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A CHARACTERIZATION OF CERTAIN RANK-ORDER TESTS WITH
BOUNDS FOR THE ASYMPTOTIC RELATIVE EFFICIENCY

By KONRAD BEHNEN'
University of California, Berkeley, and University of Minster

For the one-sample independence problem, the one-sample symmetry
problem, and the two-sample problem it is shown that every one-sided rank
test is asymptotically optimal for a certain nonparametric subclass of con-
tiguous alternatives, provided the test and the associated subclass of alter-
natives are generated by certain square-integrable functions defined on the
unit square. Then the asymptotic normality of the respective rank statistics
under every alternative contiguous to the hypothesis is used in order to give
necessary and sufficient conditions for local asymptotic unbiasedness of
such tests. Finally, for locally asymptotically unbiased tests there are given
necessary and sufficient conditions for having bounds for their asymptotic
relative efficiency under contiguous alternatives.

1. Summary. In the paper [1] of the author it is shown that every sequence
of rank tests of a certain form for testing independence against positive quadrant
dependence is asymptotically optimal in the sense of Neyman [14] for a suitable
subclass of alternatives. Also asymptotic normality of the respective test statistics
was derived under every sequence of alternatives that is contiguous (cf. Hajek
and Sidak [8] or LeCam [12]) to some hypothesis. Then sufficient conditions
for two such tests having a lower bound larger than zero for their asymptotic
relative efficiency (ARE) under alternatives contiguous to some hypothesis were
given and applied to some well-known examples.

In this paper we will derive necessary and sufficient conditions for two tests
of a certain class to have a strictly positive lower bound for their ARE under
alternatives contiguous to some hypothesis. In order to get these results we must
allow more general generating functions for the tests under consideration than
was done in [1]. Therefore, at the beginning, we have to state assumptions
which are somewhat similar to those stated in [1]. To make it a little bit more
interesting we will do all things not only in the “independence case” but also in
the “one-sample symmetry case” and the “two-sample case.” (Possibly one can
derive similar results in some other cases.) The results will give an immediate
explanation for the behavior of the ARE in the examples stated in [1].

In Section 3 we have listed some technicalities on approximation by special
step functions needed in the proofs of Section 2.

2. Main results. Let X,,, - - -, X}, be independent k-dimensional random vari-
ables and suppose that the distribution of X, is given by a k-dimensional con-
tinuous (cumulative) distribution function F,;. Under this basic assumption
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we shall simultaneously consider the following three special “asymptotic test
problems.”

A. The 2-dimensional one-sample problem ‘“‘independence vs. positive quadrant
dependence.” This means especially k = 2, N=n, N — oo, Xy; = (Yy;, Zy;)
Fy; =Fy, j=1, ..., N, with the hypothesis of independence

H: Fy(y, z) = F(y, z) = F(y, o0)F (o0, z) Vy,ze R VN

and the alternative of positive quadrant dependence
K: Fy(y, z2) = Fy(y, o0)Fy(c0, z) Vy,zeR
* iy,zeR VN.

B. The 1-dimensional one-sample problem “symmetry vs. positive unsymmetry.”
Thismeansk = 1, N=n, N— oo, Fy; = Fy,j =1, ..., N, with the hypothesis
of symmetry

H: Fy(x) = F(x) =1 — F(—x) VxelR VN

and the alternative of positive unsymmetry
K: Fy(x) £ 1 — Fy(—x) VxeR
+* ixeR VN.

C. The 1-dimensional two-sample problem “randomness vs. positive stochastic
deviation of the first sample.” This means k = 1, N = (n,, n)), n = n, + ny, N—
(00, ), Fy; = Fiy, j = I, eoe,ny, Fy; =Foyy j=n + 1, --., n, with the hy-
pothesis of randomness

H: Fiy(x) = Fyy(x) = F(x) VxeR VN

and the alternative of positive stochastic deviation of the first sample
K: Fiy(x) < Fyy(x) VxeR
+ IxeR VN.

