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ESTIMATING REGRESSION COEFFICIENTS BY MINIMIZING
THE DISPERSION OF THE RESIDUALS

By Lours A. JAECKEL!
Bell Telephone Laboratories, Incorporated

An appealing approach to the problem of estimating the regression
coefficients in a linear model is to find those values of the coefficients which
‘make the residuals as small as possible. We give some measures of the dis-
persion of a set of numbers, and define our estimates as those values of the
parameters which minimize the dispersion of the residuals. We consider
dispersion measures which are certain linear combinations of the ordered
residuals. We show that the estimates derived from them are asymptotically
equivalent to estimates recently proposed by JureCkova. In the case of a
single parameter, we show that our estimate isa “‘weighted median’’ of the
pairwise slopes (Y; — Y3)/(ci — cf).

1. Introduction. An appealing approach to the problem of estimating the re-
gression coefficients in a linear model is to find those values of the coefficients
which make the residuals as small as possible. We shall give some measures of
the dispersion of a set of numbers, and define our estimates as those values of
the parameters which minimize the dispersion of the residuals.

Let Y, Y,, ---, Y, be independent random variables with continuous distri-
bution functions .

Fy — a® — g°c), i=1,2,.--,N
where the ¢* are known K-vectors and a° and the K-vector 8° are unknown.
We shall consider only the problem of estimating 3°; we shall not estimate a°.

Let D(z) bea translation-invariant measure of the dispersion of z=(z,,2,, - - -,zy);
that is, D(z 4+ b) = D(z), where b = (b, b, - - ., b). Our estimate of 8° will be
any f which minimizes D(Y — gC), where Y = (Y,, Y,, - - -, Yy)and C = ((c;;))

is the K X N matrix whose columns are the ¢*. Clearly, a® connot be estimated
by this method. If D(z) is the variance of the z;, then our estimates become
the usual least squares estimates of the ;. Because of the sensitivity of this
method to large deviations, it is of interest to consider alternatives to it which
are more “robust”. In Section 2 we consider a particular class of dispersion
measures: certain linear combinations of the ordered z;. We then define our
estimates and discuss some of their properties. We show in Section 3 that these
regression estimates are asymptotically equivalent to the relatively robust esti-
mates proposed by Jureckova (1971), from which it follows that the asymptotic
properties of her estimates hold for ours as well. Her estimates are derived by
inverting rank tests for hypotheses about the 3,, a generalization of the method
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1450 LOUIS A. JAECKEL

of Hodges and Lehmann (1963) and Adichie (1967). Our approach seems more
natural, and our estimates seem to be easier to compute.

In Section 4 we consider the case of a single parameter. We show that our
estimate of 8°is a “weighted median” of pairwise slopes (Y; — Y;)/(¢/ — ¢f). A
closely related estimate has been studied by Theil (1950) and Sen (1968).

We shall follow the notation and assumptions of Jureckova (1971) as much
as possible.

2. Definition of some dispersion measures and properties of the regression esti-

mates. Let a,(k), k=1,2, ..., N be a non-decreasing set of scores, not all
equal, satisfying
(2.1) 2i-iay(k) = 0.

Such scores may be generated as in Jureckova (1971), Equation (2.7) or (2.8).
An example is given in Corollary 1 of Section 4 below. If the scores are not
non-decreasing, the convexity property in Theorem 1 does not hold in general.
Forany z = (z,, z,, - - -, zy), let z,) < z,) < - -+ < z,, be the ordered z;. Define

D(z) = 2.i ”N(k)z(k) :
By (2.1), D(z) is translation-invariant. Since D(bz) = bD(z) for any nonnegative
constant b, statistics of this type have been proposed as scale parameters. See
for example Downton (1966) and Chernoff, Gastwirth and Johns (1967). Because
D(z) is small when the z; are close to each other, we shall use it as a measure
of dispersion.
For fixed Y, Y,, -- -, Y, and for any 8, the residuals are

(2.2) z, = Y, — fct i=1,2,...,N.
The ordered residuals are

Z4y = Yigy — pet® k=1,2,...,N,

k3

where i(k) is the index of the observation giving rise to the kth ordered residual.
(If two residuals are equal there is an ambiguity in i(k) but not in z,,.) The
dispersion of the residuals, as a function of 3, is

(2.3) D(Y — 8C) = YV a (k) Y, — Bei®)].
We now derive some properties of D(Y — SC).

