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Phylogenetics uses alignments of molecular sequence data to learn
about evolutionary trees. Substitutions in sequences are modelled through a
continuous-time Markov process, characterised by an instantaneous rate ma-
trix, which standard models assume is time-reversible and stationary. These
assumptions are biologically questionable and induce a likelihood function
which is invariant to a tree’s root position. This hampers inference because a
tree’s biological interpretation depends critically on where it is rooted. Relax-
ing both assumptions, we introduce a model whose likelihood can distinguish
between rooted trees. The model is nonstationary with step changes in the
instantaneous rate matrix at each speciation event. Exploiting recent theoret-
ical work, each rate matrix belongs to a nonreversible family of Lie Markov
models. These models are closed under matrix multiplication, so our exten-
sion offers the conceptually appealing property that a tree and all its subtrees
could have arisen from the same family of nonstationary models.

We adopt a Bayesian approach, describe an MCMC algorithm for pos-
terior inference and provide software. The biological insight that our model
can provide is illustrated through an analysis in which nonreversible but sta-
tionary and nonstationary but reversible models cannot identify a plausible
root.

1. Introduction. The goal of phylogenetic analysis is to learn about the evolutionary
relationships among a collection of species, typically using molecular sequence data. In this
paper, we focus on sequences of DNA with its four-character alphabet, � = {A,G,C,T}.
The evolutionary relationships are expressed graphically in the form of a bifurcating tree
called a phylogeny whose external nodes, or “leaves,” represent the species of interest, with
ancestral species (speciation events) represented by internal nodes. In particular, the root of
the tree is identified with the most recent common ancestor (MRCA) of all the species at
the leaves. Determining the branch on which this root lies is fundamental to the biological
interpretation of the tree because it fixes the direction of ancestry and provides a tool for
tracing the evolution of important traits along the tree.

During reproduction, when an organism passes a copy of its DNA to its offspring, point
mutations can occur in molecular sequences. When a point mutation becomes fixed in a pop-
ulation, it is referred to as a substitution. In statistical phylogenetics, substitutions are gen-
erally modelled using continuous time Markov processes (CTMPs). To this end, denote by
Y(t) ∈ � the nucleotide at a particular site in a DNA sequence at time t ≥ 0. Standard mod-
els of sequence evolution generally assume that the process {Y(t) : t ≥ 0} is stationary and
time-reversible, meaning the joint probability of {Y(t) = i, Y (t + s) = j} is the same as that
of {Y(t − s) = j,Y (t) = i} for all 0 ≤ s ≤ t . These assumptions offer mathematical conve-
nience, allowing the instantaneous rate matrix characterising the CTMP to be factorised as the
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product of a symmetric matrix of exchangeability parameters, indicating a general propensity
for change between pairs of nucleotides and a diagonal matrix of stationary probabilities.
Unfortunately, conditional on any particular (unrooted) tree, a mathematical consequence is
that the likelihood does not depend on the position of the root. Traditionally, other methods
have therefore been used to root evolutionary trees. The most common strategy, called out-
group rooting, requires inclusion of data from a set of taxa (the outgroup) which are known
to have evolved outside the subtree of interest (the ingroup). The root can then be placed on
the branch connecting the outgroup to the rest of the tree. Unfortunately, this approach can
be problematic when the outgroup is only very distantly related to the ingroup. In such cases,
model assumptions become increasingly dubious, and the ensuing model misspecification
can result in the identification of spurious relationships with the outgroup.

An alternative strategy for rooting, which has received relatively little attention in the phy-
logenetic literature, is to take a model-based approach and draw inference from a likelihood
that depends on the position of the root. In standard models, likelihood invariance to the root
position arises as a consequence of the assumptions of stationarity and time-reversibility.
Although mathematically convenient, these assumptions typically do not hold up under the
scrutiny of biological examination. For example, in a stationary process, time-reversibility
implies that the direction of time is unimportant. Yet the mechanism by which substitutions
in DNA occur is very complex, comprising processes of point mutation and fixation, encom-
passing the effects of selection and so on. Whilst most physical processes are time-reversible,
when these subprocesses combine to produce substitutions in DNA sequences, their com-
plex interaction makes time-reversibility highly questionable. Correspondingly, analysis of
biological data often provides evidence to rebut the reversibility assumption (Squartini and
Arndt (2008)). Similarly, there are various biological theories which are discordant with a
stationary evolutionary process, for example, mutational biases in DNA replication enzymes
are thought to differ across the domains of life (Lind and Andersson (2008)). The assump-
tion is also easy to challenge empirically. In any particular analysis, if the taxa had evolved
according to a stationary process, one would expect the sequence composition of each taxon
to be approximately the same. Yet, in analyses of deep phylogenies, the GC-content (the to-
tal proportion of G and C nucleotides) of 16S ribosomal RNA, the most widely used gene
in phylogenetic analysis, varies from 45% to 74% across the diversity of sampled bacteria,
Archaea and eukaryotes (Cox et al. (2008)). Similarly, heterogeneity in sequence composi-
tion has also been observed in much more recent species radiations, for example, placental
mammals (Morgan et al. (2013)), marsupials (Phillips et al. (2006)), birds (Braun and Kim-
ball (2002)) and paraneopteran insects (Li et al. (2015)). As a consequence, in addition to
facilitating root inference, models that relax the restrictive assumptions of stationarity and/or
reversibility also provide opportunities to incorporate further biological realism.

In this paper we develop two nonstationary models for DNA evolution. Substitutions along
each branch of the tree are driven by a different instantaneous rate matrix with nonreversible
structure, allowing step changes in the theoretical stationary distribution over time. The re-
sulting models capture the lineage-specific drift in sequence composition that is often hy-
pothesised biologically and are shown empirically to allow inference on the position of the
root. Leveraging recent theoretical work, the branch-specific rate matrices are Lie Markov
models (Sumner, Fernández-Sánchez and Jarvis (2012)) which offer the property of closure
under matrix multiplication. Such models are conceptually appealing because they provide
a framework in which a tree and all its subtrees could have arisen from the same family of
nonstationary models.

The remainder of this paper is structured as follows. In Section 2 we provide an overview
of existing substitution models for phylogenetic inference. Section 3 then introduces a pair
of nonreversible Lie Markov models and our nonhomogeneous, nonstationary extension. In
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Section 4 we describe the priors for the parameters in our two nonhomogeneous models. Sec-
tion 5 outlines the structure of the posterior distribution and our Markov chain Monte Carlo
(MCMC) algorithm for computational inference. In Section 6 we use simulation experiments
to verify, empirically, that the root position in our nonhomogeneous models is identifiable
under the likelihood and investigate rooting performance under a variety of conditions. Sec-
tion 7 then considers an application to a data set for which root inference has previously been
challenging. Finally, we summarise in Section 8.

2. Models of DNA evolution. Denote by τ a phylogeny with branch lengths �, repre-
senting the evolutionary relationships among a collection of n taxa (species). Consider the
nucleotide (letter) at a single genomic site in the MRCA at the root of the tree. Over time,
substitutions may have accumulated at that site such that the corresponding sites in the n taxa
at the leaves of the tree are occupied by different nucleotides. The ensuing assignment of A,
G, C or T to each taxon is referred to as the DNA character at that site. There are clearly 4n

possible DNA characters for a phylogeny on n species, and we denote this set by �n.
Suppose we have an alignment of data y = (yij ) with n rows, representing the n species at

the leaves of the tree, and m columns, representing genomic sites in the MRCA. We assume
that the molecular sequences of each of the n taxa have been aligned such that the columns
can be regarded as observations of a DNA character.