For these problems we can derive (similar to [1]) asymptotically optimal rank
tests at level @, 0 < a < 1, for H against a suitable subclass of K. As generating
functions b for the asymptotic test {¢,y} and for the subclass of alternatives K,
for which {¢,,} will be asymptotically optimal (in the sense of Neyman [14]),
we allow in the three cases real-valued Lebesgue-measurable functions on (0, 1) X
(0, 1) and (0, 1), respectively, which have the properties (2.1.A), (2.1.B), (2.1.C),
respectively.

Notation. Throughout the paper we will denote the Lebesgue-measure on (0, 1)
and (0, 1) x (0, 1) by 4, and 2, respectively. For convenience we write for
example §3 §¢b(y, z) dy dz or §; §b dx instead of § g ), & 44y, and shortly “a.e.”
instead of “Lebesgue-almost everywhere.”

(2.1.A) $0(y, »)dy =0 a.e., $s0(+,2)dz =0 a.e.,
(bPdx =1, (s§s6dx =0 Vs, te(0,1).
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(2.1.B) b(x) = —b(1 — x) a.e., {brdx =1, tbdx <0
Vte (0, 1) (especially: § bdx = 0) .
(2.1.0) {bdx =0, {bdx =1, fibdx <0 Vte(0,1).

Now we assume that we generate scores b,;, by,, respectively, from b (using
the notation U,, V9 as stated before formula (3.13)) by

(2'2A) bNij = Eb(UN(i), VN(j)) ’ l’] = 1’ D) N,
(22‘B) bNi = Eb(% + %UN(“) ’ i= 1’ ct 0y N,
(2.2.0) by = Eb(U,"), i=1,--,n

It will be seen from the proofs and from (3.19) that we can also choose as

scores
_ (i i _ +3i/N
bNij =N Sf/'Nl)/N fﬂl)/‘v bdx, by, = 2N S§+§ti—1)/1v bdx,

by; = n iy, bdx,
respectively, or if 4 fulfills some additional conditions we can choose
byyy = b({(N+ 1), jIN + 1)), by = bk + 3/(N+ 1)),
by; = b(i/(n + 1)),
respectively, or even more general scores.

By such choices one gets for example the Spearman or Wilcoxon tests for
b(y, 2) = 12(y — $)(z — %), b(x) = (12)¥(x — 1), respectively, the normal-scores
test (Fisher-Yates or Van der Waerden version) for b(y, z) = ®1(y)D~(z), b(x) =
®@-'(x), respectively, where ®~* denotes the inverse of the cumulative distribution
function of the N(0, 1)-law. Finally one gets the quadrant, sign, or median test
for b(y, z) = sign (y — %) sign (z — %), b(x) = sign (x — }), respectively.

With these scores we define a sequence {¢,,} of rank-order tests ¢,, =
I(szv>cN) with ¢, — u, = (D‘l(l — a), 0<a<1,and

(2.3.A) T,y =N*3L bNRN,iSNi >
(RNv tt s RNN)’ (SNI’ tt SNN) ranks in (YNI’ Tt YNN)’ (ZNI’ R ZNN)’ resp.
(2.3.B) Tyy = Nt 3V, bypy, Sign (Xy;) ,

(Ryys =+ 5 Ryy) ranks in (| Xy, -« -, [Xyn])

(2.3.C)  Tyy = (mnof(m + m))H(1/m) Tita byny, — (/1) it buny,) »
(Ryys + - +» Ry,) ranks in (X, «+ -, Xy,) -
Before stating the main results, we have to go into the construction of the
class of alternatives K, for which {¢,,} will appear as asymptotically optimal.