THEOREM 1. For fixed Y, D(Y — BC) is a nonnegative, continuous, and convex
function of .

Proor. Let z = (z, z, ---, zy) be any N-vector. Let / be the index of the
first positive ay(k). Then

D(z) = 3 ay(k)zy) = X ay(B)[z4) — 2] 2 0,

since each term in the sum is nonnegative. Hence D is nonnegative, and if the
z; are not all equal, D is positive.
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Let p = (p(1), p(2), - - -, p(N)) be any permutation of the indices 1,2, ..., N.
Let P be the set of all such permutations. By Theorem 368 of Hardy, Littlewood
and Polya (1952),

D, = 3 ay(k)z,,,
is maximized over P by any permutation which arranges the z; in non-decreasing
order. The proof consists of showing that we can move from any permutation
to one which orders the z; by a sequence of transpositions, none of which de-
creases D,.
Therefore we can write

D(Y — BC) = X ay(k)z,,) = max,.p 3 ay(K)z,, »
where the z; are now the residuals defined in (2.2). For each p in P we have

2 aN(k)Zp(k) = 2 ay(k)[ Yp(k) — per®],
which is a linear function of j, and therefore continuous and convex in 8. The
maximum of a finite number of such functions is clearly continuous, and is
easily seen to be convex (concave upward). The proof is complete.

We remark that the S-space is divided into a finite number of convex polygonal
subsets, on each of which D(Y — $C) is a linear function of 8.

Let E be the N x N matrix all of whose entries are 1/N. Let € = CE. We
shall now show that if C — C has rank K, then D(Y — BC) attains its minimum,
and the set of 8 for which this occurs is bounded. This is an immediate conse-
quence of the following theorem.

THEOREM 2. If C — C has rank K, then for any D, the set{: D(Y — BC) < Dy}
is bounded.

Proor. We assume without loss of generality that D, > D(Y). Let U beany
K-vector such that ||U]| = 1, and consider D restricted to 8 = bU, b = 0. Let
t,=Uc, i=1,2,...,N, and let T = (t,, t,, - - -, t,) = UC. If we write T =
(f, %, -+-,f) = TE = UCE, then T = UC. Since C — Chasrank K, T — T =
U(C — C) # 0. Therefore the ¢, are not all equal. We write

D(Y — bUC) = D(Y — bT) = ¥ ay(k)[ Vi, — bti] -

This is just the measure of dispersion for estimating the scalar parameter b.
This case is discussed in more detail in Section 4, where it is shown that dD/db
is non-decreasing in b and is eventually positive.

It follows that for some b, > 0, D(Y — b,UC) > D,. Since D is continuous,
there is an open set S, of unit vectors ¥, containing U, such that D(Y — b,V C)>
D,. Since D, > D(Y) and D is convex, we have D(Y — bV C) > D,forall b = b,
and all ¥ in §,. So for each unit vector U, we have an open set of unit vectors
S, containing it. Since the unit sphere is compact, a finite number of these sets
covers it. Let B be the maximum of the corresponding finite set of b,. Then
forall b = B and all unit vectors ¥, D(Y — bV C) > D,. The theorem follows.

We now define our estimate.
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DerINITION. Let 8, be any 8 which minimizes D(Y — C). Then f, is our
estimate of the vector of regression coefficients §°.

Note that 8, may not be unique, so in practice there may be some arbitrariness
in its definition. However, by Theorem 3 below, the diameter of the set of pos-
sible values of N*g, approaches zero asymptotically, so for large N it will not
matter much how 3, is chosen. The estimate is invariant in the sense that if g
is any K-vector, then 8,(Y 4+ B'C) = B,(Y) + B

Computation of 8, involves minimizing a convex function of g, a relatively
benign type of minimization problem. Since we can evaluate D everywhere, and
(as we shall see in the next section) its derivatives almost everywhere, we can
apply an iterative method for searching for the minimum. One possibility is
the method of steepest descent, which uses first derivatives. Minimization pro-
cedures based on second derivatives cannot be used, because the second deriva-
tives of D are identically zero wherever they exist.