2.1. Standard models. Denote by Y(t) ∈ � the nucleotide at time t at a single ge-
nomic site and consider evolution along a single branch of the phylogeny τ . Most phy-
logenetic models assume that substitutions can be modelled using a CTMP, characterised
by an instantaneous rate matrix Q = (quv). Over some interval of time, represented by �,
the transition probabilities between pairs of nucleotides are obtained by taking the matrix
exponential P(�) = exp(−�Q′) where Q′ = Q/(−∑

u quuπu) and π ∈ S4, SK = {x =
(x1, . . . , xK) : xi ≥ 0∀i,

∑
xi = 1} is the stationary distribution of the process, satisfy-

ing πQ = 0T . This rescaling of the rate matrix allows the branch length � to be inter-
preted as the expected number of substitutions per site. The (u, v)-element in P(�) is the
probability of transitioning from nucleotide u to nucleotide v along a branch of length �,
puv(�) = Pr{Y(�) = v|Y(0) = u} for any u, v ∈ �.

Standard phylogenetic models are typically based on three assumptions: (i) homogeneity—
a single instantaneous rate matrix characterises the evolutionary process along every branch
of the tree; (ii) stationarity—the CTMP is in its stationary distribution π, and so π is also the
distribution at the root; (iii) reversibility—the CTMP is time-reversible, that is, πupuv(�) =
πvpvu(�) for all u, v ∈ �. The instantaneous rate matrix Q of a homogeneous, reversible
process can be factorised as Q = R�, where � = diag(π) is the diagonal matrix of stationary
probabilities and R = (rij ) is the symmetric matrix of exchangeability parameters with rij =
rji ≥ 0 for i �= j . We refer to a rate matrix as reversible if it permits a factorisation of this
form.

In the class of reversible rate matrices, the most general is that of the general time re-
versible (GTR) model (Tavaré (1986)) with six distinct exchangeability parameters. Other
commonly used models are then derived as special cases. For example, ordering the nu-
cleotides as A, G, C, T, the HKY85 model (Hasegawa, Kishino and Yano (1985)) is a special
case, whose rate matrix Q is given in Figure 1(a). In this model the reduction in the number
of exchangeability parameters from six to two is biologically motivated, allowing transitions
(substitutions between purines—A and G—and between pyrimidines—C and T) to occur at a
different rate to transversions (substitutions between a pyrimidine and a purine).

To prevent arbitrary rescaling of the rate matrix Q in the transition matrix P(�) =
exp(−�Q′), an identifiability constraint is typically imposed. For reversible rate matrices, this
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often entails setting one exchangeability parameter equal to one (Zwickl and Holder (2004))
so that the others can be interpreted as relative propensities for change. For example, fixing
λ = 1 in the HKY85 model in Figure 1(a), κ is interpreted as the transition-transversion rate
ratio.

As explained in Section 1, the assumptions of stationarity and reversibility in a homoge-
neous model are often not justifiable from a biological perspective. Moreover, they come at
an inferential cost, giving rise to likelihood functions that are invariant to the position of the
root of the tree. As such, these models can only be used to infer unrooted trees, which depict
the branching pattern of speciation events, without associating direction to the branches of
the tree. Models which relax one or both assumptions can therefore offer more biological
credibility whilst also providing a likelihood function that is informative about the direction
of time. We explore existing models of this type in the section which follows.

2.2. Models facilitating root inference. Motivated by the rooting problem, Huelsenbeck,
Bollback and Levine (2002) and Cherlin et al. (2018) investigated stationary but nonreversible
substitution models in a Bayesian framework. In each case the model was based on an instan-
taneous rate matrix, which was structurally unconstrained, representing the so-called general
Markov model of DNA evolution (Barry and Hartigan (1987)). Not surprisingly, simulation
experiments and application to biological data sets suggested that these stationary, but nonre-
versible models can produce sensible root inferences when the model assumptions are clearly
supported. However, root inference was found to be very sensitive to model misspecification,
especially violation of the assumption of stationarity (Williams et al. (2015)). This limits the
utility of such models in application to data sets of biological interest, where it is common
to see variation in sequence composition across taxa due to lineage-specific compositional
change.

Most models which allow root inference are nonhomogeneous, which means that the pro-
cess cannot be characterised by a single instantaneous rate matrix. Instead, matrices from
a countable set {Q1,Q2, . . .} apply to different parts of the tree. In general, the Qb all be-
long to the same family of rate matrices. For example, Kaehler (2017) considers a model in
which the Qb are all strand-symmetric, meaning the rate of substitution between a pair of
nucleotides is the same as that between their Watson–Crick base pair complements. For this
special class of models, a mathematical proof is provided which verifies that the root position
can be identified from the likelihood. However, inferential methodology to fit the model to
data has not yet been developed. More often in the literature, the Qb all belong to a family
of reversible rate matrices, such as HKY85 or GTR, so that Qb = Rb�b for b = 1,2, . . ..
We refer to such a nonhomogeneous process as locally reversible. The resulting models are
generally nonstationary, with �b �= �b′ for b �= b′, and hence allow step changes in the
theoretical stationary distribution, sometimes termed the composition vector, across the tree.
Some also allow variation in the exchangeability parameters (Dutheil and Boussau (2008)),
although these are often constant, with Rb = R for all b. For example, Yang and Roberts
(1995) investigated a model in which the exchangeability parameters were constant over the
tree, but the composition vectors in the �b varied from branch to branch. Heaps et al. (2014)
investigated a similar model in a Bayesian framework with a prior that assumed positive cor-
relation among the set of composition vectors, thereby allowing information to be shared
between branches. Other approaches intended to reduce the variance of parameter estimates
in complex models of this form have been largely based on the idea of dimension reduction.
For instance, Foster (2004) considered a mixture model in which the B branches of the tree
were allocated to one of K � B mixture components with branches in the same component
sharing a composition vector. Similarly, Blanquart and Lartillot (2006) introduced a model
in which the step changes in the theoretical stationary distribution occurred according to a
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Poisson process, independently of the speciation events which determine the tree’s branch-
ing structure. The main difficulty with these mixture-type models is that the dimension of the
problem—determined by the number of mixture components in the former case and the num-
ber of “break–points” in the latter—are not known a priori which substantially complicates
computational inference.

Lie Markov models for DNA evolution have the property of closure under matrix multipli-
cation (Sumner, Fernández-Sánchez and Jarvis (2012)). Let P1 and P2 be transition matrices
obtained by taking the matrix exponential of two rate matrices from a family of Markov mod-
els M. M is multiplicatively closed if and only if for all such P1, P2, the product P1P2 is
obtainable as the matrix exponential of another rate matrix from the family M. Woodhams,
Fernández-Sánchez and Sumner (2015) defined a hierarchy of Lie Markov models capable
of distinguishing pairs of nucleotides, such as purines and pyrimidines. The general Markov
model represents the most complex family of Lie Markov models. It has 12 parameters and
so 11 degrees of freedom after imposing an identifiability constraint to fix its scale; see Sec-
tion 2.1. However, all other Lie Markov models can be represented by 10 parameters, and
hence nine degrees of freedom or fewer. Some are nonreversible and, like families of re-
versible rate matrices, have a biologically interpretable structure. It is therefore possible to
combine the ideas from this section and build parsimonious models that are nonstationary,
nonhomogeneous and locally nonreversible by using an appropriate set of rate matrices from
a family of Lie Markov models. This is the focus of Section 3.