In Section 3 it is shown that the properties (2.1) imply the existence of an ap-
proximating sequence of functions b, for b with the following properties:

(2.4.A) § (by — b)*dx—0, $oby(y, o)dy = \3by(s,2)dz =0,
VeSibydx =0 Vs,t€(0,1), SUPy<y .<1 05 (), 2)/[N— 0.
+* 3s,t€(0, 1)
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(This implies especially the existence of some D >0 such that
D supyy,.a [ba(y, 2)I/N* = 1 VN.)
(2.4.B) § (by — b)*dx—0, by(x) = —by(l — x) Vxe(0,1)
(ibydx < 0 Vte(0,1), SUPye, <1 Ox*(X)/N — 0.
* 1re(0, 1)
(This implies especially § by dx = 0 ¥ N and the existence of some D > 0 such
that D sup,.,., [by(x)|/N* < 1 YN.)

(2.4.C) § (by — b)*dx —0, (bydx =0,
Vebydx <0 Vie(0,1), SUPy<y <1 Oy*(x)/min {n,, n} — 0.
+* re (0, 1)

(This implies especially the existence of some D >0 such that
D supyc,<; |by(x)|/min {n}, nt} < 1 VN.)

Therefore we can define for each F e H sequences of densities with respect to F
(i.e. with respect to P) in the following way:

(2.5.A)  fEi(y,2) =1+ dN-tby(F(y, ), F(c0,2)), y,zeR,0<d=D,
(2.5.B) [Rax) = 1 4 AN~y (F(x)), xeR, 0<d= D,
(2.5.0)  fhva() = 1+ d(mnyf(m + n))}(1m)by(F(x)) ,

[iva(x) = 1 — d(nnf(ny + m))*(1[m)by(F(x)),  xeR, 0<d=D.
From (2.4) it can easily be seen that the sequence of corresponding cumulative
distribution functions F%,(y, z), F&,(x), Fly.(x), Fiy,(x), respectively in each case
belongs to the corresponding alternative K.

Thus we can define the subclass K, of K as the set of all such sequences {F},},
(FE), {(Flve Fiyva)} = {F%,), respectively, for all F e H and all sequences {b,}
with (2.4).

REMARK. It can be shown that for each F e H and {F,} € K, the sequence
{Qx) Qv = L [(Xy1> + - +» Xyu) | Fha], is contiguous (in the sense of Hajek [6])
to the sequence {Py}, Py = ZL[(Xyp - +» Xyo)|F], i.e. Py(A4y) — 0 implies
Oy(Ay) — 0. Shortly: {F,} is contiguous to F.

Now we are in the position to state the first result (corresponding to Theorem 1
in [1]) simultaneously for the three considered cases.

THEOREM 2.1. (a) FeH = [T,y |F]— N, 1).
(b) {@oy} is an asymptotically optimal test for H against K, at level a.
(c) F e H and {F} contiguous to F imply

L[Tyy — Oy(by, F, Fy) | Fy] — N(O, 1)

with
(2.6.A)  dy(by, Fu Fy) = NP § by(F(p, 00), F(00, 2)) dFy(y, 2) »
(2.6.B) Ou(bys Fy Fy) = N¥§ by(F(x) dF u(x) »

(2.6.C) Oy(bys Fy Fy) = (myny)(n, + ny))t § by (F(x))(AF y(x) — dFyy(x)) -
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The proof is even in this more general case very similar to the proof of
Theorem 1 in [1] and shall therefore mainly be omitted. It is again based on the
comparison of 7,,, for each fixed F ¢ H and each sequence {F,} contiguous to
F, with

(2.7.4) T\ = Nt D, by(F(Y i 00), (00, Zy)
@7B) T = N DY by(F(Xy)

= N7 2 by(3 + 32F( X)) — 1)) sign (Xy,) »
(2.7.C) Ty = (mnyf(ny + m))4((1/m) ZiL, by(F(Xys))

— (1/ny) DL bn(F(Xy)) »
respectively. .
(Therefore part (a) and part (c) of Theorem 2.1 are also true for a suitable subclass
H' of H for more general statistics which are asymptotically equivalent to such
an T’ for each F ¢ H'. One example of this kind is the Student-¢-statistic, if we
take H’ as the subset of H having second moments.)

