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LIMIT THEOREMS FOR THE DISTRIBUTIONS OF THE SUMS
OF A RANDOM NUMBER OF RANDOM VARIABLES!

By D. SzAsz

Mathematical Institute of the Hungarian Academy of Sciences

A necessary condition is given for the convergence of distributions of
the sums of a random number of independent random variables. This is
made on the basis of a theorem which gives sufficient conditions for the
convergence of distributions of randomly stopped stochastic processes.
The random indices are supposed to be independent of the sequence of
summands.

0. Introduction. Foreveryn,leté,,, ..., §,,, - - - bea sequence of independent
random variables, and v, a random index independent of the sequence {£,.}.
Suppose that for any ¢ > 0

limfn—»w Supk P(lsfnkl > 6) = 0 ?
= co. Put

Sk(n) = anl + " c + Snk .

Following the classical work of Robbins [7] many authors investigated the
limiting behavior of the distributions of the sum S{*’. The aim of our investiga-
tions is to extend the theory of limit distributions of sums of independent random
variables (see [4]) to the case, when the number of summands depends also on
the chance. Our starting point is a result of Gnedenko and Fahim [3], which
gives sufficient conditions for the existence of limit distribution of the sum S
in the case, when the summands &,,, ---, §,,, - -+ are identically distributed
(n=1,2,...). For the same case B. Freyer and the author have obtained
necessary conditions under strong additional assumptions [10], while in [8] the
author was able not only to get rid of these conditions but to obtain necessary
as well as necessary and sufficient conditions in the case of identically distributed
summands.

In the recent work we shall give both sufficient and necessary conditions for
the convergence of the distribution of S in the case of non-identically distributed
summands. In Section 1 we give a sufficient condition, which is a consequence
of a limit theorem on stochastic processes stopped at random. Section 2 contains
necessary conditions for the convergence. The results of Section 2 will be proved
in Section 4, while in Section 3 we examine some simple properties of Doob’s
centers.

We remark that applying the obtained results we proved necessary and suffi-
cient conditions for the stability and the law of large numbers for the sum. These

and that P lim

n—0 ’Ib
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SUMS OF A RANDOM NUMBER OF RANDOM VARIABLES 1903

conditions were published in [9]. We also remark that our results remain valid
if the summands are m-dimensional vectors.

1. The sufficient condition. First we shall prove a lemma. If the distribution
function of the random variable X is F(x), then denote by /,(q) = I,(g) an arbi-
trary g-quantile of F(x), and by I,(q) = I,(g) (I;(q) = Ix(q)) the greatest lower
bound (least upper bound) of all g-quantiles of F(x) (0 < ¢ < 1).

LemMA 1. The distribution functions F,(x) converge weakly to the distribution
function F(x) iff for every q

(1.1) lo(g) < liminf, . [, (9) < limsup, ... [ (9) < Ix(9) -

PROOF. Necessity. Suppose that the distribution functions F,(x) converge
weakly to the distribution function F(x), and for some g,

lim infn—vcn !F"(qo) < lF(qO) ‘
Let x be a point of continuity of F(x), such that

lim inf, ., lp (90) < x < 1p(q0) -
It follows from this inequality that for an infinite set of indices n
F.(x)=gq,.
Therefore
F(X) = limn—m Fn(x) ; qO ’
whence
l¢(90) = x .

This inequality contradicts the choice of x.

Sufficiency. If the distribution functions F,(x) do not converge weakly to F(x),
then there exists a point x, of continuity of the function F(x) such that for a
suitable subsequence {n’} of indices and d > 0

(1.2) Fo(x) > F(x) + 08 (say) .
Set f = F(x,) + 6. It follows from (1.2) that for every n’
I (B) < %, -

Now, since F(x) is continuous at the point x,, there exists an @ > 0 such that
for every x, £ x < x, + a we have

F(x) < F(x,) + 0/2 .
Thus

[x(B) = x,+ a
and consequently,

LBy Zx+a>x = I-Fn,(u@) = an,(aB) ’

that contradicts (1.1).
The lemma is proved.
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In the case of identically distributed summands Gnedenko and Fahim gave
the following sufficient condition:

ProrosITION 1 [3]. Suppose that for every n &, ---, &y, « -+ are identically
distributed. If there exists a sequence {k,}, of positive integers (lim,_., k, = oo) and
distribution functions ®(x) and A(x) such that for n — oo

