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ON SELECTING THE LEAST PROBABLE MULTINOMIAL EVENT"

By KHURSHEED ALAM AND JAMES R. THOMPSON
Clemson University and Rice University

A single-sample procedure is given for selecting the least probable event
in a multinomial distribution. Given two numbers (c, P*), it is required
to determine the smallest sample size for which the probability of a correct
selection is at least as large as P* when the (unknown) difference between
the smallest and the next smallest cell probabilities is greater than or equal
to c. A table is given showing the required sample size for specified values

of ¢ and P*.
1. Introduction. Let X = (X, X,, - - -, Xx) have the multinomial distribution,
given by
P(X = x} = n! [[LA2
x;!
where x = (x;, X, -+, Xg), L, x;, =nand 1K, p,=1. Letp 1 S puy = -+ =

Pix) denote the ordered set of the cell probabilities p,, p,, - - -, px. Bechhofer,
Elmaghrabi and Morse [2] have considered a single-sample procedure R for se-
lecting the “most probable event,” i.e., the cell with the largest probability.
According to R, the cell with the highest count is selected as the most probable
event (with ties broken by randomization). It isshown by Kesten and Morse [5]
that for

(1.1) Pua > 651
Prx-11

the probability of a correct selection for R is minimized for
1

1.2 g= - i=1,2,...,K—1;
(1.2) P K_110 :

P =—0_

K] K_1410

Therefore, given 6 and P*(1/K < P* < 1), the smallest value of n (sample size)
can be determined for which the probability of a correct selection is at least as
large as P*, when (1.2) holds. Alam [1] and Cacoullos and Sobel [3] have con-
sidered sequential procedures for selecting the most probable event.

In this paper we consider a single-sample procedure S for selecting the “least
probable event,” i.e., the cell with the smallest probability. According to S,
the cell with the smallest count is selected as the least probable event, with ties
broken by randomization. Suppose that p; = p;;;. The probability of a correct
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selection (PCS) for § is given by
(1.3) PCS=PX, < X,(i>D}+ 1> .aPXi=X, < X(i>1,i+ a)}

L. +%P{X1=Xi(i>1)}.

The formulation of the problem of selecting the most probable event, as given
in [2], is not satisfactory for the problem of selecting the least probable event.
That is, let (pyyy/pa) = 0 > 1. Then p;; < (1 4+ (K — 1)6)~* and corresponding
to (1.2) for

(1.4) P = Opuys i=2-.,K-1;
Py =1— (14 (K —2)0)py

we have that PCS — (K — 1)7! for all n as p;; — 0. Therefore, given P* >

(K — 1), the requirement that the PCS should be at least as large as P* for

(Pa/Pry) = 0 > 1 cannot be met.

An appropriate formulation for the problem of selecting the least probable
event is the following. Let P*(K~! < P* < 1)and ¢(0 < ¢ < (K — 1)7!) begiven.
The smallest value of n should be determined for which PCS > P* when
(1.5) Pin—Pm=¢, i=2,...,K.
For this formulation we have the following theorem.

THEOREM 1.1. Given (1.5), the PCS is minimized for the cell probabilities given by

(1.6) Pm = (1 — (K= o)k,

=1+ /K, i=2,...,K.
A proof of the theorem is given in the next section. The configuration of the
cell probabilities, given by (1.6), will be called the “slippage configuration.”
Thus the smallest value of n for which PCS > P* for the slippage configuration
is the required value of n.

2. Proof of Theorem 1.1. The proof of the theorem for K = 2, which is
straightforward, is omitted. Let K = 3. Consider the binomial distribution,
given by

Pr{X: }:(r)PT(l——P)n—T’ r:()’l”",n-
Then
2.1)  Pr{min(X,n — X) 27} = Qi (p(L —p*t, =2
=0, r>nf2.

The summation on the right-hand side of (2.1) can be written as 4, where

A=IL(r,n—r4+1)—I(n—r+1,r)
and
1 o _
I(s, 1) = B, ) Px (1 — x)"tdx
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denotes the incomplete beta function. Differentiating 4 with respect to p,
we have

2.2) 94 _ 1

27 = r—1 1 — n—r __ pn—1r 1 — r—1
2 B——(r,n—r+1){P (1=p P —=p)yh
=0 for p=<i.
Therefore, the distribution of
Z = min(X, n — X)

is stochastically increasing in p for 0 < p < }. This implies that the expected
value of any non-decreasing function of Z is non-decreasing in p for 0 < p < 3.