On the other hand we compare T’ for sequences {F,} € K,, derived from F
according to (2.5), with the log-likelihood ratio L, = log (dQ ,/dP,) of the cor-
responding Q,, and P, (cf. remark before Theorem 2.1).

The only difference to the proof of Theorem 1 in [1] is the use of (3.18) to
(3.21) of Section 3 instead of Hajek and Sidak [8], Theorem V.1.4.a.

This theorem will enable us to examine the ARE of two such tests. The first
step is the following theorem which characterizes the asymptotically locally
unbiased tests in terms of the generating function 6. Therefore we need the
following definitions:

We call a Lebesgue-measurable function b on (0, 1) x (0, 1) to R positive A-
monotone [almost everywhere (a.e.)] iff

M, ={(xx,y,)): 0<x <X <1LO<y <y <1, A,x, X, y,))
= b(x', ') + blx, y) — b(x's y) = b(x, )") < 0}

is empty [has measure zero with respect to Lebesgue-measure 4, on (0, 1)*].

We call a Lebesgue-measurable function 4 on (0, 1) to R monotone increasing
[almost everywhere (a.e.)] iff

M,={(xx):0<x < x"<1,bx") — b(x) < 0}

is empty [has measure zero with respect to Lebesgue-measure 2, on (0, 1)*].

THEOREM 2.2. The following three statements are equivalent:

(@) {¢,x} is asymptotically unbiased for each {F,} € K that is contiguous to some
FeH.

(II) There exists a sequence {b,} with (2.4) such that F ¢ H and {F,}c K, {F,}
contiguous to F, imply lim inf,_, 0,(by, F, Fy) = 0.

(IIX) b is positive A-monotone a.e. in case A and monotone increasing a.e. in the
cases B and C, respectively.
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Proor. The equivalence of (I) and (II) is obvious because of Theorem 2.1.
As the proofs of the other cases are quite similar, we show the equivalence of
(II) and (III) only in the case A.

First assume b is not positive A-monotone a.e. Then (3.10.A)and (3.1.A) imply
the existence of an » > 0 and of intervals J, = (xp, X, + r)s Jo, = (X X1 + 1),
Ju0=(y0,yo+r), Jyy=Puhr+7) with 0 x, < x,+r<x<x+r=1,
Oy <yo+r=n<n+r=land
(2.8) S%”ﬂo bdx + 8“1”1/1 bdx — §Jxonyl bdx — §Jxliy0 bdx < 0.

Now we define 5,: (0, 1) x (0, 1) —> R by setting

2rby(x, y) = IJxonyo(x’ y) + IJxliyl(x’ y) — IJxonyl(x, y) — IJxliyO(x’ y)
= (=11, (%) + L, (=11, () + L, ) -
Then, obviously, b, and b,, = b, V N fulfill the conditions (2.1.A) and (2.4.A);
and we can define the class of alternatives K,, C K according to (2.5.A). From

the remark before Theorem 2.1 we get toeach F € Hand {F},} € K, the contiguity
of {F,} to F and therefore by Theorem 2.1

dxlbas Fy F§o) = NH§ by(F(y, o0), F(0o, 2))
X (1 + dN-tby(F(y, o), F(o0, 2))) dF(y, o) dF(co, 2)
= ds bN bo dx .
Thus (2.4.A) and (2.8) imply lim,_, d,(by, F, F},) = d § bb,dx < 0.