(A) PSP < x) > Q(x),
(B) Pk, < x) = Alx),
then
P(Sm < x) — ¥(x).
The distribution function ¥(x) is determined by the characteristic function
P(1) = §rz e d¥(x) = 7 [p()} dA() »
where
(1) = §13 e dO(x) -

In view of Lemma 1, it follows from condition (B) that for almost every ¢
(namely, for every g satisfying {,(q) = /,(q)) we have

L(9) _
N —00 —k— - l(q) ’

where /,(q) =/, (¢) and I(q) = I,(g). Thus, taking into account condition (A),
for almost every ¢

lim

n

(1.3) lim,_, Eexp iuS™,, = [¢(u)]"" .
Let us define the stochastic processes y,(7) in the interval [0, 1], as follows
(1.4) 1) = Sivie -

In view of (1.3) there exists a stochastic process {(¢) : ¢ € [0, 1]} with independent
stationary increments such that for almost every ¢

(1) = 1(1)
in distribution, as n — oo.

Let us introduce the following notation: = always denotes a random variable,
uniformly distributed in [0, 1] and independent of all stochastic processes, for
which 7 is a random stopping time. It is easy to see that the distributions of the
random variables y,(r) and S!» are identical. Thus the assertion of Proposition
1 can be formulated so:

(%) = 1(7)
in distribution, as n — co. In this form, Proposition 1 is a particular case of the
following Theorem 1. We remark that in the sequel measurability of stochastic
processes will be understood as measurability with respect to the product o-
algebra of the g-algebra of Borel sets of the domain of the stochastic process
and of the g-algebra of measurable subsets of the underlying probability space.
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THEOREM 1. Let {y,(¢t): t €[0, 1]} and {y(t): t €[0, 1]} be measurable stochastic
processes and t be a random variable, independent of the processes {y,(t)} and {y(1)}.
If for p-almost every t (u(H) = P(r € H))

Xa(1) — x(1)

in distribution, as h — oo, then
2a(7) = (%)
in distribution, as h — co.
Proor. The theorem follows from the limit relation
Eetvtnlt) — i Eeiuxn(t)#(dt) — Eeiux(t)y(dt)

and the Lebesgue dominated convergence theorem.

The following Corollary of this theorem shows that the study of stochastic
processes stopped at random may be useful in the limit theory of sums of a
random number of random variables (cf. also [1] Section 17).

COROLLARY. Suppose that for almost every q [0, 1] there exists a distribution
function ® (x) such that

lim, ., P(S{",, < x) = @ (x).

129¢4
Then there exists a measurable stochastic process {y(t): t € [0, 1]} with independent
increments such that for almost every t

P(x(t) < x) = @ (x)
and
ST — x(m)
in distribution, as n — oo.

Proor. It is sufficient to define the processes {y,(r)} according to (1.4) and
then apply Theorem 1.

2. Necessary conditions. In [8] we proved that if the sums of a random number
of identically distributed random variables have a limit distribution, then there
exists a decomposition of the indices n for a finite or infinite number of subse-
quences such that the sufficient conditions for the existence of limit distribution
(i.e. in case of identically distributed summands the conditions of Proposition 1)
are satisfied for all of these subsequences. In case of non-identically distributed
summands the situation is similar. In the formulation of our results we shall
use the notion of Doob’s center.

For an arbitrary random variable X there exists a unique real number A(X)
such that

Earctg (X — A(X)) =0.

This number A(X) is called the Doob’s center of X or briefly the center of X. If
A(X) = 0, then we say that the random variable X is centered. A stochastic
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process {y(#): t € T}is centered, if for all t ¢ T the random variable y(¢) is centered
(cf. [8]).

THEOREM 2. If the sums S;’;’ have a limit distribution, as n — oo, then there exist
step functions m,(t) (n = 1, 2, .- -5t [0, 1]), a decomposition of the indices for a
finite or infinite number of subsequences .V, ..., V", and centered, measurable
stochastic processes {x'"(t): t € [0, 1]} with independent increments (1 < i < j), such
that for almost every t

Siply — ma(1) = V(1)
in distribution, and also
SLZ) - mn(An(Vn)) - X(i)(ﬂ.)
in distribution, as n — co, ne 4. Here A,(x) = P(v, < x).