Let py, = p, and for any i, j > 1, let p; + p; be fixed equal to ¢, say. We
show that the PCS, defined as in (1.3), is decreasing in p; for p; < ¢/2; and

therefore, subject to (1.5) it is minimized by takinng p; = py; + ¢ and p; =
g — pu; — ¢. From (1.3), we have

1 n! om
(2-3) PCS = 3 ——¢" H'Ilri=l,m¢i,jp_m“‘
s w! X!
. w . z; . E2)
X Dhrprnsen 905 x) () (2)(1 = £2)7
X/ N q q
where w = x; + x;, the outer summation is over all (K — 1)-vectors (W, Xp5 o0,
Xi_1s Xiq1s * s Xj1s X410 + + +» Xg) SUCh that x, = ming,; ; Xp, W4 DKot msi i Xm =M
and s is the number of x,,’s which equal x;,
d(x; x;) = 1 for min(x;, x;) > x
s .
(2.4) = - 1 for min(x;, x;) = x, x; # X;
s .
=< 3 for min(x;, x;) = X, X; = X;
=0 for min(x;, x;) < x; -

We note that given x, and w, ¢(x;, x;) can take only one out of the two values
s/(s + 1) and s/(s + 2) and thus ¢(x; x;) is a non-decreasing function of
min(x;, x;). By the stochastically increasing property of the distribution of
min(x;, x;), as shown in the previous paragraph, it follows that the inner sum-
mation on the right-hand side of (2.3) is non-decreasing in p; for p; < ¢/2, as
was to be shown.

Repeated applications of the above result give the following lemma.

LEMMA 2.1. Given py,,, the PCS is minimized subject to (1.5) for the configura-
tion of the cell probabilities given by
(2.3) Pty =Pmt ¢ i=2.--,K—1
P =1— (K= 1py — (K—2)c.
The next step in the proof of Theorem 1.1 is to determine the minimizing
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value of p;,;. Let p=p,;and g=1— (K — 1)p — (K — 2)c. For the cell
probabilities given by (2.5), we have

K—Z U U u”]s
PCS = n! > k2 1 < >Zu;op—-q—[wjl

s+ 2 s u! ul u!
(2.6) X n—(G6+2uK—-—2—5p+c)
- 1 (K=2 Py [(1’ + C)"]*
| SVK-2 r 1
Rt s + 1( s )vago w v L wl

X¢gm—@E+Du—v,K—2—s5,p+4c)
where u and v take integral values, ¢,(0,0, p) =1, ¢, (a, b, p) =0 for a <
b(u + 1) and .

(27) ¢u(a’ b’ p) = Zui>u,i=1,--~,b; le’ui=a 25“;

i

otherwise.
Differentiating (2.7) with respect to p, we get

(2.8) %sbu(a, by =blpia—1.6.p)+ Zga—u—15-1,p].

Let 4, and A4, denote the sum of the terms corresponding to# = Oand u > 1,
respectively, on the right-hand side of (2.6). Then

1 1 (K—2
(2.9) A= §=7,2S+2< } )g!lo(n,K—Z—s,p—l—c)

1 (K—2 ¢
+Zs=os—|—1< s )nglv!

X ¢yn — v, K —2 —5,p+c).
From (2.8) and (2.9) we have

Ny s L (K= s g ko
n! dp - s=Os+2< s >( S){¢0(n ) S,P+C)
+ gn — 1, K —3 —5,p 4+ 0)}
1 (k-2 v
— (K — 1 K—3 < Zi
( )Zs—o 3 + l s )Zv_o v!
(2.10) X¢0(n—1—v,K_2_s’p+c)
ks 1 <K—2 X _ 2 _ g’
+ o (00 ) Do L

X {gn —1 —v,K—2 —5,p+¢)
+ ¢fn—1 —2v,K—3 —5,p+ )}
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Dy gy L (K= gy
n! dp s+ 2 s

X ¢on —1,K—2 —s,p+¢)

K—2
+Z§‘;fsfrl< "N - LK=2—5p+9

r k2 1 K—2 q’
@.11) L G

X ¢on—1—v,K—2—35,p+¢)

K-3 1 K—-2 -2 — q_v

X ¢n—1—v,K—2—5,p+¢)

T ONER(RY zvglgsbo(n— 1—9,K—2—sp+0).

