = is realizable by a unique probability measure P.

Proor. Let X be equivalent to the union of n equivalent atoms X, i = 1,

.-, n. Without a loss in generality, we may assume that these atoms are
almost incompatible. Then for every 4 in [ there is a unique number k, such
that

k, = thenumberofindexes i in {l,.--,n} suchthat X, N4> Q.
Then k, = n, kXi: l1foralli=1,...,n, and

kyg=k,+ kg, if ANB=g.
Moreover,

A=B iff k,=2k;,.
The probability measure P on [ can, then, be defined by
P(A) = k,/n, forall Ain 1.

In the QP-structure (X, I, =) of Lemma 5, each atom is almost equivalent to
@. This shows that the relation > is not tight. More generally, we can prove
the following lemma.

Lemma 6. If a QP-structure (X, I, =) contains an atom A, then = is not tight.

Proor. Let 4 > ¢ beanatomof (X, /, =). Then by Lemma 1(d) X-4 < X.
However, X-4 ~* X. Namely, if E is an event in I such that £ > ¢ and
En (X-4) = @, then EC 4 and (because 4 is an atom) E > 4. Hence, by C5

(X-A) UE= (X-A) U A=X.

Therefore, = is not tight.
By joining Lemmas 4 and 6, we have the following result.

THEOREM 2. Let (X, I, =) be a QP-structure. If = is tight, then = is atomless
in X. If = is fine, then either = is atomless in X or X is equivalent to the union
of n equivalent atoms.

4. The proof of Savage’s theorem. In Theorem 3 of Savage ((1954) page 37),
it is assumed that > is a fine qualitative probability relation, and claimed that
the condition (ii) of Lemma 4 holds. This is, however, equivalent, by Lemma
3, to the claim that > is atomless in X. This is a mistake, as we see from
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Theorem 2.
Instead of Savage’s Theorem 3, we can prove the following Lemma.?

LemMMA 7. Let (X, I, =) be a fine QP-structure, where X is not equivalent to n
equivalent atoms. Then

(i) f B~*G,C~*H,and BN C=GNH= @, thnBU C~*GUH
(ii) every finite partition of X into almost equivalent events is an almost uniform
partition of X
(iii) every event B in I can be partitioned into two almost equivalent events
(iv) every event B in I can be partitioned into 2" almost equivalent events for all n.

ProoF. (i) Suppose that B U C < X and let E > (» be an event such that
En (BUC)= . Because = is atomless in X (Theorem 2), we can partition E
into disjoint parts E; > (¢ and E, > ¢ (Lemma 2(b)). By assumption, BU E, = G
and CU E, > H. Because of (BU E)) N (CU E,) = @, we have by Lemma
I(b)(BUE)U(CUE)=GUH,thatis(BUC)U E>= G U H.

(i) Let X, ..., X, be a n-fold partition of X into almost equivalent parts.
By (i), all unions of r elements of this partition are almost equivalent. Hence,
no union of r elements is more probable than any union of r 4 1 elements,
which means that {X|, - .-, X,} is an almost uniform partition of X.

(iii) Fishburn ((1970) pages 195-198), following Savage’s suggestion, has
given a detailed proof for a similar theorem according to which every event can
be partitioned into two equivalent events, if > is fine and tight. His proof with
some modifications, which are due to the fact that > in our case may be non-
tight, applies also to our claim (iii).?

Corresponding to Fishburn’s theorems C6 and C7 ((1970) page 195) we have

? This paper grew out of an unsuccessful attempt to construct a proof for the first step of
Theorem 3 about fine qualitative probabilities in L. J. Savage’s The Foundations of Statistics
((1954) page 37). This step could be easily justified by changing the original definition of
fineness with a stronger one requiring that for every event B > @ there exists a partition
{X1, - -+, Xy} of Xsuch that B > X;, foralli=1, ..., n, i.e. that each element of the partition
is strictly less probable than B. The main point of this note is that this change is not necessary.
Assuming the original definition of fineness, the main theorem of Savage can be proved, but
then his Theorem 3 has to be reformulated.

# Villegas ((1964) page 1791) proves that every event B can be partitioned into two equivalent
events if the relation = is atomless and monotonely continuous. His idea of using Zorn’s lemma
to show the existence of a minor incomplete partition of B, which is maximal with respect to
inclusion, fails in our case, however, as was pointed out to me by Professor Savage. Namely,
let X= {a;|i=1,2,---} be a denumerable set such that = is fine in X and for all B C X,
B~ @ iff B is finite. If B is an event for which @ < B < X — B, then the sequence of events,
X1=B; X2 = X1 U {a1}; -+ +; Xnr1 = Xn U {@n}; - - -, defines a chain of minor incomplete partitions
of X. However, every upper bound of it is equivalent to X and therefore, is not a minor incom-
plete partition of X. This gives us, in effect, an example of a fine and atomless QP-structure
where = is not monotonely continuous.
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(A) If 4, B, and C are pairwise disjoint events such that 4 < B, B < A U C,
and not B ~* A U C, then there is a D & C for which D > ¢ and BU D <
A U (C-D).