2.3. Assumptions across sites. The previous sections have described substitution mod-
els for evolution at a single genomic site. In order to extend this to a joint model for the
whole alignment, sites are generally assumed to evolve independently but with their own
rates γi , i = 1, . . . ,m, which scale the normalised rate matrix Q′ linearly. Biologically, this
reflects the idea that rates of evolution vary according to functional or structural pressures
acting at a site: important sites are subject to higher selective constraints and hence evolve
more slowly. These site-specific parameters γi are modelled as multiplicative random effects,
γi |φ ∼ Ga(φ,φ) for i = 1, . . . ,m, where the common shape and rate φ give the distribution
a unit mean. The value of φ controls the manner and extent to which evolutionary rates vary
across sites.

During model-fitting, discretising the continuous gamma distribution allows intermediate
likelihood calculations to be cached which substantially speeds up computation. Therefore, in
keeping with standard practice in the phylogenetic literature, we adopt a discrete approxima-
tion to the gamma distribution with four rate classes (Yang (1994)). Under this distribution,
the rate γi at site i is equal to rk(φ), k = 1,2,3,4, with probability pk = 1/4 and rk(φ) taken
as the (k − 0.5)/4 quantile in the Ga(φ,φ) distribution.

3. Nonhomogeneous Lie Markov models. In this section we begin by describing two
families of Lie Markov models which, in the terminology of Woodhams, Fernández-Sánchez
and Sumner (2015), are referred to as the RY5.6b and RY8.8 Lie Markov families. In each
case we derive a new parameterisation of the underpinning rate matrix Q and the relationship
between the new parameters and the theoretical stationary probabilities π . We then introduce
two nonhomogeneous models which we construct by allowing the RY5.6b or RY8.8 rate
matrix to vary from branch to branch.

3.1. The RY5.6b model. Motivated by its simplicity and similarity to the widely used
HKY85 model in Figure 1(a), the first Lie Markov model we consider is the (nonre-
versible) RY5.6b model. Following the formulation presented in Woodhams, Fernández-
Sánchez and Sumner (2015), its rate matrix Q can be represented as in Figure 1(b) where
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FIG. 1. Instantaneous rate matrices Q for the: (a) HKY85; (b) RY5.6b; (c) RY8.8 models. The values of * ensure
that the rows sum to zero. The nucleotides are ordered A, G, C, T.

α,β,ρ1, ρ2, ρ3, ρ4 ≥ 0. As indicated by the prefix of its name, the model has the symmetry
condition of purine-pyrimidine (RY) pairing, with rates of change for transversions sharing a
parameter and rates of change for transitions sharing a different parameter. However, the six
parameters are plainly not identifiable since we can replace α and β with α + δ and β + δ,
ρi with ρi − δ for i = 1,2,3,4 and obtain exactly the same rate matrix. In the reversible
HKY85 case, the off-diagonal elements in each column of the rate matrix share a station-
ary probability πi with π ∈ S4. In the RY5.6b model they each share a parameter ρi . By
choosing the analogous constraint, ρ = (ρ1, ρ2, ρ3, ρ4) ∈ S4, we can eliminate the param-
eter redundancy. We note that the 5 and 6 in the name of the RY5.6b model arise from it
being a five-dimensional model whose rate matrices form a polyhedral cone with six rays
(Fernández-Sánchez et al. (2015)). These allow it to be expressed through six nonnegative
parameters.

Although the simplex constraint removes the additive identifiability issue, the overall
scale of the rate matrix is still arbitrary since it appears only in its normalised form,
Q′ = Q/(−∑

u quuπu), in the transition matrix. To resolve this problem, it is convenient
to fix the scale of the rate matrix by constraining its trace to be equal to −7, as this limits the
support of the remaining parameters so that (α,2β) ∈ S2 or, equivalently, α ∈ [0,1] and then
β = (1 − α)/2. This, in turn, simplifies the process of specifying a prior.

It is easy to verify that the stationary distribution π associated with this rate matrix is given
by

(3.1) πi = −α2 + (5 − α)ρi + (3α − 1)ρj − α + 2

2(3 − 2α)(α + 2)
, j = i + (−1)i+1

for i = 1, . . . ,4. For ease of interpretation, it might seem more natural to reparameterise the
model directly in terms of α ∈ [0,1] and the stationary distribution π ∈ S4. However, given
a fixed value for α, the mapping πα : S4 → S4, where πα(ρ) = π , is not surjective. This
would substantially complicate inference. We therefore retain the original parameterisation
in terms of α and ρ.

Seeking an interpretation of ρ, the relationship between each πi and the corresponding ρi

is complicated by the simplex constraints, which preclude isolation of the effect of a change
in ρi on πi , whilst all the other ρj remain fixed. However, from (3.1), because 5−α > 3α−1,
it is clear that, for any fixed α ∈ [0,1], there is a positive linear relationship between, say, ρ1

and π1. The slope and intercept depend on how a simplex-preserving decrease in ρ2 + ρ3 +
ρ4 is shared between ρ2 and ρ3 + ρ4 when ρ1 is increased. To illustrate the relationships
numerically, we simulate a sample of ρ vectors from a uniform distribution over S4 and
then compute the corresponding stationary distribution π for various values of α. Plots of
πi against ρi are displayed in Figure S1 of the Supplementary Material (Hannaford et al.
(2020)) and show a strong positive relationship. We therefore interpret the parameter vector ρ

as playing a role similar to the stationary distribution π in the HKY85 model. The parameter
α then allows for differences between the rates of transition and transversion.
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3.2. The RY8.8 model. The structure of the RY5.6b model is biologically appealing be-
cause of its simplicity and parallels with the widely used HKY85 model. However, it suffers
a number of drawbacks. First, the model only has five degrees of freedom which makes it in-
flexible compared with more complex Lie Markov models. Second, the additive structure of
the instantaneous rates of change in the RY5.6b as well as various other Lie Markov models
can often cause problems in the analysis of biological data. In many alignments the empir-
ical proportions of A, G, C and T are all reasonably close to 0.25 (Bohlin et al. (2017)). If
we imagine that the data arose from a stationary CTMP, this would demand πi � 1/4 for all
i = 1, . . . ,4. With reference to the RY5.6b model, with stationary distribution (3.1), argu-
ments of symmetry imply that, for any α ∈ [0,1], we can only achieve πi = 1/4 for all i if
ρi = 1/4 for all i. In this case the ratio of the rates of change for transitions and transversions
is given by

(α + 1/4)/
{
(1 − α)/2 + 1/4

} = (4α + 1)/(3 − 2α) ≤ 5.