3. Asymptotic equivalence to Jureckova’s estimates. We define new variables as
in JureCkova (1971). Let

A = Nif and x;; = N7tcy; .

We now choose A, to estimate A° by minimizing D(Y — AX). We may assume
without loss of generality that A° = 0. We rewrite (2.3) as

D(Y — AX) = YL, ay(k)[ Yig) — Axi®]
= D ay(RMY; — AxT],

where R%, R,®, - - -, R,* are the ranks of the residuals ¥; — Ax*,i = 1,2, ..., N.
The partial derivatives of D(Y — AX) exist for almost all A, and where they
exist are .

% D(Y — AX) = T ay(R)[—x;.]

(31 = — 2 ay(R*)(x;; — %))
= —8,,(Y — AX), j=1,2,...,K.

Thus they are minus the rank statistics S,; defined by Equation (2.14) of
Jureckova (1971).

We can now see the relationship between our estimate A, and Jureckova’s
estimate. Her procedure is to choose a A to minimize };|S,;(Y — AX)|. This
has the effect of making all of the S,;(Y — AX) near zero. Our procedure
chooses A to minimize D(Y — AX), which means making all of its partial de-
rivatives nearly equal to zero. But the derivatives of D are minus the S,;, so
the two procedures appear to be essentially the same. We shall show that under
the assumptions of JureCkova (1971), {A,} is asymptotically equivalent, as de-
fined in (3.3) below, to the sequence {A}, also defined below. Jureckova (1971)
showed that her estimate is asymptotically equivalent to this same sequence. It
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follows that her estimate and our estimate are asymptotically equivalent, if we
define that concept analogously to (3.3).

The assumptions made in Jureckova (1971) are, briefly: The Y, are inde-
pendent, with distribution functions

Fly — a® — A°x%), i=1,2,...,N,
where F has finite Fisher information. The entries in the positive definite matrix
L =[o,] =[o' 0% -, 0" are 0,; = limy (%, — X)(x; — %;)’. Some further

technical assumptions are made about the entries in X and the scores a, (k). The
positive constants y and 4* are defined as in (2.10) and (2.11) of Jureckova (1971).
Let
Sy(¥) = (Sni(Y), Sy Y), + -+ Syp(Y)) -
Since F is assumed continuous, the §,;(Y) are well defined with probability
one. Define the quadratic function

O(A) = JrAZA — S,(Y)A + D(Y).
The partial derivatives of Q(A) are
(3.2) 99 _ agi — 8,1, j=1,2, .., K.
04,

The unique point at which Q(A) attains its minimum is the solution of the
equations

Syi(Y)y=7rde?, j=1,2,...,K.
We call this point A,. It is the same as the A, defined by (4.5) of Jureckova
(1971). It is shown there that A, is asymptotically normal

0, y242Z-1) .

Let

By = {A: D(Y — AX) is minimized} .
By Theorem 2, By is nonempty and bounded. Our estimate A, is thus any point
of B,.

DEeFINITION. The two sequences of random vectors {A,} and {A,} are said to
be asymptotically equivalent if the distance between corresponding terms converges
to zero in probability; that is, if
(3.3) lim,_.. Py{sup,., ||A — A=} =0
for all r > 0.

THEOREM 3. Under the assumptions of Jureékova (1971), {A,} and {A,} are as-
ymptotically equivalent. It follows that A, is asymptotically normal

0, 24221,
We shall show that D(Y — AX) and Q(A) approach each other as N increases;

from this we can show that the points where they are minimized approach
each other.
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LemMA 1. Under the assumptions of the theorem,
limy_,, Po{max, <, |Q(8) — D(Y — AX)| =z ¢} =0
foralle >0 and C > 0.