Substituting 1/(s + 1) for 1/(s 4+ 2) and 1 for s/(s + 1) in the first and second
summation, respectively, on the right-hand side of (2.11) and simplifying we
have

1 dd,

A SR ) D L g — 1 =0 K =2 —s.p 40
n! dp !

(2.12) + D) Do L dn =1 0. K—2—5.p+0)

= Dl an-1-0K=2p+0
=B, say.

For A, we have

a=ze L (T ) na g [0RY]

n! s 2 s u! u! u!
(2.13) X ¢ (n—(s+2)u,K—2,p+c)
x_s 1 K—2 P ﬂ[(p + c)“]“
t L s+ 1< s >Z">ugl u! v! u!

X ¢ (n— (s + Hu—vK—2—s,p+c).
Differentiating with respect to p we get

(2'14) —1'“%=31+B2+"‘+B7
n! dp
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where
— - 1 K — 2 pu—l q“ [(p + c)u]s
B, = YK . 4
' s”s+2<s >2“4w_1ﬂm u!
sﬂgﬂp+®“[@+ﬂqm}
ul u! (w— 1! u!

X g n—(+2)uK—-2—s5p+c)
K — u qu—l (p_l_c)us
~&k-nzE 5 (0] ?) e ,(u_l),[ + o) |
X g (n—(s+2u,K—2—5,p+¢)

2 () B o L[0T

X gun—(s+2u,K—=2—s5,p+¢),
_yxsK—2—5 (p+OT
n= et (T B R
X gn—(s+2u—1,K—2—5,p+¢)
x3K—2—5(K— __|:(p—|-c)“]8
< Zem s+ 1 < s )Z“ZI ! u!
Xgn—(+2u—1,K—2—5,p+¢),
,K—2—5s5(K— (p+c)“]8+‘
2.15 = > -2 - e
(2.15) B, = 2’ s+ 2 < s )Z“ u'u'[ u!
X ¢ n—(s+3)u—-1,K—-3—sp+c¢)
_yra_ S (K- P_“ﬂ[(l’+c)“]*“
Z:3=1s+1< s ) “E gl u!

X ¢n—(+2u—1,K—2—5,p+0)
K-2 + P
< DI () Do 2 (2L
X gn—(s+2u—1,K—-2—s,p+0),

e 1 (K—2 i 1 2
B, = 2.5 s+ 1 < s ) Zivsuzt {(u — Dt u!

TPV Vil c)“-l[(p + c)u]s_l}

ul v (u—1)! u!
X ¢ n—(+1u—v,K—2—5,p+0¢)

< B Do o G Y]

(u u!

x¢u(n—(s+1)u—vK—2—s,p+c)
_ K — )4 (pt+oY
By = —(K = 1) Ziiss +1< ) e B L[ ]

Xpmn—(@E+u—v—-—1L,K—-2—s5p+¢),
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k3 K—2—5s/K—2 (p-|—c)“}s
B, = >
= s+ 1 < s )Z"Mmu’v'[ u!

X¢gmn—(s+Nhu—-—v—1,K—-2—s5,p+c¢),

b= K=2os(K=2) g rlG+oT

s41 u! ! u!
Xgn—(+2u—v—1,K—-3—s5p+0¢

= N () B 2 L[ (22 2|

ul vl u!

and

Xpnm—@E+Du—v—1,K—-2—5,p+0¢).

From (2.15) we have

B+ B, < £57 (7 Doz L [(p + c)“T

- (u u — 1)! u! u!
X ¢ n—(+Du—v,K—2—5p+c¢)
_ Pu-—l . _ _
(2.16) = nguZI(—‘l_)"agbu an—u—v,K—2,p+¢)

:Zv>ugoma¢u(”—”—v—I’K—zaP+C)’

u!

B+ By < T () B & L[ 24T
X n—(@+hu—v—1,K—-2—sp+c)

s K—2—s5s/K—2 p"q”[(p—|—c)“]s
B, + B K= 2= __preirto
2 B < Lo < s )Z”--u!v! ul

g n—(G+u—v—1,K—-—2—s5,p+c¢).

and

From (2.15) and (2.16) we have
(P + C)“}‘

u!