Now assume that b is positive A-monotone a.e. If we choose b, as b, ac-
cording to (3.1.A) with m, = [N!], then b, fulfills (2.4.A) and is positive A-
monotone because of (3.4), (3.6.A), (3.8.A), (3.7), and (3.9.A). From this,
(3.12.A), and (2.6.A) we get therefore for each {Fy}e K and Fe H with {Fy}
contiguous to ¥

Ox(bys F, Fy) — N § by(F(y, 00), F(o0, 2)) dFy(y, 00) dF (o0, 2)

= Nt St et Aif;,N(FN()’Ni’ 2y;) — Fy(Ywir 00)Fy(00, 2y;)) 2 0,
with y,, and z,; defined by (—o0, yy;] = [F(+, 00) < i/my] and (—o0, z,,] =
[F(oo, +) < jlmy], tespectively. With F,y = Fy(+, c0), Fy = F(+, ), Foy =
F (o0, +), F, = F(co, +) we get on the other side

[N § by(F(y)s Fo(2)) dF1n(y) dFan(2)]
= Nt § by(Fy(y)s Fi(2))(@Fix(y) — dFy(y)(dFay(2) — dFy(2))]
< NEsupoe, .« |ox(ys 2)[2]|Pry — PF1||2HPF2N — Pgl
= 4(N£HPFN — Pgl|)* supocy,.<a |6x (Y Z)I/N% -0
according to (4) in [1]. Thus lim inf,_., d,(by, F, Fy) = 0. This completes the
proof.

Under some restrictions on the choice of the scores by;; and by, i.e.

bytwysriines1 Duivziy a0d by, have to be positive A-monotone or monotone
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increasing, respectively, one can even show the unbiasedness of ¢,, for every
fixed N. In the independence case, however, this is only known for the smaller
class of regression dependent alternatives, whereas we need it here (at least
asymptotically) for quadrant dependent alternatives. For such questions one
may consult for example Lehmann [13], Yanagimoto and Okamoto [17], or
Witting and Noelle [16], Theorems 3.13 and 3.14.

From Theorem 2.2 it is clear that the question on general bounds for the ARE
of two such tests only has meaning if the generating functions b, and b, are
positive A-monotone a.e. (or monotone increasing a.e. in case B or C).

Because of Theorem 2.1 we use

lim inf, ., (Oy(b1y> Fy Fy)[0y(bay, F, Fy))?
as the definition of ARE ({¢; y}: {¢s,v} [{F¥}) iff

0 < liminf,_, 0y(byy, F, Fy), 0 < liminf,_, 0y(byy, F, Fy),
lim SUpy_e Oy(biy, F> Fy) < oo .

For the well-known connections of this definition with the original definition
of Pitman-efficiency see for example Noether [15] or Witting and Noelle [16],
page 161. Even if all results are just statements on asymptotic normality and
asymptotic power we take this definition of the ARE (which is not in general
equivalent to the definition by means of sample sizes), in order to get compara-
bility with the well-known results on lower bounds for the ARE by Hodges and
Lehmann [9], [10], Chernoff and Savage [3], and others.

THEOREM 2.3. Let b, and b, positive A-monotone a.e. generating functions in case
A (or monotone increasing a.e. in case B or C). Then, for each constant ¢ > 0, we
have the equivalence of the following two statements:

(I) by — cb, is positive A-monotone a.e. (monotone increasing a.e.).
(1) ARE ({¢y,n}: {@u,n} [{Fn)) = ¢ for all {Fy} € K which are contiguous to some
F € H and for which

lim supy_... E(py v | Fr) < 1, lim infy ., E(py,n | Fy) > @ .

Proor. Given ¢ > 0 we define b = b, — cb,. Because of the similarity of the
proofs we give the proof only in the case A.

If b is not positive A-monotone a.e., then we construct 4, and K, as in the
proof of Theorem 2.2. Thus we get the existence of FeH, {F§,}eK,, {Fi,}
contiguous to F, such that

0> §bbydx = § bybydx — ¢ § b,b, dx
and
limy_, 0y(b,y, F, F§;)) =d§ b;bydx =0, j=1,2;d>0,
because of Theorem 2.2. Therefore we have ¢ § b,b,dx > § b,b,dx = 0 and
thus

ARE ({oy v} {0} [{FRa}) = (d§ 016, dx[d § byb, dx)* < ¢
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with
lim supy o E(pyv | Fira) < 1 liminfy ., E(p,,y | Fia) > @
because of Theorem 2.1.

