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BAYESIAN PRIOR DISTRIBUTIONS FOR SYSTEMS
WITH EXPONENTIAL FAILURE-TIME DATA

By K. W. FErTIG
Rocketdyne

In this paper, confidence bounds on the reliability of a serial system
composed of exponential subsystems are considered. Both the classical
and the Bayesian analyses are discussed. The main result is that for the
case in which there are no previous data, then there are no prior distribu-
tions on the subsystem reliabilities that are independent of current data and
that yield the uniformly most accurate unbiased confidence bounds avail-
able through classical techniques.

1. Introduction. In this paper, confidence bounds for s§stem reliability as
determined from subsystem information are considered. We restrict attention
to those systems composed of independent subsystems whose lives are each ex-
ponentially distributed. For this case, if we let §; be the mean time to failure
for the ith subsystem, the reliability, defined as the probability that that sub-
system will operate successfully at least until a specified time ¢;, is given by

R, = e i/l |

The reliability for a system of k subsystems is then given by R = g(R,, - - -, R))
where g is determined from the system configuration. In what follows, we
assume that life-test data for the ith subsystem is obtained by placing »; units
on life-test and then terminating the test at the time of the r;th failure. The
data then take the form

Xi1s Xigs 009 X n;
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where x;; represents the time of the jth failure of the ith subsystem. It is known
[4] that z; = x;; + -+ + X, + (1 — )X, is a sufficient statistic to estimate
the ¢, and hence the R; and that 2z;/0, is distributed as chi-square with 2r; de-
grees of freedom.

In the case of serial systems for which R = [J*_, R;, uniformly most accu-
rate (UMA) unbiased confidence bounds, developed by classical techniques, are
available as a function of the z;, when ¢, = , for i = 1, - .-, k. The procedure
for obtaining these is discussed in Section 2. For more complex systems, con-
fidence bounds in the Bayesian sense can be computed. This procedure is dis-
cussed in Section 3. In particular, the R; are treated as random variables and
it is necessary to specify their “prior” distributions. A usual technique is to
assume a convenient distributional form and then choose the parameters of that
form so as to fit a preconceived idea of the distribution of the R;. Even if we
disregard the objection that the R; are not true random variables, we still run
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1442 K. W. FERTIG

into difficulty since the incorporation of previous data into prior distributions
invariably assumes a form for that prior distribution when no data is avilable.
Several prior distributions to handle this situation have been presented in the lit-
erature. For the systems to which we are restricting our attention, the two most
mentioned priors appearing in the literature are the uniform distribution over
(0, 1) (see Springer and Thompson [10]) and the improper prior, R-Y(In 1/R)~".
The latter is discussed by Burnett and Wales [2] and corresponds to what is some-
times called the fiducial approach, yielding the optimum classical confidence
bound on R, for a system of one subsystem. Recent research at North American
Rockwell Corporation has demonstrated that these two priors lead to confidence
bounds which are not exact in general [8]. In particular, the improper prior
yielded numbers which, though exact in the Bayesian sense, were conservative
in the classical sense, and the uniform prior distribution usually led to confi-
dence bounds lower than those predicted by the improper prior distribution.
Thus, both forms predicted confidence bounds which were in general not equal
to the classical optimum bounds.

The question then arises as to whether or not there exist prior distributions
on the R; that do yield the classical optimum bounds for a serial system of more
than one subsystem. It was a desire to find these priors that motivated this work.
Such priors would go a long way towards reducing the conflict between classical
and Bayesian statisticians. A more practical result, however, would be that these
priors would provide insight as to how to proceed for more complex systems for
which classical techniques are not available. In particular, it was found that
there do not exist such prior distributions that are independent of the current
data and that yield the optimum bounds for a serial system. A proof of this
statement is given in Section 4. Also offered are two prior distributions, or
more properly weighting functions in one case, which are valid for special cases.
These have been of aid in furthering research in this area, e.g., see Mann and
Grubbs [9].

The author wishes to express appreciation to Dr. Morton Dubman, to Dr.
Bernard Sherman, and to Dr. Nancy Mann for their many helpful comments.

2. Uniformly most accurate unbiased confidence intervals for the reliabilty of a
serial system. For the case in which each subsystem is required to operate the
entire mission time, f,, the reliability of a serial system is given by

R=T[:L. R, = TIE, e /% = e~to? |
where
¢ - i’c=1 1/0i .

Thus, making confidence statements about R for a specified ¢, is equivalent to
making confidence statements about ¢.