(B) If 4> @, B> 3,and 4 N B = (g, then B can be partitioned into C and
D for whichC <D< AU C.

The proof of (B) is the same as in Fishburn ((1970) page 196). For the proof
of (A), note first that from B < 4 U Cand not B ~* 4 U C it follows that there
is an event D, > ¢ for which D, N B= @ and BU D, < A U C. Because >
is fine and atomless (Theorem 2), there is a D, & C such that ¢y < D, < D,
(Lemma 4 (ii)). Hence, by C5

BUD,<BUD < AUC.

By Lemma 2(a), the event D, can be partitioned into D and D’ such that
@ < D £ D'. Hence, from

BuDUD <AU(C-D)yuD
it follows by (CS5) that
BUDZBUD < AU (C-D).

Let 4 > ¢ be an event in /. Because = is atomless, there is a partition
{B,, C,, D;}of Asuchthat B, < C, U D,and C, < B, U D,. If one of these two <
is ~ or ~*, our proof is complete. Assume then that

B,<CUD,, C/<BUD, notB ~*CUD,, not C,~*B,UD,.

Then following Fishburn, but using (A) and (B) in the place of his C6 and C7,
we can show that there is a sequence of partitions {B,, C,, D,} of 4 such that
forallp=1,2, ...

(i) B,<C,uD,, C,<B,UD,

(ii) not B, ~*C, U D,,not C, ~* B, U D,
(lll) ‘Bn '—c_— B’n+1’ Cn g Cn+1’ Dn+l g Dn
(ivy D,,.£D,—D,,,,D,> Q.

As in the proof of Lemma 3, Condition 4 implies that D, | (3. Let

Then A=BUC, Bn C= @, and B~* C. Namely, following Fishburn’s
proof with (A) in the place of C6, the assumptions B < C and not B ~* C lead
to a contradiction with C, < B, U D,. (Note that not B ~* C implies that not
B ~*U C,, because N D, ~ @.) Hence,

B=C or B~*C.

Similarly, the assumptions U C, < B U (N D,) and not B ~* C lead to a con-
tradiction with B, < C, U D,. Hence,

B<LC or B~*C.



1588 ILKKA NIINILUOTO

These two conclusions imply
B~ C or B~*C,
which concludes the proof of (iii). (iv) follows then immediately.

From Theorem 2, Lemma 7 (ii) and (iv), and a theorem of Savage ((1954)
page 34), Theorem 3 follows immediately:

THEOREM 3. If (X, I, =) is a fine QP-structure, then (X, I, =) is almost realiza-
ble by a unique probability measure P.

This theorem can be strengthened to the following form:

THEOREM 4. If (X, I, =) is a fine QP-structure, then (X, I, =) is almost realiza-
ble by a unique probability measure P. If, in addition, X is not equivalent to the
union of n equivalent atoms, then for this probability'measure P

(iy B ~* Ciff P(B) = P(C)
(i) P(B)>0if B>
(iii) for B in I and for all real numbers a, 0 < a < 1, there is C Z B such that
P(C) = aP(B).
Proor. (a) The existence of P and (iii) follow from Theorem 3 and a theorem
of Savage ((1954) page 34).
(b) P(B) = P(C)if B~*C: Because > is almost realizable by P and B~*C,
we have
P(B) + P(G) Z P(C)
P(C) + P(H) = P(B)
foralG>@,H> @, GNB=HNC=g. Let H> @ and ¢ > 0. By

(iii) we can choose G such that G < H (whence P(G) < P(H)) and P(G) =
eP(X) = e. Hence
|P(B) — P(C)| < P(G) = ¢.

(c) P(B) >0, if B> »: By lemma 7 (iv) there is a partition of X into 2"
almost equivalent events X;, i =1, ..., 2", for all n. Choose n so great that
X, < Bforalli=1,...,2*. By (b) of this proof, P(X;) = P(X;) for all i, j.
Hence P(X;) = 1/2* > Oforalli =1, ..., 2". Therefore, P(B) = P(X;) > 0.

(d) B~*C if P(B)= P(C): Suppose that there is an event G > @,
G N B= (@, such that BU G < C. Then by (iii) of this theorem, P(G) > 0.
Hence,

P(C) =z P(BU G) = P(B) + P(G) > P(B),
which contradicts our assumption P(B) = P(C).
Suppose now that (X, I, =) is a fine and tight QP-structure. Then it is almost
realizable by a unique probability measure P. Then
P(B) = P(C) if B~*C (by Theorem 4 (i))
if B~C (= is tight).
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Therefore (X, I, =) is realizable by P, and the main theorem of Savage
(Theorem 1 above) follows immediately from Theorem 4.