However, experience suggests that, for some alignments, we would expect a value much
larger than this (Rosenberg, Subramanian and Kumar (2003)). In mammalian genomes, for
example, this can occur due to 5-methylcytosine deamination to thymine at some sites, caus-
ing high rates of C to T point mutation (Hodgkinson and Eyre-Walker (2011)). This provides a
possible explanation for the conclusions drawn in Woodhams, Fernández-Sánchez and Sum-
ner (2015), based on analyses of a large number of data sets, that the fit of the RY5.6b model
is notably worse than that of the structurally similar HKY85 model. We therefore investigate
a second (nonreversible) Lie Markov model, the RY8.8 model, which is more highly param-
eterised than RY5.6b and free from its additive structure. It has also been found to fit well in
analyses of biological data (Woodhams, Fernández-Sánchez and Sumner (2015)).

As its name suggests, the RY8.8 rate matrix is based on the symmetry condition of purine-
pyrimidine pairing and has eight degrees of freedom which can be represented by eight
nonnegative parameters. A representation of its rate matrix is given in Figure 1(c) where
ρ1, ρ2, ρ3, ρ4, ρ̃5, ρ̃6, ρ̃7, ρ̃8 ≥ 0. In order to fix the scale of the rate matrix, it is convenient to
fix the trace as −1, then we can take ρi = 2ρ̃i for i = 5, . . . ,8, and restrict ρ ∈ S8.

The analytic forms for the stationary probabilities π are given in Section S1.2 of
the Supplementary Material (Hannaford et al. (2020)). Like for the RY5.6b model, di-
rect parameterisation in terms of π and, say, the rates of transition (ρ1, ρ2, ρ3, ρ4) or the
(scaled) rates of transversion (ρ5, ρ6, ρ7, ρ8), would complicate inference because for fixed
(ρi+1, ρi+2, ρi+3, ρi+4) where i = 0 or i = 4, we cannot invert the mapping from the remain-
ing elements in ρ ∈ S8 to π ∈ S4. However, the parameters in the RY8.8 model have clear
interpretations as instantaneous rates of change between different pairs of nucleotides, and so
we parameterise the model in terms of the single, interpretable stochastic vector ρ.

3.3. Nonhomogeneous RY5.6b and RY8.8 models. As explained in Section 1, there are
often both theoretical and empirical arguments for building nonstationarity into models for
substitutions in molecular sequences. We therefore propose nonhomogeneous and nonsta-
tionary extensions of the (nonreversible) RY5.6b and RY8.8 models outlined in the previous
sections. A bifurcating rooted tree on n taxa has B = 2n − 2 branches; the underpinning
unrooted topology has one fewer. Following the framework outlined in Section 1, we con-
struct a nonhomogeneous RY5.6b model by allowing evolution along every branch b of the
associated unrooted topology to be controlled by its own rate matrix Qb which belongs to the
RY5.6b family. Rooting this tree on branch r of the unrooted topology divides the branch into
two. The rate matrix Qr is associated with the two new branches on either side of the root,
whilst its stationary distribution is used as the distribution at the root. We define our nonho-
mogeneous RY8.8 model in an analogous fashion. It is worth mentioning that an alternative,
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though less parsimonious, way to formulate the models would be to allow the branches on ei-
ther side of the root to have their own rate matrix with a simplex-valued parameter describing
the distribution at the root of the tree.

Computational inference is greatly simplified if the number of parameters which vary
from branch to branch is kept small. In earlier work, where we developed nonhomogeneous,
nonstationary extensions of the (reversible) HKY85 and GTR models (Heaps et al. (2014),
Williams et al. (2015)), this was achieved by keeping the exchangeability parameters fixed
across the tree so that only the stationary probabilities varied. For the RY5.6b model we take
a similar approach, allowing only the parameter ρ ∈ S4, which serves as a proxy for the
stationary distribution, to vary across branches. The parameter α, controlling the differences
between the rates of transition and transversion, is held constant. For the RY8.8 model there
is no corresponding partition of the parameters, and so we allow all parameters in ρ ∈ S8 to
vary from branch to branch.

This yields nonhomogeneous RY5.6b and RY8.8 models in which a set of branch-specific,
simplex-valued parameters {ρ1, . . . ,ρB−1} induce corresponding heterogeneity in the theo-
retical stationary distribution across branches. The models are therefore nonstationary, with
step changes in the stationary distribution at each speciation event. This allows us to capture
change in sequence composition over evolutionary time.

Our nonhomogeneous, nonstationary, locally nonreversible models offer two main advan-
tages over their locally reversible counterparts. First, as we investigate further in Section 6,
the property of nonreversibility can provide an additional source of likelihood information
about the direction of time and hence the position of the root. Second, if we prune n0 taxa
from a tree on n-species, the nonhomogeneous Lie Markov model on DNA characters in
�n induces a distribution on the reduced DNA characters in �n−n0 . Because Lie Markov
models are closed under matrix multiplication, this distribution could, in most cases, have
been constructed directly from a nonhomogeneous Lie Markov model over the n − n0-taxa
subtree. (We note that this cannot be guaranteed in all cases because it is theoretically pos-
sible for the product of two Lie Markov rate matrices Q1,Q2 ∈ M, to yield a rate ma-
trix Q = log{exp(Q1) exp(Q2)} ∈ M which is not stochastic; see Woodhams, Fernández-
Sánchez and Sumner (2015) for an empirical investigation.) Nonhomogeneous, nonstationary
but locally reversible models lack this property of mathematical consistency.

4. Prior distribution for substitution model parameters. In a homogeneous model
the instantaneous rate matrix which characterises the evolutionary process is the same on all
branches of the phylogeny. In our nonhomogeneous models it can change from branch to
branch. Letting K = 4 and K = 8 for the RY5.6b and RY8.8 models, respectively, we adopt
a prior in which the branch-specific parameter vectors, ρ1, . . . ,ρB−1 ∈ SK , are positively
correlated. This provides flexibility, whilst retaining some of the benefits of the homoge-
neous model, by allowing information to be shared between branches. As we move from one
branch to its descendants, we do not anticipate a substantial change in the evolutionary pro-
cess. We therefore build explicit dependence on recent ancestors into our joint prior through
the assignment of a stationary, first order autoregression over a reparameterised set of vec-
tors �b ∈ R

K−1, b = 1, . . . ,B − 1, each of which is related to the corresponding ρb ∈ SK

through a linear mapping, followed by multinomial logit transformation. Full details of the
reparameterisation and prior are provided in Heaps et al. (2014), but, briefly, its role is to
induce a distribution for the ρb which is symmetric with respect to its K components and has
common marginal mean and variance for all b = 1, . . . ,B − 1. By construction, the prior for
the reparameterised vectors depends on the tree topology τ and is given by

π(�1, . . . ,�B−1|τ) =
K−1∏
k=1

{
π(�rk|τ)

∏
b �=r

π(�bk|�a(b),k, τ )

}
,
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where r is the index of the rooting branch and a(b) is the index of the ancestral branch (or
root) of branch b. Then, for k = 1, . . . ,K − 1 we have �rk|τ ∼ N(0, v�/(1 − p2

�)) and, for
b �= r , �bk|�a(b),k, τ ∼ N(p��a(b),k, v�) in which p� ∈ [0,1] and v� ∈ R

+ are fixed hyperpa-
rameters that control the marginal variances and correlations of the �b and hence ρb.