Proor. We observe first that Q(0) = D(Y). By Theorem 3.1 of JureCkova
(1971) we have

(3.4)  limy_, Po{supm..gc ISy (Y — AX) — S,;(Y) + 7ho’| = m} =0
foranye > 0,C > 0,andj = 1,2, - - -, K. Therefore, by (3.1), (3.2), and (3.4),
20(A)  aD(Y — AX)\
04, 04,

for any ¢ > 0, C>0,andj=1,2,.--,K.
Choose ¢ and C, and choose A, # 0 such that ||Aj|| < C. We write the points
on the line segment from 0 to A, as A, 0 < # < 1. Then

> _¢ }:0
= CK

(3.5) lim, ., Po{supllAllgc

(3:6) 4 1008) - DY — b))

0
= 25';1 Aof [a—A]

If the events described in (3.5) do not hold for any j, that is, if all of the differ-
ences are less than ¢/CK*, then the absolute value of the sum in (3.6) is less than

Il (K ) < e

In this case, since Q = D for t = 0 and the derivative of their difference is less
than ¢, we have |Q — D| < efor t =1, or

]Q(Ao) — D(Y — AX) <.
If this strict inequality holds for all A, such that [[A || =< C, then
max, s <0 [Q(8) — DY — AX)[ <,

O(thy) — 5% D(Y — tAOX)] .

J

because Q — D is continuous and hence must attain its maximum on [|A|| < C.
Since by (3.5) this inequality holds with probability approaching one, the lemma
is proved.

Proor oF THE THEOREM. We must show that (3.3) holds for all r > 0. It
suffices to show that for all r > 0 and p > 0,
(3.7) Pyfsup,.p, 1A — AN“ =zrt=p
for all sufficiently large N.

Choose r > 0 and p > 0. Since A, is asymptotically normal, there is a C,
such that for sufficiently large N,

(3.8) P{1A,l > G} < p2.
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Let
T = min{Q8): [|A — &,|| = 1} — 0@,).
Clearly, T > 0. By Lemma 1,
(3.9) Po{max, <ot |Q(A) — D(Y — AX)| = T/2} < pj2

for sufficiently large N. Therefore, by (3.8) and (3.9), for suffiiciently large N
we have with probability at least 1 — p:

A5l = Gy DY —ByX) < 0Ay) + T2,
and for all A such that ||A — A, = r,

”A” =C+r
and
D(Y — AX) > Q) — T/2.

It follows that for all A such that ||A — A,|| = r,
D(Y — AX) > Q(8) — T2 = T + 0(d,) — T2
= 0Ay) + T2 > D(Y — AyX).
By the convexity of D, we must have
D(Y — AX) > D(Y — A, X)

for all A such that ||[A — A,|| = r. This implies that any A for which D(Y — AX)
is minimized must satisfy
1A = Ayl <r.

So (3.7) is satisfied, and the theorem is proved.

4. Estimation of a single parameter. When K=1 we have

D(Y — BC) = X ay(k)(Y;,, — Bci™),
where 8 and each ¢ are numbers rather than vectors. The ¢® are assumed to
be not all equal. We shall show that if the a, (k) are symmetric, 8, is a “weighted
median” of the pairwise slopes (¥; — Y;)/(¢? — ¢*). We then consider some spe-
cial cases. '

We assume the Y, are fixed. We write
Dy — ey =2 = _ 3 a,(k)c .
dp

Since D is convex and D’ takes on only a finite number of values, D’ is a non-
decreasing step function in 8. Since, for sufficiently large 8, we have

Y, — fc? < Y; — Bt
for all i and j such that ¢/ > ¢f, it follows that for very large f,

ct) > 0t > L, > etV
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By the argument given in the proof of Theorem 1, D’ then assumes its maximum
value, which is positive. Similarly, for sufficiently small, the ordering of
the ¢ is essentially reversed, so that D’ assumes its minimum value, which is
negative.

The jumps in D’ occur where the ordering of the residuals changes. If ¢/ > ¢/,
then the corresponding residuals cross each other when g = §;;, where

(4.1) Yi_nBijci: Yj—ﬁijcj§
that is, when

_Y, Y,
¢l — ¢t

IBij

We assume the §;; are all distinct. (This event occurs with probability one be-
cause F is continuous.) We now find the height of one of these jumps. Suppose,
for 8 = B;;, the two residuals in (4.1) are the kth and (k + 1)st among the or-
dered residuals. Then the increase in D’ which occurs when 8 moves from just
below ;; to just above it is

(4.2) — ay(k + 1)(c* — ¢7) — ay(k)(¢? — ¢)
= [ay(k + 1) — ay(k))(¢? — ¢') .