For the other direction of the proof we assume in a first step that b equals a
constant @ ¢ R almost everywhere. Then we get a = { b, dx — ¢ § b,dx =0,
1= (b?dx =c*§bldx =c%. Thus ¢ =1 and b, = b, a.e. This implies (II)
trivially.

To complete the proof we may now assume 0 < § 4 dx. Thisand (2.1.A) for
b, and b, imply

§1b6(y, o)dy =0 a.e., §ib(+,2)dz=0 ae., 0 {0dx=0¢"< o0,
and .

felsbde = — (3§ bdx = —§, §ibdx = §; (1 bdx Vs, te (0, 1).
By positive A-monotonicity a.e. of b we get therefore
5 §sbdx = (1 — $)(1 — 1) §; §ibdx — (1 — )1 §; §1 b dx
—s(I —0)§iSebdx + st§;§;bdx
= 5§ S5 S A (x, X'y p, ) dA(x, X', ,¥") = O Vs, te(0, 1),
Thus condition (2.1.A) is also true for 5/s, and (3.1.A) etc. imply the existence
of approximations by, b,y, b,y of b, b, b,, respectively, with (2.4.A) and
(2.9) by = b,y — cbyy VN.
Now we can apply Theorem 2.1 and Theorem 2.2 to the generating function b/s
and the approximation b, and get
(2.10) lim inf,_,, 07\Nt § by (F(y, 00), F(o0, 2)) dFy(y, 2) Z 0
for all {F,} € K with {F,} contiguous to some F € H.
On the other side we get from Theorem 2.1
lim inf,_, 0y(bsy, F, Fy) > 0, lim supy ., Oy(b1y» F> Fy) < 00
if in addition it holds that
lim infy ., E(@y,x | Fy) > a, lim supy_., E(¢py | Fy) < 1.
This, together with (2.9) and (2.10), implies lim infyy .., dy(bry, Fs Fy) > 0 and
ARE ({¢,,}: {©o,n} |[{Fy}) = liminf,__, (0y(biy F> Fy)[0y(bay, F Fp)zc.

This completes the proof.

From these general results one gets immediately the statements (on the behavior
of the ARE for some well-known tests in all three cases) which were given for
the independence case atthe end of [1]. Now it is clear, however, what the reason
for such behavior is.

Another application is the construction of a rank test that has lower bounds
larger than zero for the ARE with respect to every test out of a finite set of such
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given tests. (One can take for example as the new generating function b the
standardization of a suitable convex linear combination of the given generating
functions.)

Of even more interest may be the construction of simple tests which have a
“rather good” overall behavior for classes of alternatives with some reasonable
restrictions. Such and similar questions will possibly be treated in an additional
paper.

3. Technicalities. In this section we will list some of the more technical results
needed in the proofs of Section 2.

Let b be a Lebesgue-measurable function on (0, 1) x (0, 1) or (0, 1) with the
property (2.1.A), (2.1.B), or (2.1.C), respectively. Then we define for each
m e N a real-valued step function b,, by

(3-1.LA)  b,(x) = X5y 27 (M S0 S8 sm & AX) iy pmim1x (Gi=1m, i/m1(X) 5
(3.1.B) bu(x) = X1y ((2m 4 1) §UEn i) b @) -1y jem 1), i72m+11(X)