In the RY5.6b model the instantaneous rate matrix Qb on branch b depends on the param-
eter α ∈ [0,1] in addition to the stochastic vector ρb ∈ S4. Conditional on τ , we factorise the
joint prior of α and the ρb as π(α,ρ1, . . . ,ρB−1|τ) = π(α)π(ρ1, . . . ,ρB−1|τ) and assign a
flat distribution to α, that is, α ∼ Beta(1,1).

5. Posterior inference via MCMC. The unknowns in the model comprise the rooted
tree topology τ , branch lengths � = (�1, . . . , �B)T ∈ R

B+ and the shape parameter φ ∈ R+
in the discretised gamma distribution for rate variation across sites. We also have the set of
substitution model parameters, which we denote by Q, where Q = {α,�1, . . . ,�B−1} for the
nonhomogeneous RY5.6b model and Q = {�1, . . . ,�B−1} for the nonhomogeneous RY8.8
model. These parameters determine the distribution at the root of the tree, say π0, and the
instantaneous rate matrices, Q1, . . . ,QB , on each branch.

The posterior distribution for the unknowns can be expressed as π(τ, �, φ,Q|y) ∝
p(y|τ,�, φ,Q)π(τ, �, φ,Q), in which p(y|τ,�, φ,Q) is the likelihood of the alignment
y and π(τ, �, φ,Q) is the prior density. The likelihood is calculated as p(y|τ,�, φ,Q) =∏m

i=1 p(Y i = yi |τ,�, φ,Q) in which Y i ∈ �n is the DNA character at site i. The probability
of the observed character yi at site i is given by

Pr(Y i = yi |τ,�, φ,Q) = 1

4

4∑
k=1

∑
X

π0,X(0)

∏
edges b=(v,w)

pb,X(v),X(w)

{
rk(φ)�b

}
.

Here v and w are the vertices (nodes) at the two ends of edge b with length �b, X(u) is the
character at vertex u, u = 0 denotes the root vertex and Pb{rk(φ)�b} = [pbhi{rk(φ)�b}] =
exp{rk(φ)�bQ

′
b} is the transition matrix associated with edge b for discretised site rate cate-

gory k. The inner sum is over all functions X from the vertices to � such that X(u) matches
the data yi(u) for all leaf vertices u. It can be computed efficiently using a post-order traversal
of the tree called Felsenstein’s pruning algorithm (Felsenstein (1973)). The outer sum is over
the four rate categories of the discretised gamma distribution for rate variation across sites.

The posterior density π(τ, �, φ,Q|y) is not available analytically. We therefore build up a
numerical approximation by generating samples from the posterior using a Metropolis within
Gibbs sampling scheme which iterates through a series of updates for each unknown. Pa-
rameters, which lie in R or R+, can be updated using standard proposal distributions, for
example, Gaussian random walks for the reparameterised branch-specific parameters �b.
For the parameter α ∈ [0,1] in the nonhomogeneous RY5.6b model, we generate propos-
als α∗ from a Beta distribution, which is roughly centred at the current value α, namely,
α∗|α ∼ Beta(s1α + s2, s1(1 − α) + s2). Here, s1 ∈ R+ and s2 ∈ R+ are tuning parameters.
The first affects the variance of the proposal and should be tuned to adjust the acceptance
rate. The second helps to prevent the sampler from sticking at the boundaries of the unit
interval and should be set close to zero, for example, s2 = 0.005.

Finally, the rooted topology τ can be updated using standard proposals for topological
moves such as nearest neighbour interchange (NNI), subtree prune and regraft (SPR) and
proposals to alter the root position; see Heaps et al. (2014) for a complete description of all
three moves. The variation across branches in the parameter vectors �b complicates these
topological proposals because they must include modifications to the �b as well as branch
lengths �b, for the edges whose local interpretation is changed by the proposal. To gener-
ate such proposals, we can, for example, propose the new �b using a distribution centred at
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the parameter vector on a neighbouring branch. The MCMC inferential procedures are pro-
grammed in Java. A software implementation can be found in the Supplementary Material
(Hannaford et al. (2020)).

6. Analysis of simulated data. For the results of model-based inference on the root po-
sition to offer biological insight, the position of the root has to be identifiable under the like-
lihood. Proving that this is the case for models that are nonstationary, nonreversible or both
is extremely challenging, except in very special cases (Kaehler (2017)). On the other hand,
carefully designed simulation experiments can readily be used to provide empirical evidence
of identifiability and to investigate the conditions under which inference more closely reflects
the data-generating mechanism. We therefore adopt a simulation-based approach to investi-
gate the identifiability of the root position and underlying topology in our nonhomogeneous
RY5.6b and RY8.8 models. Specifically, we consider the effects of: (i) different numbers of
taxa and sites; (ii) different topologies and branch lengths.

In all simulations our prior for the nonhomogeneous RY5.6b model takes the form

π(τ, �, φ,α,�1, . . . ,�B−1) = π(τ)π(φ)π(α,�1, . . . ,�B−1|τ)

B∏
b=1

π(�b)

in which τ denotes the rooted topology and � = (�1, . . . , �B)T ∈ R
B+ denotes the branch

lengths. The prior for the nonhomogeneous RY8.8 model has the same structure but omitting
the parameter α. We assign priors �b ∼ Exp(10) to the branch lengths and a distribution
φ ∼ Ga(10,10) to the shape parameter in the gamma distribution for rate heterogeneity across
sites. The rooted topology is given a prior according to the Yule model of speciation. Defining
a root split of size j :(n − j), j ∈ {1, . . . , �n/2�}, as the set of all rooted trees with j taxa on
one side of the root and n − j on the other, the Yule model generates a distribution in which
near equal probability is assigned to root splits of all sizes (Cherlin et al. (2018)). Finally, the
priors π(α,�1, . . . ,�B−1|τ) for RY5.6b and π(�1, . . . ,�B−1|τ) for RY8.8 were described in
detail in Section 4. The choices of the hyperparameters p� and v� in these priors are given
and justified in Section S3.1 of the Supplementary Material (Hannaford et al. (2020)).

For each analysis we used the MCMC algorithm described in Section 5. Two chains, ini-
tialised at different starting points, were each allowed to run for one million iterations, dis-
carding the first 500,000 as burn-in and thinning the remaining output to retain every 100th
iteration so as to reduce computational overheads. The standard graphical and numerical di-
agnostics, used in phylogenetic inference (Lartillot, Blanquart and Lepage (2004)), were used
to assess convergence and mixing.

Carrying out computation on one server with two six-core Xeon E5645 CPUs and 16GB
RAM, the time required to generate one million iterations from an alignment with 12 taxa
and 1000 sites was around 3.5 days for both models. Section S3.2 of the Supplementary
Material (Hannaford et al. (2020)) contains further discussion on how this computational
time compares with that for simpler substitution models and how it scales with the number
of sites and taxa.