We can now define 8, as a certain quantile of the probability distribution
whose distribution function is

G(p) = DY = FC) — min D"

max D' — min D’

THEOREM 4. (3, is a point such that, if the random variable T has distribution
function G, then
— min D’

P(T <
( <‘BD)_maxD’ — min D’

and
max D’
max D' — min D’

PT>p)) =

If the a, (k) are symmetric, that is, ifayk)= —ayN +1—k),k=1,2,...,N,
then B, is a median of G.

ProoF. D is minimized at g, if D’ < 0 for 8 < B8, and D’ = 0 for 8 > §,.
The first assertion then follows from the definition of G. If the a (k) are sym-
metric, max D’ = —min D’, and we have the second assertion.

An interesting special case is given in the following corollary.

COROLLARY 1. If the a,(k) are the Wilcoxon scores

k
ky=_ " —1, k
ay(k) N+ 2

1$2a"'9Na
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then B, is a median of the set of pairwise slopes

Y, — Y,
tBij =21 ;
¢ —c
for ¢? > ¢*, where each slope is assigned weight proportional to ¢’ — c*. The as-
ymptotic variance of N§, in this case, if the assumptions of Theorem 3 hold, is

1
126%(§ f2(x) dx}?’
where

ot = lim, ., %f 3 (¢F — &)

and f is the density of F.

Proor. If the a,(k) are defined as above, the differences between consecutive
scores are all equal, so the heights of the jumps in (4.2) depend only on ¢/ — ¢°.
G(p) therefore has jumps at 8;; with height proportional to ¢/ — ¢*. By Theorem
4, half of the weight (heights of jumps in G) falls on each side of 3,,.

The asymptotic variance formula is a consequence of Theorem 3 and the defi-
nitions in Jureckova (1971), with ¢(u) = u — }.

Theil (1950) proposed that the median of the pairwise slopes, with each as-
signed the same weight, be used as an estimate of 3. The asymptotic behavior
of this estimate was studied by Sen (1968). He showed that its asymptotic vari-
ance depends on the ¢ in a complex way, whereas the asymptotic variance of
8, depends on the ¢* only through their variance. In fact, by Corollary 1 and
Sen (1968), page 1385, we see that Sen’s asymptotic variance is always equal to
or greater than that of g,.

If the ¢* are all 0 or 1, we have the two-sample problem of estimating differ-
ence in location, and 8, becomes an estimate of that difference. We then have
the following result.

COoROLLARY 2. If ' =c*= ... =c"=0and c"' =c"*? = ... =" =1,
and if we renumber the observations so that Y, < Y, < -.- <Y, and Y, , <
Y0 < - < Yy, then B, is the quantile given by Theorem 4 of the set of m(N — m)
pairwise differences .

By =Y, — Yi, i=142,--..m; j=m+1,m+2,...,N;
where each B,; is assigned weight proportional to
ay(i+j—m)y—ay(i+j—m—1).

Proor. The pairs i and jconsidered in (4.2) are those for which ¢/ > ¢*. Here
they are the pairs with i < m and j = m + 1, for which ¢/ — ¢’ = 1. When
B = Bi; as defined by (4.1), that is, when the ith and jth residuals are equal,
then the number of residuals less than ¥, = Y; — f,;is(i — 1) + (j — m — 1).
These two residuals therefore occupy positions i + j —m — 1 and i 4+ j — m
among the ordered residuals. By (4.2) the corollary is proved.
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A result analogous to Corollary 2 for the one-sample problem of estimating
location appears in Jaeckel (1969).

If in Corollary 2 the a,(k) are the scores of Corollary 1, then the weights are
all equal, and we have the well-known result of Hodges and Lehmann (1963),
page 602: The estimate is the median of the pairwise differences Y; — Y.

The author is indebted to Dr. Colin L. Mallows for several valuable conver-
sations on this subject.
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