— L g/emen a——vzemen(X)) 5

(3.1.C) bp(x) = Zi (M §G20/m 0 dX) i1y pmigmi(X) -
With these notations the following statements are true:
(3.2) §b,2dx < § b*dx,
(3.3) b,(x) > b(x) a.e.,
(3.4) § (b, — b)dx >0,
(3.5) §b,dx=(bdx =0,
(3.6.A) 5 bu(ys ) dy = §hba(e, 2)dz = 0,
(3.7) sup, [ba ()| < &, § [5] dx,
k, = m? k, =2m + 1, k,, = m, respectively,
(3.8.A) $s8¢b,dx =0 Vs, te(0,1),
(3.8.B,C) ¢b,dx <0 Vte(0,1),
(3.9.A) b positive A-monotone a.e. = b,, positive A-monotone,
(3.9.B,C) b monotone increasing a.e. — b, monotone increasing,
(3.10.A) b not positive A-monotone a.e. = b,, not positive
A-monotone, for all sufficiently large m,
(3.10.B,C) b not monotone increasing a.e. = b,, not monotone
increasing, for all sufficiently large m,
(3.11.B) bu(x) = —b,(1 — x) Vxe(0,1).

(3.12.A) With the notation A} = b,((i + 1)/m, 1) — b,(i/m, 1),
A3, = bu(L, (J + D)fm) — b,(1, jjm)
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and
A = b,((i + 1)[m, (j + 1)/m) — b,(( + 1)/m, j/m)
— b, (ifm, (j + 1)[m) + by (i[m, j/m)
we have
bo(ys 2) = by(1, 1) — TG AY Lo smi(y) — L7 AY To,i/mi(2)
+ Xt nr A%i,,I(o,i/m](y)l(o,j/m](z) .

m i+ 1 i

C12B) b9 =~ 22 (b (5, 5) ~ b (3r7)

X (oi/6m+01(%) — Inzizamen () >
(3.12.0)  bu(x) = b,(1) — TS 0n(( + 1)/m) — by (ifm)Lo,5/mi(X) -
The proofs of these relations are either well-known or‘just computational. For
(3.3) see for example Dunford and Schwartz [4], Theorem III. 12.8, page 217.
(3.4) follows directly from (3.2) and (3.3) cf. for example Hajek and Sidak [8],
Theorem V.1.3, page 154. For (3.9) and (3.10) see the definitions of positive
A-monotone a.e. and of monotone increasing a.e. just before Theorem 2.2 and
apply (3.3). The rest is computation. ,

Now we consider another possibility of approximating b in quadratic mean.
Let U, U, Uy, - -+, V, V,, V,, - - - be independent identically distributed random
variables, each of them having a rectangular distribution over (0, 1). For each
neNlet (U, ..., U,™) and (V, %, - - -, ¥,™) be the order statistics of (U, -+ -,
U,)and (V,, - - -, V,), respectively. Furthermore let (R,,, - -+, R,,) and (S, - -+,
S,,,) be the rank statistics in (U,, - -+, U,) and (V;, - -+, V), respectively. With
these notations we define three sequences {b,,}, k = 0, 1, 2, of functions b,,:
0, 1) x (0, 1) -> R by

(3.13) by (X, ¥) = Eb(U, 41D, p, (tmy+1D) Vx,ye(0,1),
(3.14) by (x, y) = Eb(x, V,[™*1) a.e.,
(3.15) by (x, y) = Eb(U, T+, 3) ae.,

where [z] denotes as usual the largest integer less or equal to z. Then the fol-
lowing statements hold:

(3.16) E(b; (U, V) — b(U, V))* -0, i=12,
(3.17) E(b,,(U, V) — b(U, V) -0,
(3.18) E(bo(Runf(n + 1), Spuf(n + 1)) — (U, V)" =0,

(3.19) Let {b,} be any sequence of functions b, : (0, 1) x (0,1) > R,
each constant over each square ((i — 1)/n, i/n) X ((j — 1)/n,
j/m) of (0, )®, neN, with E(b,(U, V) — b(U, V))! -0,
then E(b,(R,./(n + 1), S,x/(n + 1)) — b(U,, V))* — 0.
(3.20)  Eb(U, -) =0 a..implies %, by, (i/(n + 1), j/(n + 1) =0 Vj.