6.1. Different numbers of taxa and sites. In order to assess the extent to which root in-
ference depends upon the dimensions of the data being analysed, we simulated alignments
under the nonhomogeneous RY5.6b and RY8.8 models, varying the number of taxa (6, 12,
24) and the number of sites (500, 1000, 2000). First, an unrooted tree on 24 taxa was sim-
ulated by random resolution of a star tree. This was rooted to form a balanced tree, that is,
a tree with an equal number of taxa on either side of the root, and then branch lengths were
sampled from a Ga(2,20) distribution. The branch-specific parameter vectors ρb were simu-
lated from Dirichlet D4(10,10,10,10) and Dirichlet D8(3,3,3,3,3,3,3,3) distributions for
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the RY5.6b and RY8.8 models, respectively. This gave a degree of heterogeneity which was
consistent with what we have seen in our analyses of biological data. For the nonhomoge-
neous RY5.6b model, α was set at 0.5, the mean of its symmetric prior. Likewise, the shape
parameter φ in the discretised gamma distribution for rate variation across sites was set to the
mode of its prior, 0.9. Using this rooted tree and these parameter values, three alignments of
2000 sites were simulated under each model. Taxa, sites or taxa and sites were then removed
from the alignments to give three data sets for each combination of sites and taxa specified
above. The taxa that are pruned were chosen uniformly at random but constrained so that the
corresponding tree for each resulting alignment is balanced. This was to avoid any potential
confounding with the effect of balance in the rooted topology, which we examine separately
in Section 6.2. The rooted topologies on 6, 12 and 24 taxa are displayed in the Supplementary
Material Figure S2.

For the trees on 6, 12 and 24 taxa, Figures 2(a), 2(c) and 2(e), respectively, display the
posterior distribution over root splits for the alignments simulated and analysed under the
nonhomogeneous RY5.6b model. Figures S3a, S3c and S3e in the Supplementary Material
show the analogous plots for the posterior distribution over unrooted topologies. The black
bars highlight the (true) root split or unrooted topology from the tree used to simulate the data.
The corresponding plots for the nonhomogeneous RY8.8 model are shown in Figures 2(b),
2(d) and 2(f) and in the Supplementary Material Figures S3b, S3d and S3e, respectively. As
expected, irrespective of the model or number of taxa, the posterior support for the correct
root split tends to increase as the number of sites increases, and the correct root split is more
frequently identified as the posterior mode. The same is true for unrooted topologies. Indeed,
when there are 2000 sites in the alignment and the nonhomogeneous RY8.8 model is used, the
posterior probability for the correct root split is close to one for all tree sizes and the posterior
probability of the correct unrooted topology is 0.758 on average across the three alignments.
Although increasing the number of taxa leads to quadratic growth in the number of possible
root splits and super-exponential growth in the number of possible unrooted topologies, it
does not seem to have a detrimental effect on inferential performance for the nonhomoge-
neous RY8.8 model. Unfortunately, the same is not true for the RY5.6b model, under which
inference of the root position is generally worse, particularly for larger trees. For example,
when the number of taxa is 12 or 24, the correct root split is not recovered as the posterior
mode in any simulations. The better rooting performance of the RY8.8 model is likely ex-
plained by two factors. First, the model has more parameters that can vary across the tree and
induce nonstationary behaviour. Second, conditional on the correct rooted topology, investi-
gation into the identifiability of the branch-specific parameters, ρ1, . . . ,ρB−1, revealed that
the ρb are better identified in the nonhomogeneous RY8.8 model than the RY5.6b model; see
the Supplementary Material Figures S4 and S5. This may be because the additive structure
of the RY5.6b rate matrix makes the likelihood more flat and hence less sensitive to changes
in the ρb.

6.2. Different topologies and branch lengths. In earlier work investigating a homoge-
neous, stationary, nonreversible model (Cherlin et al. (2018)), we found root inference to be
sensitive to some of the prior-data conflicts that occur commonly in the analysis of biological
data. Typically, these arise due to incongruent prior and likelihood information about branch
lengths and the rooted topology. In our analyses we adopt the near ubiquitous prior for the set
of branch lengths, which structures beliefs as independent Exp(10) distributions. This prior
places 99.9% of its mass below 0.691 and so asserts a strong belief that branch lengths are
reasonably short. As a consequence, given an unrooted topology that contains a long branch,
the prior supports rooting on this branch in order to split it into two shorter edges. In our
analyses we adopt a Yule prior over rooted topologies. As discussed previously, one of the
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FIG. 2. Posterior distribution over roots splits when three data sets are simulated and analysed under the non-
homogeneous RY5.6b model and the number of taxa is (a) 6, (c) 12, (e) 24 and when three data sets are simulated
and analysed under the nonhomogeneous RY8.8 model and the number of taxa is (b) 6, (d) 12, (f) 24. In every
plot, bars are arranged in descending order of posterior probability, and the correct root split is highlighted in
black. In the plots for 12 and 24 taxa, bars corresponding to probabilities less than 0.01 have been removed to
improve readability.

compelling properties of the Yule distribution is that it assigns near equal probability to root
splits of all sizes. However, a combinatorial consequence of this property is that more support
is assigned to balanced than unbalanced trees. In this section we analyse simulated data to
explore posterior sensitivity to prior-data conflicts that arise because of long branches in the
underlying unrooted tree or an unbalanced rooted topology.

In order to facilitate straightforward comparison with our earlier work, we set up the sim-
ulation experiment in the same way as Cherlin et al. (2018). Simulations were based on the
unrooted tree on 16 taxa depicted in Figure 3 whose topology was simulated through ran-
dom resolution of a star tree. Branch lengths were simulated from a Ga(2,20) distribution.
Based on this unrooted tree, we construct six different rooted trees by varying the root posi-
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FIG. 3. Unrooted tree used in simulation experiments to investigate the effects of different topologies and branch
lengths on root inference. In the experiments the tree is rooted at the midpoint of either branch E1 or E2. The tree
is depicted with branch E1 having a “medium” length of 0.084 units. In the experiment this is varied to 0.237
units (“long”) or 0.018 units (“short”).

tion, which is placed at the midpoint either of branch E1 or branch E2, and the length of the
branch E1, which is either the 95%, 50% or 5% quantile of the Ga(2,20) distribution:

Tree 1: Balanced (rooted on E1), long root branch (length 0.237);
Tree 2: Unbalanced (rooted on E2), long internal branch (length 0.237);
Tree 3: Balanced (rooted on E1), short root branch (length 0.018);
Tree 4: Unbalanced (rooted on E2), short internal branch (length 0.018);
Tree 5: Balanced (rooted on E1), medium root branch (length 0.084);
Tree 6: Unbalanced (rooted on E2), medium internal branch (length 0.084).

As indicated above, Trees 1, 3 and 5 have a balanced rooted topology with root type 8 : 8,
whilst Trees 2, 4 and 6 are unbalanced with root type 3 : 13. The Yule prior offers more than
six times more mass to the balanced tree, and hence the prior and likelihood are likely to be
in conflict when the tree is unbalanced. In the unrooted tree associated with Trees 1 and 2,
branch E1 is the longest, whilst for Trees 3 and 4 it is among the shortest. Given the unrooted
topology depicted in Figure 3, the prior support for a root on edge E1 increases as the branch
becomes longer and hence will increasingly conflict with the likelihood if E1 is not the root
edge.