We remark that the assertion of the theorem can not be improved. In[8] we

gave an example, where j is necessarily greater than 1. It would be preferable

to get rid of the functions m, (). The following example shows, however, that
in general this is impossible. Let

P@,:QZE% it 1<i<om
and
£,=0, if 1 <k<2m_ 2
£ =0, i 22 <k = (4 12 2
G=j<2 -1
£,=0, if (20— 120 4 2 < k< 20
£,, = 2-tn0 if (2] 4 12" — 2 < k< (2) 4 1)2% 4 2

O<j=2t— 1)

§pp = — 270D if 2j2% 20 < k< 252 4 2%
(1sj=2—1).
In this case the functions §j*),, are not random and for almost every 7 ¢ [0, 1]

and large n the value of m,(r) equals the value of the following function r,(¢) of
Rademacher type

2j 2] + 1
t)y=20 - t

2j +1 2j+2

=1 t .

Now from the sequence r,(r) it is impossible to choose a subsequence, that is
almost everywhere convergent. Therefore, in the assertion of Theorem 2 the
functions m, () play an important role; we will see, however that under additional
assumptions it is possible to get rid of them.

CoROLLARY 1. Suppose that the random variables &, are symmetric for every n
and k and the sums S have a limit distribution, as n — co. Then there exist a
n
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decomposition of indices for a finite or infinite number of subsequences 47, - - -, N
and centered, measurable stochastic processes {y'*(t): t € [0, 1]} with independent
increments (1 < i < ), such that for almost every t

(2.1) Sinl = 1)

in distribution, as n — oo, ne 47, and also

(2.2) S5 — 1 (m)

in distribution, as n — co (i is arbitrary, 1 < i < j).

COROLLARY 2. Suppose that the random variables &,, are nonnegative for every
n and k and that the sums SL';’ have a limit distribution, as n — co. Then there exist
a decomposition of indices for a finite or infinite number of subsequences .47, - . -,
A; and measurable stochastic processes {y“)(¢): t € [0, 1]} with independent incre-
ments (1 < i < j) such that (2.1) and (2.2) are satisfied. The processes {y'*(t):
t [0, 1]} are of the form

1 9(0) = 79(1) + Mi(r)
where {39(t): t € [0, 1]} is a centered process, and M(t) is a non-decreasing function
(1<is).

What concerns the class of the limit distributions, Mogyorddi [6] remarked
that an arbitrary distribution can be the limit distribution of the sums S{'. And
what is more, this is possible even in the particular case, when all the summands
are nonrandom, i.e. they are constant with probability 1. In fact, if F(x), is an
arbitrary distribution function, then it is easy to define random variables v, and
constants £, (n, k = 1,2, --.) in such a way that

lim, ., sup, |,/ =0

and for almost every 7€ [0, 1)
Sty — F7(1) -

It is obvious that in this case the limit distribution of S{* equals F(x). So we
can state that the richness of limit distributions is caused by the circumstance
that the summands are not centered (not necessarily in Doob’s sense). In fact,
by the aid of suitable centering it is possible to make the class of limit distribu-
tions narrower. For example, if the summands are centered in such a way that
the processes {y,(f) = Si*l,;: t € [0, 1)} are centered in Doob’s sense, (this will be
done in the proof of Theorem 2), then the limit processes {y!*(¢): t € [0, 1)} are
also centered. In this case the random variables y'*)(z) are centered as well;
however, not every centered distribution can occur as the distribution of y'*)(x),
that can be seen easily in the example, when the distribution is concentrated to

the points —1 and 1 with masses £ — 3.
3. Some simple properties of Doob’s centers.

LEMMA 2. Let X be an arbitrary random variable. If for some a(0 < a < %)
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there exist a and b such that
PasX<bh=1l—a

and
(3.1) e;tg(izi. « )

l -«

then
A(X)ela —¢, b+ €] .

Proor. Suppose that the assertion of the lemma is not valid, and
(3.2) AX)>b+e  (say).
Then, denoting the distribution function of X by F(x), we have
0 = §,arctg (u — A(X)) dF(u) + §;arctg (l; — A(X))dF(u),
where I = [a, b]. This equality and (3.2) imply that

0<—arctge~(1—a)—|—%-a,

that contradicts (3.1).