Performing the transformation w = z,and u; = z, — z,,i = 2, - - -, k, Lentner
and Buehler [7] derived for the case k = 2 the conditional distribution of w given
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u, H(w |u; ¢). Ahmed El Mawaziny [3] extended this work for arbitrary k to
yield:

(1) H(w|u; ¢) = A7(u; ¢) 3151, 2ii0ijeiy, 0 tkoo IlS=1em ()
X [¢(um - uj)]aj_ijr¢(w—um)(am + Z?’:l,j#m i]' + 1)

for w> 0,
where, for convenience, we have let
a, =r, — 1
u = 0
u, = max{u, u,, - - -, U}

A(us ¢) = Zgll=0,ij=#im e Z‘il,]:=0 (am + Zl]c'=l,j=#m lj)! I.;:l,]'#m (fj))[gb(um - uj)]aj_ij
and I',(y + 1) is the incomplete gamma function defined by
Fy+1)= e trvdrt.

If more than one ; attains the value of max{u,, ---,u,}, we may define m as
the minimum of the i for which this is the case. The value of H(w |u; ¢) is not
affected by this choice. (In any case, this event occurs with probability zero.)
It is seen that this distribution depends on the ¢, solely through ¢. Utilizing
the one-to-one correspondence between hypothesis testing and confidence inter-
vals and noting that this distribution is the tool used to yield a uniformly most
powerful (UMP) unbiased test of level a to test H,: ¢ = ¢, against K: ¢ < ¢,
(Theorem 3 page 136, Lehmann [6]), one may obtain a UMA unbiased confi-
dence interval for ¢." In particular, if w and u are observed, then by solving
H(w|u; ¢) = 1 — a for ¢ (call this ¢,) one obtains an upper confidence bound
for ¢ witha 1 — a level of confidence. The uniqueness of the solution, ¢, fol-
lows from Corollary 3 page 80 of Lehmann [6]. Since R is a strictly decreasing
function of ¢, if we let R, = e ?n%,, then S = {R|R, < R} becomes a UMA
unbiased confidence set for the system reliability R. Further, we can demon-
strate that the UMA unbiased confidence sets are essentially unique. This follows
from the one-to-one correspondence between UMA unbiased confidence sets and
UMP unbiased tests (Theorem 2 page 261 of Ferguson) and the fact that the
latter are themselves essentially uniqﬁe in terms of the sufficient and complete
statistics (w, u) (remarks page 229 of Lehmann [6]).

3. Bayesian confidence interval for R. In a Bayesian procedure, the R; are
treated as random variables. In order to alleviate later complications, we will
consider the distribution of ¢, rather than R;. Using Bayes’ theorem, the pos-
terior density function of ¢, = 1/0; is

() [($ilzi5 1) = cihi(z; | bs; ri)pi(9:) ;> 0,

where p,(¢;) is the “prior” density function of ¢, and ¢; is the constant of nor-
malization. The density of z; given ¢, can be found using the fact that 2z; ¢, is
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distributed as chi-square with 2r; degrees of freedom. It is

3) hi(z; | ¢ r) = @;miz;mitem "% I(r,) .
Assuming that the ¢, are independent from each other, one may find the distri-
bution of ¢ = ¢, + --. + ¢, given z = (z;, .- -, z,) by taking a convolution

integral of [[%_, fi(¢;|z; r;). This is easily done using the well-known convolu-
tion property of the Laplace transform. In particular, we may write

(90} = [l LA Sfilgil 25 )}
or

[z 1) = & Il A fulds| 25 r)}}

wherer = (r,, ---, r,). Once f(¢|z; r)is determined, a (1 — a)-level upper con-
fidence bound for ¢ can be obtained by solving

§52 /(¢ |z 0)dg =1 —a
for ¢,.

In practice, f(¢ |z; r) may be difficult to obtain analytically, and in such cases
Monte Carlo techniques are helpful. Such techniques can also be useful when
working with non-serial systems. In these cases, the distribution of the system
reliability may be simulated by sampling from the f; and combining these samples
according to R = g(R,, - - -, R,) where g is determined by the system’s logical
configuration.

4. Choosing the prior in the absence of prior information. The aforementioned
analysis of complex systems using Bayesian procedures in conjunction with
Monte Carlo techniques cannot proceed until the priors are specified. An opti-
mum property of these priors would be that in the absence of previous infor-
mation they yield UMA unbiased confidence intervals for serial systems. The
following will demonstrate that no such sets of optimum priors exist that are
independent of the current data z. The proof will be by contradiction.

It was shown in Section 2 that the UMA unbiased confidence intervals at-
tained using El Mawaziny’s derived distribution, H(w|u; ¢), are unique with
probability one. Thus, if the confidence intervals predicted by the Bayesian
technique are to be UMA unbiased, théy must agree with El Mawaziny’s inter-
vals point for point. That is, if z = (z,, - - -, z;) is observed, and if ¢, and ¢,
are such that

rfiglmndy =1 —a,  Hwlug,)=1-a,
then P{¢, = ¢,} = 1. Then, dropping the subscripts, we may write
4) §5 /(9" |2 x) dg’ = H(w|u; §)
and this relation should hold for all ¢ > 0 and zsuch thatz, > 0,i =1,..., k.