For each of the six trees, three 2000-site alignments were simulated and analysed under
both nonhomogeneous Lie Markov models. The posterior distributions over root splits for
the RY8.8 model are shown in Figure 4. In general, root inference is good, with the true
root recovered as the posterior mode in most cases. This suggests the posterior is reasonably
robust to prior-data conflict concerning the rooted topology and branch lengths. Moreover,
for Trees 3–6, whose unrooted trees do not contain any very long edges, the absence of a
marked difference between the results for balanced Trees 3 and 5 and unbalanced Trees 4
and 6 suggest that the prior over rooted topologies imparts little influence over the posterior.
It is interesting to note that this was not the case in our earlier work based on a homogeneous,
stationary and nonreversible model. However, comparisons between the results for these four
trees and Trees 1 and 2, which do contain a very long edge, suggest that long branches in the
unrooted tree can influence posterior inference of the root position. When the long edge is the
root edge (Tree 1), the posterior is concentrated around the true root position in the analyses
of all three alignments; see Figure 4(a). However, when the long edge is not the root edge
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FIG. 4. Posterior distribution over roots splits when three data sets are simulated and analysed under the non-
homogeneous RY8.8 model and the tree used for simulation is Tree (a) 1 (balanced, long root branch), (b) 2 (un-
balanced, long internal branch), (c) 3 (balanced, short root branch), (d) 4 (unbalanced, short internal branch), (e)
5 (balanced, medium root branch), (f) 6 (unbalanced, medium internal branch). In every plot, bars are arranged
in descending order of posterior probability, and the correct root split is highlighted in black.

(Tree 2), prior-data conflict arises and the true root only has appreciable posterior support in
the analysis of one of the three alignments; see Figure 4(b).

The corresponding plots for the nonhomogeneous RY5.6b model are shown in Supple-
mentary Material Figure S6. In keeping with the results in Section 6.1 for the larger trees on
12 or 24 taxa, the true root rarely receives particularly appreciable posterior support. In fact,
the only cases where the true root was recovered as the posterior mode were the analyses
of the three alignments simulated under Tree 1, where the root edge is a long branch. This
further suggests that, for alignments of around 2000 sites on a modest number of taxa, the
likelihood of a nonhomogeneous RY5.6b model does not clearly identify the position of the
root.

It is worth noting that, for both models and all trees, inference of the unrooted topology
was excellent, with the true unrooted topology identified as the posterior mode, with high
support, in all cases; see Supplementary Material Figures S7 and S8.

7. Application. To illustrate the benefit of our nonhomogeneous model in its facility to
bring two sources of information to bear on the rooting problem, we consider an application
to a Drosophila dataset, taken from Tarrío, Rodríguez-Trelles and Ayalaa (2000), where most
models fail to identify a plausible root position. The alignment contains 2085 nucleotides
(sites) from the xanthine dehydrogenase (Xdh) gene of 17 different species of Drosophila. D.
saltans, D. prosaltans, D. neocordata, D. emarginata, D. sturtevanti and D. subsaltans form
a clade of saltans. Three of the species form an outgroup: D. melanogaster, D. virilis and D.
pseudoobscura. The remaining species form a clade of willistoni. Here, the term clade refers
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to the subset of taxa obtained by cutting a rooted tree on a branch and selecting only those
leaves which are descendants of the split lineage or, in biological terms, an ancestor and all
its descendants. The corresponding concept for unrooted trees is a split, which is a bipartition
of the taxa into two disjoint sets, induced by cutting a branch.

7.1. Models. We compare inferences obtained under six different models:

M1: Homogeneous, stationary, reversible GTR model;
M2: Homogeneous, stationary, nonreversible RY5.6b model;
M3: homogeneous, stationary, nonreversible RY8.8 model;
M4: Nonhomogeneous, nonstationary, locally reversible GTR model;
M5: Nonhomogeneous, nonstationary, locally nonreversible RY5.6b model;
M6: Nonhomogeneous, nonstationary, locally nonreversible RY8.8 model.

We note that the likelihood for our baseline model M1 is invariant to the position of the root
and so can only distinguish between unrooted trees. However, as the data set contains an out-
group, we can apply the standard approach of outgroup rooting to polarise the relationships
on the unrooted trees with the highest posterior support.

7.2. Prior specification. For the nonhomogeneous Lie Markov models, M5 and M6, we
use the priors described in Section 6.1 for the analysis of simulated data. For the remaining
models, Mi , i = 1, . . . ,4, our prior specification is detailed in Section S3.1 of the Supple-
mentary Material (Hannaford et al. (2020)).

7.3. MCMC implementation. For each model we ran the MCMC algorithm for at least
300,000 iterations, omitting all but the last 100,000 as burn-in and thinning the remaining
output to retain every 100th iteration so as to reduce computational overheads. To rigorously
assess convergence and mixing, we follow the methods utilised by Heaps et al. (2014). In
brief, for each analysis we run two chains initialised at different starting states. We then
consider standard graphical diagnostics, such as trace and density plots, for the quantitative
parameters and assess mixing and convergence in tree space using plots of the cumulative
relative frequencies of sampled splits (for model M1) or clades (for models M2 – M6) over
the course of the MCMC run. These checks gave no evidence of any lack of convergence and
thinning to every 100th iterate seemed to produce near-uncorrelated posterior samples.

7.4. Posterior inference. In phylogenetic inference the majority-rule consensus tree is
the most widely used summary of the posterior distribution over tree space. As a summary of
a sample of trees, it includes only those splits (for unrooted trees) or clades (for rooted trees)
which appear in over half of the samples (Bryant (2003)), here representing those with pos-
terior probability greater than 0.5. The consensus trees for the homogeneous and stationary
models M1 – M3 are shown in Figures 5(a)–5(c), in which numerical labels represent the
posterior probability of the associated split (M1) or clade (M2, M3). The majority-rule con-
sensus tree obtained using the GTR model M1 is unrooted but has been visualised with the
root at the midpoint of the branch leading to the outgroup, in accordance with the method of
outgroup rooting. We see immediately that the branching structure of the underlying unrooted
topology prevents identification of a monophyly (clade) of willistoni. Apart from some lack
of resolution in the RY5.6b consensus tree, those for the two homogeneous and stationary
Lie Markov models, M2 and M3, represent the same unrooted topology as the majority-rule
tree for the GTR model M1. As such, they also fail to isolate the willistoni as a clade. We
note, however, that whilst the RY8.8 consensus tree has a biologically implausible branching
structure, its root position, within the outgroup, represents a credible evolutionary hypothesis.
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FIG. 5. Majority rule consensus trees under the models: (a) M1–GTR; (b) M2–RY5.6b; (c) M3–RY8.8; (d)
M4–nonhomogeneous GTR; (e) M5–nonhomogeneous RY5.6b; (f) M6–nonhomogeneous RY8.8. Numerical la-
bels represent the posterior probability of the associated split (in (a)) or clade (in (b)–(f)).

Indeed, under the RY8.8 model M3 the posterior probability for a root position within the
outgroup or on its parent branch is 0.999, compared to only 0.343 for the simpler RY5.6b
model M2.