(3.21)  Eb(-, V) =0 ae.implies X7, by, (i/(n + 1), jl(n + 1)) =0 Vi.
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The proof is based on Hajek and Sidak [8], Theorem V.1.4.b. (It could also be
done by some generalization of Faddeev’s theorem (cf. Hijek and Sidak [8],
Lemma V.1.4.b) to more than one dimension, even in more general cases.)
Because of the independence of U and V we get
E(b, (U, V) — b(U, V)" = §o (E(bin(x, V) — b(x, V))?) dx .
On the other side we have Eb*(x, V) < oo for almost all x € (0, 1) and therefore
by Hajek and Sidak [8], Theorem V.1.4.b,
0 < B,(x) = E(by,(x, V) — b(x, V)) -0 for almost all x € (0, 1) .
Finally we have for all n
B, (x) < 2Eb},(x, V) + 2Eb¥(x, V) = (2/n) 33", (Eb(x, V,'))* + 2Eb*(x, V)
< (2/n)E 33; b¥(x, V,) + 2Eb(x, V) = 4Eb*(x, V)
with § |[4Eb*(x, V)| dx = 4E0*(U, V) < oo .
Thus (3.16) for j = 1 by the dominated convergence theorem. The result for
Jj =2 holds by symmetry. (3.17) follows from (3.16) because of the following
inequalities:
E(bo,(U, V) — b(U, V)) < 2E(byn(U, V) — by, (U, V))*
+ 2E(b, (U, V) — b(U, V))*
and
Ebou(U, V) = b1 (U, V))* = § (E(bou(x, V) — bun(x, V))’) dx
= §((1/m) X5 (EB(U, 1=+, V, ) — Eb(x, V, 7)) dx
= S ((/mE Z; (b(U, 0, Vy) — b(x, V)))?) dx
= § (E(6(U, 10, V) — b(x, V))?) dx
= § (Eb*(U, =01 V) — 2Eb(U, "=+1D, V)b(x, V) 4+ Eb¥x, V)) dx
= §§ (Eb¥(U, "=+, p)y dx dy — 2 §§ by, (x, y)b(x, y) dy dx + Eb*(U, V)
= §((1/n) Tt EB(U,D, y)) dy — 2Eb,, (U, V)b(U, V) + Eb*(U, V)
= Eb¥U, V) — 2Eb,, (U, V)b(U, V) + EVXU, V)
= 2Eb(U, V)(&(U, V) — b, (U, V))
< UEBU, V)HE(Dwn(U, V) — U, V)))t .
Now (3.17) and (3.19) imply (3.18) immediately. And (3.19) is true because of
(3.17) and the following identity:
E(by(Runf(n + 1), S,/(n + 1)) — b(Uy, V1))
= Eb*(R,,/(n + 1), S,,/(n + 1)) + Eb*U,, V))
— 2Eb,(R,,/(n + 1), S,1/(n + 1))b(U,, V)

1 i
= = EV¥W(U, V
5 T 550 (s L) B )
R, S,
— 2Eb, (—=L (U, V) 33 Ty (R
b<n+1n+1>(1 )Za()( 1){)()
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= EbU, V) + EbYU, V)
R, S,
= 2 B By (72 22 ) B(U V(R (520
= EbU, V) + EbYU, V)

i ‘ I
-2 Zi,j bn (n + 1’ n i 1> Eb(Un( }’ Vn(J})Elti)(Rnl)E[(j)(Snl)

= EbXU, V) + EbU, V)
—emy s b (T e (o,
(/) 2 225 ”<n+1 n+1> °”<n+1 n+1>
= EbXU, V) + EBU, V) — 2Eb (U, V)b, (U, V).

Finally (3.20) (and by symmetry also (3.21)) holds, since the distribution of
v, possesses a Lebesgue density (denoted by f, .):

i1 00, (il (n + 1), j/(n 4 1))
= ¥, Eb(U,®, V,9) = E 3, b(U,, V,)
= nEb(U, V) = n § (EB(U, y))fus(y) dy = 0.
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