That this is so follows from the fact that if two continuous functions are equal
almost everywhere in some region, then the equality holds everywhere in that
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region. Letting H,(w|u; ¢) denote the derivative of H(w|u; ¢) with respect to
¢, we obtain from (4) that f(¢ |z; r) = Hy(w|u; ¢), or that
LHyw|w; §)} = L{f(¢ ]z 1))
= [1f, L fi(ds ] 25 1)}
= It L eihi(zi| §is ri)pd(:)} -

Now since the p;(¢;) are assumed to be independent of the z; i, j = 1, -+, k,
any set of solutions found by assuming particular values of the z; should be true
for all z,. To this end, assume z, = z, = ... = z,. Then, lettingg = »*_, (r, —

1), we have from (1)

H(# [0, 9) = (¢) Toulg + 1) = 307 <L,

and hence by the Fundamental Theorem of Calculus,
Hyw|0; ¢) = witle ?"¢?/q! .
Then, by Formula 4.5.3 [1]
H, |05 §)) = witi(s 4wy
= w k(s 4+ w)E TTh, wrhi(s + w) ™.
Also, when z;, = ... = z, = w, we have
Il L fi( @il 25 1)} = Tlie LS @il ws 1)} s
Using the fact that for nonzero functions m;, n,, if T[¥, m,(x;) = ¢ [15., n(x;),
then m,(x;) = d,n,(x;) where the d, are independent of x and [[%., d; = ¢, we have
LA ws 1)) = gu(s)(s + w) T
or that
[l ws 1) = L qu(s)(s + wyraw)
where the ¢,(s) do not depend upon r and [[%, g;(s) = w'~*(s 4+ w)*~'. Since the
confidence interval is invariant under permutations of the subsystems and since
¢, is assumed independent of z;, j + i, then fi(¢,|z; r;) = f;(¢:]z; r;) and thus
q:(s) = w'+~Y(s 4 w)~¥/k, Therefore, using Formula 5.4.1 [1], we may write

5) FABi\ws 1) = it ikemwsigy e VT, — 1 4 1 k)
and then, using (2) and (3),
(6) pi($:) o (1/p)*=1" $;>0.

In order for the above Laplace transforms to exist, it is required that r, + 1/k —
1 > 0. By definition, r; is greater than or equal to one and k is finite. Thus,
the strict inequality is always satisfied.
It may be observed that if k& = 1, then this prior reduces to p,(¢,) = 1/¢, or,
in terms of R,,
(R = R7(In 1/R))™,
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which is the “improper” prior density already mentioned in the introduction
that corresponds to the fiducial approach and which yields the UMA confidence
bounds for a system of one subsystem [4]. Therefore, the fact that (6) is im-
proper does not as yet imply that there is no solution.

Since we have assumed w = z;, = ... = z,, (5) becomes

(M Sl zisri) =zt ke 2itig TR D (ry — 1+ 1/k)

Since we are assuming the existence of priors on ¢; which are independent of
the jth subsystem, we conclude that the posterior distribution on ¢, cannot be
affected by the fact that z; = z;. Hence, under these assumptions, (7) should
hold for arbitrary z. In order to see if these posterior densities do indeed yield
the UMA unbiased bounds, we can simplify the task by assuming r; = 1 for
i=1,---,kand z; < z;fori = 2, ..., k. Then (1) becomes

H=1—-¢"%.
Differentiating and taking the Laplace transform, we have
(8) LHyw|u;r = 1)} = z,(s + z,)7".
However, for r, = 1, we have
i LS|z r)} = Tl 275 + 2) 7%,
and since 0 < z, < z,, then
(%9) kLzMEs + z) VR £ (s 4+ 2)7t

Since the only assumption used in deriving (6) was that there existed priors
independent of z that yield UMA unbiased bounds and since (9) indicates that
(4) does not hold for z, + z; when i + j, then the assumption that such priors
existed must be false.