LemMA 3. If the sequence {X,}, of random variables is weakly compact, then the
sequence {A(X,)}, is bounded.

Proor. For a fixed a(0 < a < 1) there exists a u, such that for every n

PO X > up) < .
Choose ¢ in accordance with (3.1). Then, on the basis of Lemma 2, for every n
AX)| S u, + ¢
LeEMMA 4. If the distributions of the random variables X, converge weakly to the
distribution of the random variable X, as n — oo, then
lim,_, A(X,) = A(X) .
Proor. It is obvious from the previous lemma that the sequence {A(X,)}, is
bounded. Let us choose from this sequence a convergent subsequence

j—oo
This, and the equality
Earctg (X,, — A(X,,)) =0

given that
‘ Earctg(X —c¢)=0
whence ¢ = A(X).

LEMMA 5. Let, for every n, the random variables X, and Y, be independent.
Suppose that

(@ AX)=A4AX,+Y,)=0 (n=1,2,-..);
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(b) for some distribution function F(x)
F,(u) = P(X, < u) — F(u)

as n — oo;
(c) for suitable constants a,
pPlim, (Y, —a,) =0.

Then
Plim

Proor. It is sufficient to prove that

Y,=0.

n—oo

lim a =0.

n—oo n

If this equality is not true, then, without the restriction of generality, we may
assume that for every n
a,=c>0.
Denote
G,(u) = P(Y, < u, e(u) =0 us0

=1 u>0.
Then

0 = §§ arctg (u + v) dF ,(u) dG(v)
= {{arctg (u + v + a,) dF () dG (v + a,)
> ((arctg (u + v + ¢) dF,(u) dG,(v + a,) .
Passing to the limit as n — oo, and using the conditions of the lemma we get
0 = (§arctg (u + v + c) dF(u) de(v)
= {arctg (u + c)dF(u) .
Now
§arctg (u + ¢)dF(u) > {arctgudF(u) = 0
contradicting the previous inequality.

4. Proof of the results of Section 2. In this paragraph /, (¢) will be denoted by
L,(t) (see Section 1). Concerning the properties of processes with independent
increments, we refer to monographs [5] and [2].

We shall work with the method of symmetrization. Namely, we shall use the
following one of the inequalities of symmetrization: if X and Y are independent,
symmetrically distributed random variables, then for every ¢t > 0

(4.1) P(IX + Y| > 1) = §P(X]| > 1) .
Moreover, we shall need the following two simple remarks:
ReEMARK 1. If for every n, X, and Y, are independent random variables, and
Plim, . (X, + Y,) =0
then there exists a sequence of constants a, such that

Plim, (X, —a,)=0.
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REMARK 2. If for every n, X, and Y, are independent random variables, and
the sequence {X, + Y,}, of random variables is weakly compact, then there exists
a sequence of constants a, such that the sequence {X, — a,}, is also weakly
compact.

Proor oF THEOREM 2. Let for every n {7,,}, be a sequence of independent
random variables such that it is independent of the sequence {£,,}, and of the
random variable v,, and that

P(§p < X) = P(n < %) (mk=12-...).
Put
an = Enk — Dk
ZP =Gt o+ e
From the convergence of the distributions of Si» it follows that the sequence

{Z:})}, is weakly compact. We assert that the sequence {Z{",}, is also weakly
compact. Suppose, on the contrary, that

lim,_, sup, P(|Z{},| > x) > 0.
By (4.1) we have
P(|Z£Z)| >x) = Dkt P(|Z,™| > x)P(v, = k)
= (I = niP(Zi30| > %) 3
consequently
lim,_, sup, P(|Z| > x) = §(1 — 1) lim,_,, sup, P(|Z{",)| > x) > 0;

that contradicts the weak compactness of the sequence {Z{M},. Since {Z{",}, is
weakly compact, in consequence of Remark 2 for every ¢ ¢ [0, 1) there exists a
sequence {m,(#)}, of constants such that the sequence {S{";,, — m,(¢)}, is weakly
compact. Now it follows from Lemma 4 that for every n and ¢ the constants
m,(f) can be chosen to be equal to A(S{},)).

Define for every n the stochastic process {7,(¢): ¢ € [0, 1)} as follows

(4.2) T(t) = ity — my(1).