B, + (B, + B) < — LIS (57%) Zozuan P_'v!l:

X¢gm—(+u—v—1,K—2—s5p+0¢)
and therefore,

(2.17) B, + (B, + By + (B + B,)
< ZvZuzl ¢u(n—ll—'v—1K—2P+C)

From (2.12) and (2.17) we have
(2.18) B+ B, + (B, + By) + (B, + B))
< ZvZuZO —¢u(n—u—v—1K—2P+c)

1987
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Finally, from (2.16) and (2.18) we have

B+Bl+B2+ "‘+B7<0-
Therefore

(2.19) 44+ 4)<o0.
dp
Thus the PCS, given by (2.6) is decreasing in p.
Theorem 1.1 follows from (2.19) and Lemma 2.1.

3. Asymptotic expression for PCS. Let p,=p,, and Z, = X, — X,, i =

2, ..., K. For the slippage configuration we have

3.1 E(Z) = ne

(3.2) Var(Z,) = 7% (1 + )2 — ¢K)
and for i # j

(3.3) Cov(Z;, Z;) = % (1 + )1 — ¢K) .

The Z’s are equi-correlated and for large n, their asymptotic distribution is
jointly normal with mean, variance and covariance, given by (3.1), (3.2) and
(3.3). Thus for ¢ < K~* we have

PCS= P(X, < X,,i=2, K}

=PlZ, =20,i=2, .-+, K}
3
=~ \*, PEr-1 <‘%ﬁ’i> ¢(x) dx

where ¢(x) = (2r)~te~*2 and ®(x) = {*_, ¢(y)dy denote the standard normal
density and cumulative distribution function (cdf), respectively, a? =

K1 4 ¢)(1 — ¢K) and
B — %(1 + )2 — cK) —%(1 + o)1 — cK)

_14c
T
For K=!' < ¢ < (K — 1)7* the asymptotic value of the PCS can be obtained from

the cdf of the multivariate normal distribution.
The integral on the right-hand side of (3.4) has been tabulated by Gupta [4].

4. Computed results. For K = 2 we have the minimum value of the PCS
given by
PCS = X {mb2 (M)e*(1 — c)»== for n odd
= et (el — o) 4 ()™ (1 — )2 for n even

which can be obtained directly from the tables of the binomial cdf.
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TABLE 1
Minimum values of sample size required for selected values of ¢ and P*

K=2

P* i .75 .80 .85 . .90 .95 .99
c

.05 110 182 283 429 656 1080 2160
.10 27 46 71 107 163 268 536
15 13 21 31 47 72 118 236
.20 7 11 17 27 40 65 130

K=3
.05 204 272 360 478 650 957 1699
.10 51 67 89 117 158 232 410
.15 22 29 39 51 68 99 175
.20 12 16 21 27 37 53 93

K=4
.05 221 278 349 443 578 813 1370
.10 54 68 84 106 138 192 321
15 22 28 36 45 57 79 131
.20 12 15 18 23 29 41 67

K=5
.05 216 264 324 401 510 698 1138
.10 53 63 77 94 118 160 258
.15 20 24 29 38 47 63 101
.20 11 12 14 18 22 30 43

TABLE 2

Approximate and exact probabilities of a correct selection for N = 30, K = 2(1)5

c=.02 c= .05 c=.10 c=.15 c=.20

Approx Exact Approx Exact Approx Exact Approx Exact Approx Exact
0.544 0.543  0.608 0.607 0.709 0.707 0.797 0.794 0.868 0.864
0.386 0.388 0.470 0.474 0.617 0.623  0.756 0.760  0.869 0.869
0.304 0.308 0.398 0.407 0.578 0.593 0.761 0.773  0.905 0.908
0.254 0.259  0.352 0.367 0.561 0.587 0.790 0.809 0.950 0.957

v A WX

Table 1, given above shows in the case of the slippage configuration for ¢ =
.05(.05).20, the minimum sample sizes required to obtain PCS = .70(.05).95,
.99, for K = 2(1)5.

Table 2 compares, for n = 30, K = 2(1)5 and ¢ = .02, .05(.05).20, the exact
value of the PCS with the asymptotic approximation based on (3.4).
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