Even though the priors defined by (6) do not lead to UMA unbiased bounds,
it may be of interest to see if they provide a useful approximation. A computer
program had been written by the Mathematics and Statistics Group at North
American Rockwell Corporation for the IBM/360 that computes the Bayesian
confidence bounds for system reliability using Monte-Carlo techniques when the
prior densities are of the form

P,(R;) oc Roi(In 1/R,):

where f, and r, are arbitrary real numbers with the restriction that the cor-
responding posterior density be normalizable. This program also computes the
UMA unbiased bounds for a serial system using the conditional distribution that
El Mawaziny derived. Some of the results for a system of five subsystems are
listed below. Except for run 1, the z; were randomly generated using 2z,/6, ~
Xg"’i where r, = 3, r, = 4, r; = 4, r, = 2, ry = 2, and 01 = 12, 02 = 13, 03 = 15,
6, =10, 6, = 11. The mission time was taken as 1.0. The true reliability is
then R = exp[— Y15, 1/6,] = 0.66. The level of confidence is 0.90.
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TABLE 1
Run z1 22 z3 24 Zs5 Classical Bound Bayesian Bound
1 30.0 30.0 30.0 30.0 30.0 0.60 0.60
2 72.7 42.9 142.3 9.6 28.0 0.57 0.63
3 29.1 61.9 36.3 27.9 8.0 0.48 0.53
4 55.3 80.7 44.6 22.3 9.0 0.54 0.59
5 42.0 65.5 26.1 7.8 14.1 0.45 0.50
6 43.7 58.3 84.6 24.0 19.5 0.67 0.69
7 55.4 20.4 73.0 22.6 51.3 0.63 0.64
8 43.6 63.0 25.1 25.4 31.1 0.63 0.64
9 8.1 37.4 48.4 7.0 14.3 0.33 0.36
10 41.3 17.0 110.3 18.3 17.2 0.54 0.55
11 60.6 59.4 113.5 18.9 7.8 0.51 0.58

As Table 1 indicates, (7) leads to liberal estimates of R, . This was found to
be typically true for other serial systems tested.

5. The priors as weighting functions. The question of whether or not there exist
priors independent of the data that yield the UMA unbiased confidence bounds
may be generalized to whether or not there exist functions v,(¢,, z, r) dependent
upon the data that satisfy the following:

(10) §0 LIk LA fi: |z 1))} dp = H(w|u, §)
where

(11) [i(@ilz5x) = hi(z;| ;5 ri)vi($s, 25 1)

and

fi issuch that §3 fi(d,|z;r)dg, = 1.

In other words, the v; are such that the functions produced in (11) may be
treated as the posterior densities of ¢, and that these densities lead to the UMA
unbiased bounds predicted using the classical technique.

Differentiating (10), taking the Laplace transform of both sides, and using (3),
we may write

(12) [Iie LApimiz i e % (@,, 2, 1) [T'(r;)} = (27{H¢(w |u, ¢)} .

For arbitrary w and u, one may find the Laplace transform of Hy(w|u; ¢). For
the special case r = 1, we have

(13) LNHy(w|u; §)} = z,(s + z,)™ z,, = min{z}.
If we again require the posterior densities to be invariant under permutation,
then taking the kth root of (12) yields
(14) Jib:l2, 1) = 27z, H(s + z,)7")

= z,VkgVe e~ mdi[I'(1]k) .
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Solving for v;, we get

Vi 2, 1) = (2,74 [T(1]K)) 2+ Veeom208s

The kernel of this, of course, reduces to (6) when all the z; are equal.

(1]
(2]

(3]

(4]
(5]

(6]
[7]
(8]
1]

[10]

REFERENCES

BATEMAN, H. (1954). Tables of Integral Transforms 1. McGraw-Hill, New York.

BURNETT, T. L. and WALEs, B. A. (1961). System reliability confidence limits. Proc.
Seventh Nat. Symp. Reliability and Quality Control 118-128.

EL MawAziNy, A. H. (1965). Chi-squared distribution theory with applications to reli-
ability problems. Ph. D. Dissertation, Iowa State Univ.

EpsTEIN, B. and SoBeL, M. (1953). Life testing. J. Amer. Statist. Assoc. 48 486-502.

FerGuson, T. S. (1967). Mathematical Statistics a Decision Theoretic Approach. Academic
Press, New York.

LenMANN, E. L. (1959). Testing Statistical Hypotheses. Wiley, New York.

LENTNER, M. M. and BUEHLER, R. J. (1963). Some inferences about gamma parameters
with applications to a reliability problem. J. Amer. Statist. Assoc. 58 670-677.
ManN, Nancy R. (1969). Computer aided selection of prior distributions for generating
Monte Carlo confidence bounds on system reliability. Naval Res. Logist. Quart. 17

41-54,

MANN, Nancy R. and Grusss, Frank E. (1972). Approximately optimum confidence
bounds on series system reliability for exponential time to fail data. Biometrika 59
191-204.

SPRINGER, M. D. and THompsoN, W. E. (1968). Bayesian confidence limits for reliability
of redundant systems when tests are terminated at first failure. Technometrics 10
29-36.

ROCKETDYNE

NORTH AMERICAN ROCKWELL 6633
CANOGA AVENUE, CANOGA PARK
CALIFORNIA 91304