Savage ((1954) page 40) claims that no fine and non-tight QP-structure can be
realizable. This claim needs the following qualification, as can be seen from the
case studied in Lemma 5.

THEOREM 5. Let (X, I, =) be a fine and non-tight QP-structure, where X is not
equivalent to the union of n equivalent atoms. Then (X, I, =) is not realizable.

Proor. Because = is not tight, there are events B and C such that B < C

but BUE= Cforall E> @, ENn B= . If (X, I, =) were realizable by P,
then we should have

P(B)< P(C) and  P(B) + P(E) = P(C),
that is
P(E) = P(C) — P(B) > 0,

forall E> @, EN B= . Then by Lemma 3, > could not be atomless in X,
which contradicts Theorem 2.

S. Qualitative probability s-algebras. Following Villegas (1964), we shall say
that the pair (1, >) is a qualitative probability algebra, if (X, I, =) is a QP-struc-
ture, where [ is a g-algebra. Then the relation > is monotonely continuous if for
every sequence {4,}, n=1,2,...,in I, where 4, S 4,<--- and 4, 1 4, and
for event B in Isuch that B > 4, for all n, we have B > A. If the relation >
is monotonely continuous, we shall say that (1, >) is a qualitative probability o-
algebra.

The main theorems of Villegas follow:

THEOREM 6. Let (I, =) be a qualitative probability algebra which is realizable by
a probability measure P. Then P is g-additive if and only if > is monotonely con-
tinuous.

THEOREM 7. If a qualitative probability c-algebra is atomless, it is realizable by
a unique g-additive probability measure.

Villegas proves also that monotonely continuous and atomless qualitative pro-
bability relations are fine and tight.

LemMA 8. If a qualitative probability g-algebra (I, =) is atomless, then = is fine
and tight.

ProoF. = is fine and tight iff for all B and C such that B < C there is a
partition {X, ..., X, } of X such that X; U B< Cforalli=1, ..., m. (See
Savage (1954) Theorem 4, page 38.) By Theorem 7, > is realizable by P.
Hence P(B) < P(C). Choose n so that

0 < 1/2" < P(C) — P(B).
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By Theorem 4 of Villegas (1964), there an 2"-fold uniform partition {X;} of X,
that is

P(X;) = 1/2*, forall i=1,...,2".
Then
P(B U X,) < P(B) + P(X,) = P(B) + 1/2*
< P(B) + P(C) — P(B) = P(C).

Hence BU X, < Cforalli=1, -..,2".

Villegas proves then that every fine and tight probability algebra can be ex-
tended to a qualitative probability g-algebra. He concludes that “there is no
loss in generality if we consider only qualitative probabilities which are mono-
tonely continuous” (page 1787). Nevertheless, his conclusion seems to be in
need of a qualification. In fact, we can prove a stronger result than Villegas.

THEOREM 8. If a qualitative probability algebra is fine and tight, then it can be
extended to an atomless qualitative probability g-algebra.

Proor. Let (I, =,) be a fine and tight qualitative probability algebra. By
Savage’s theorem it is realizable by a unique finitely additive probability
measure P,. Then the probability algebra (I,, P,) can be extended to a probability
g-algebra (1, P), where I is a g-algebra and P is a g-additive probability measure
on I. Define now

A> B iff P(4) = P(B)

for all 4and BinI. Because P is g-additive, then by Theorem 6 the relation >
is monotonely continuous. By Theorem 2, the relation =, is atomless. There-
fore P,, P, and > are also atomless.

According to Theorem 8, any fine and tight qualitative probability algebra
can be extended to a g-algebra which is uniquely realizable by a g-additive
probability measure. It does not, however, guarantee that this extension can
be made in a natural and straightforward way. It is known that not every
finitely additive probability measure P, defined on an algebra of subsets [, of a
set X can be extended to a g-additive probability measure P on the g-algebra /
generated by I,. The reason for this fact may be that X has too few points.
Therefore, the extension may be possible only by adding new points to the
set X (see Sikorski (1964) page 203). Let, for example, X be the closed interval
[0, 1]. There are finitely additive extensions of Lebesgue measure to the set 2%
of all subsets of X, giving the same measure to congruent sets. If we define for
all Band C in 2*

B> C iff P(B)= P(C),

where P is such an extension of Lebesgue measure, then (X, 2¥, =) is a fine and
tight QP-structure. However, similar g-additive extensions of Lebesgue measure
to 2% do not exist (see Savage (1954) page 40). Therefore (x, 2%, =) cannot be
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extended to a qualitative probability s-algebra without adding points to X =
[o, 1].
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