The majority-rule consensus trees for the nonhomogeneous and nonstationary models
M4–M6 are shown in Figures 5(d)–5(f). All three trees depict the same underlying unrooted
topology. This differs from that obtained under the three homogeneous models and is now
biologically plausible, with the willistoni, saltans and outgroup species forming a tripartition,
induced by cutting two edges. However, only the nonhomogeneous RY8.8 model M6 identi-
fies a credible root position, with the root on the consensus tree appearing inside the outgroup
and the marginal posterior probability for a root within the outgroup or, on its parent branch,
equal to 1.000. In contrast, the roots on the consensus trees for the nonhomogeneous GTR
and RY5.6b models, M4 and M5, split the willistoni, whilst the marginal posterior probabil-
ity for a root within the outgroup, or on its parent branch, is equal to 0.000 in each case. It is
interesting to note that, under model M6, the posterior is not only centred on a plausible tree,
it is also concentrated in its vicinity, with the posterior for rooted trees notably less diffuse
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than the distribution obtained under other models. For instance, the rooted topology of the
consensus tree, depicted in Figure 5(f), has posterior probability equal to 0.9235, compared
to posterior probabilities of at most 0.6870 for the modes in other cases. This greater concen-
tration of the posterior for the unknowns in M6, compared with those in M5, is consistent
with the results from the analyses of simulated data in Section 6.

7.5. Model comparison. As is commonly observed in statistical phylogenetics, our phy-
logenetic inferences are sensitive to the choice of substitution model. One way to arbitrate
this inconsistency is through comparisons of the fits of different models; notionally, we have
less reason to refute the conclusions of a model which shows a better fit to the data. A nat-
ural measure of model uncertainty in the Bayesian framework is the posterior mass function
over models, in this case Pr(Mi |y) ∝ p(y|Mi )Pr(Mi ) for i = 1, . . . ,6, which reduces to
Pr(Mi |y) ∝ p(y|Mi ) in the case of equal prior probabilities, Pr(Mi ) = 1/6. For each model
Mi , the crucial component is therefore the marginal, or integrated, likelihood p(y|Mi ),
given by

p(y|Mi ) = ∑
τ

∫
�i

p(y|τ,�i,Mi)π(τ,�i |Mi ) d�i.

Here, �i denotes the collection of continuous-valued model parameters, �, α and Qi for
model Mi .

Numerical calculation of the marginal likelihood is a notoriously difficult computational
challenge. This is particularly true in phylogenetics, due to the discrete nature of tree space;
see Oaks et al. (2019) for a recent review. Among the various approximations that have been
proposed, many techniques are based on importance sampling, with more successful methods
typically introducing intermediate (importance) densities to bridge the gap between the prior
and posterior. One such method, which is computationally tenable for the complex nonho-
mogeneous models introduced here, is the hybrid estimator of Newton and Raftery (1994), in
which the importance density is a mixture between the prior and posterior. Further discussion
and full details of the algorithm can be found in Section S3.3 of the Supplementary Material
(Hannaford et al. (2020)). The log marginal likelihoods for models M1–M6, approximated
using the Newton and Raftery hybrid estimator are displayed in Table 1.

The superior model fit afforded by the three nonhomogeneous and nonstationary models
is immediately apparent from Table 1. For instance, if we perform pairwise comparisons be-
tween each homogeneous model and its nonhomogeneous counterpart, then the log Bayes
factor ranges from 125.01 to 211.73 in favour of the nonhomogeneous model. Of the three
nonhomogeneous models the nonstationary RY8.8 model seems to give the best fit to the
data. This is also the only model whose posterior supported a biologically credible rooted
tree. Reasons for its superiority over the simpler RY5.6b variant were discussed from a theo-
retical and practical perspective in Sections 3.2 and 6.1, respectively, whilst the improvement
over the nonhomogeneous GTR model may be attributable to the additional source of root
information gained through the nonreversible structure of the RY8.8 rate matrix.

TABLE 1
Log marginal likelihoods for each model approximated using the Newton and Raftery hybrid estimator in which

the prior weight in the importance density was set at δ = 0.05. The models are: M1–GTR; M2–RY5.6b;
M3–RY8.8; M4–nonhomogeneous GTR; M5–nonhomogeneous RY5.6b; M6–nonhomogeneous RY8.8

M1 M2 M3 M4 M5 M6

−14719.55 −14750.98 −14719.95 −14531.11 −14625.97 −14508.22
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In an attempt to account for the variance of the Newton and Raftery hybrid estimator, we
ran 10 MCMC chains for each model, initialised at different starting points, and repeated our
calculations. The results, shown in Figure S9 of the Supplementary Material (Hannaford et
al. (2020)), suggest a clear ranking of models, such that our conclusions stand even in light
of the Monte Carlo error in the marginal likelihood estimates.

8. Discussion. The CTMP that defines standard substitution models of DNA evolution
is typically assumed to be reversible and in its stationary distribution. These assumptions
are made primarily for mathematical convenience, despite being refutable by experimental
evidence and biological theory, and restrictive in generating a root–invariant likelihood. Both
issues can be addressed by relaxing one or both simplifying assumptions. Among models in
the literature which facilitate root inference, the most biologically credible are those which
allow variation in sequence composition over time.

In earlier work we introduced a class of nonhomogeneous and nonstationary models with
locally reversible structure. Conditional on a given tree, each branch of the underpinning un-
rooted topology was associated with its own matrix from a class of reversible rate matrices.
The distribution at the root of the tree was taken as the stationary distribution on the rooting
branch. We have now advanced this idea so that each rate matrix comes from a class of non-
reversible Lie Markov models, either RY5.6b or RY8.8. For both models we provided a new
parameterisation and gave an interpretation. For the homogeneous RY5.6b model we showed
that the additive structure of the rate matrix makes it ill-suited to modelling evolutionary
processes where the long-run proportions of each nucleotide are similar and the transition-
transversion rate ratio is high. This provides an explanation for the poor fit that is commonly
reported for the RY5.6b model. To our knowledge, this has hitherto gone unnoticed in the
literature.

Our nonhomogeneous Lie Markov models have a number of strengths. With fewer pa-
rameters than an analogous nonhomogeneous general Markov model, they provide a parsi-
monious way of introducing local nonreversible structure into a nonstationary model. This
yields an extra source of information about the root position whilst retaining computational
tractability in model-fitting. Moreover, because Lie Markov models are closed under matrix
multiplication, our nonhomogeneous extensions are mathematically consistent, meaning the
distributions over DNA characters induced by a tree and all its subtrees could have arisen
from the same family of nonhomogeneous Lie Markov models.

Taking a Bayesian approach to inference, we describe a prior for the branch-specific pa-
rameters that encourages borrowing of strength between edges. This has a regularising ef-
fect on the posterior distribution. Additionally, we describe an MCMC scheme for generating
samples from the posterior. Through extensive simulation experiments we demonstrated, em-
pirically, that the root position can be identified from the likelihood of our nonhomogeneous
models and that increasing the number of sites in the alignment tends to lead to more accu-
rate and precise inferences of all unknowns. Whilst root inference for the nonhomogeneous
RY5.6b model was generally poor for larger trees, we showed that root inference under the
nonhomogeneous RY8.8 model remains strong, even in the face of prior-data conflict arising
from an unbalanced rooted topology, though inference can be sensitive to the presence of
long branches in the unrooted topology.

We utilised our model and inferential procedures in a biological application concerning a
challenging data set of Drosophila, in which simpler models typically fail to identify a plau-
sible root position. In this analysis our nonhomogeneous RY8.8 model identified a rooted
tree that was biologically credible. We showed that this model had the highest marginal like-
lihood, indicating better fit to the data.
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