Then for every n and ¢

4.3) A1) = 0.
Moreover, the random vaﬁables

(4.4) Tm) and S — m,(A,(,)

are identically distributed.

By the usual diagonal method of Cantor we can choose a subsequence .#; of
natural numbers, such that 1 e .47 and for every 1, < t,; t,, ,€ © (O is the set
of dyadically rational numbers of [0, 1))

(4.5) P(7n(ts) — Fu(tr) < x) — (Dtl,tz(x) ’
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as n— co, ne.#]. Here @, , (x) is an infinitely divisible distribution function.
Let {9(¢): t € O} be a stochastic process with independent increments such that

9(0)=0
and for ¢, < t,; t,,1,€0
(4.6) P(9(1;) — I(t,) < x) = @, (%) -

There exists a stochastic process {y*(r): t € [0, 1)} with independent increments
such that y®(0) = 0 and for every t, < t,; t,,1,€ O

(4.7) P((t) — xM(t) < x) = P(I(ty) — 9(1) < x) .
We assert that for every t [0, 1)
(4-8) 1a(t) = 12(1)

in distribution, as n — co, ne.#;. From (4.3) and Lemma 4 it follows that for
te[0, 1)
(4.9) A(y(r)) = 0.
Therefore the process {x(f): t € [0, 1)} is stochastically continuous, except for
at most a countable number of points [5]. Let ¢ be a point of stochastic continuity
of the process {y(r): t € [0, 1)}. We prove that in this point (4.8) holds.
Denote the distribution function of the random variable X by F,, and the

Lévy-metric, defined in the space of distribution functions, by L(F, G). Let us
choose for every r = 1,2, ... two points #(r), £*(r); t'(r)€©, i = 1,2, i(r) <
t < #(r) in such a way that

L(F 04y Fymgic) < 17 (i=12).
It follows, however, from (4.5), (4.6) and (4.7) that for sufficiently large values
ofne 47 (n=n,)

L(F o icrys Fypuion) < 17 (i=12).
We can suppose that n, < n,,, and lim,_ n, = co. Forn, <n<n,,, ne s,
put ¢, = #'(r). From the previous inequalities we get that

lim L(F~ (t/ni)’ Fx(l)(t)) =0 (i = 1, 2) .

n—00, M€ 4y Tn

Since in the decomposition

zn('tnz) = zn(tnl) + [Z’n(t'nz) - zn(tnl)]
the summands on the right-hand side are independent, the last equality yields to

P limfn—vw,neml (Z'n(t'nz) - zn(t'nl)) =0.
Thus, on the basis of Remark 1, there exist constants a, (n € .47) such that

P limn—»oo,neml (Zn(t) - Zn(tnl) - an) =0.
Putting in Lemma 5
X, = 1.(t}) and Y, = %) — %a(t.) (neA)
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the conditions of the lemma are satisfied, and thus

Tu(t) = 27(0)
in distribution, as n — oo, n € .#7. This convergence, together with (4.2), (4.4),
(4.9) and Theorem 1, shows that for the subsequence .47 the assertion of the
theorem is valid.
If the subsequences .47, - - -, .#/_, have already been determined, and the set

(4.10) {1,2, ...} = (AU - U AL

is finite, then we can add it to any of the sets .#7], - .., 4] _,, and the assertion
of the theorem is proved. If the set (4.10) is infinite, then we can define a subse-
quence .4 of the sequence (4.10) analogously as ./ has been defined. We can
also assume that ie 47 U ... U .47. In this way we get, at last, the desired
decomposition 47, - -+, 47. The theorem is proved.

From the proved theorem Corollary 1 follows immediately, while for the proof
of Corollary 2 it is sufficient to remark that the functions m,(f) defined in the
proof of Theorem 2, are not decreasing. Infact, if X and Y are arbitrary random
variables and Y > 0, then

AX) S AX + V).

Note. In this paper we supposed that the summands satisfy the condition of
asymptotic negligibility. Actually, this condition is not necessary, thus our
results, and the limit theory for sums without the condition of asymptotic neg-
ligibility, worked out by V. M. Zolotariov, give conditions for the convergence
of the distributions of sums of a random number of independent random varia-
bles, not necessarily satisfying the condition of asymptotic negligibility.
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