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The integration of mobile health (mHealth) devices into behavioral
health research has fundamentally changed the way researchers and interven-
tionalists are able to collect data as well as deploy and evaluate intervention
strategies. In these studies, researchers often collect intensive longitudinal
data (ILD) using ecological momentary assessment methods which aim to
capture psychological, emotional and environmental factors that may relate to
a behavioral outcome in near real time. In order to investigate ILD collected in
a novel, smartphone-based smoking cessation study, we propose a Bayesian
variable selection approach for time-varying effect models, designed to iden-
tify dynamic relations between potential risk factors and smoking behaviors
in the critical moments around a quit attempt. We use parameter-expansion
and data-augmentation techniques to efficiently explore how the underlying
structure of these relations varies over time and across subjects. We achieve
deeper insights into these relations by introducing nonparametric priors for
regression coefficients that cluster similar effects for risk factors while simul-
taneously determining their inclusion. Results indicate that our approach is
well positioned to help researchers effectively evaluate, design and deliver
tailored intervention strategies in the critical moments surrounding a quit at-
tempt.

1. Introduction.

1.1. Scientific background. The integration of mobile health (mHealth) devices into be-
havioral health research has fundamentally changed the way researchers and interventional-
ists are able to collect data as well as deploy and evaluate intervention strategies. Leveraging
mobile and sensing technologies, just-in-time adaptive interventions (JITAI) or ecological
momentary interventions are designed to provide tailored support to participants based on
their mood, affect and socioenvironmental context (Heron and Smyth (2010), Nahum-Shani
et al. (2017)). In order to deliver theory-based interventions at critical moments, researchers
collect intensive longitudinal data using ecological momentary assessment (EMA) methods
which aim to capture psychological, emotional and environmental factors that may relate
to a behavioral outcome in near real time. In practice, JITAIs’ effectiveness depends on ac-
curately identifying high-risk situations by the user or by predetermined decision rules to
initiate the delivery of intervention components. Decision rules for efficacious interventions
rely on a thorough understanding of the factors that characterize a subject’s risk for a behav-
ioral outcome, the dynamics of these risk factors’ relation with the outcome over time and
the knowledge of possible strategies to target a risk factor (Nahum-Shani et al. (2017)).
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In the analysis of this paper, we investigate a behavioral health intervention study that
targets smoking cessation. Historically, smoking cessation studies have used health behav-
ior theory (Shiffman et al. (2002), Timms et al. (2013)) or group-level trends of smoking
antecedents (Piasecki et al. (2013)) to determine when a JITAI should be triggered. How-
ever, this approach is limited since current health behavior models are inadequate for guid-
ing the dynamic and granular nature of JITAIs (Riley et al. (2011), Klasnja et al. (2015)).
Additionally, the design of efficacious smoking cessation interventions is challenged by the
complexity of smoking behaviors around a quit attempt and misunderstandings of the ad-
diction process (Piasecki et al. (2002)). More recently, smoking behavior researchers have
capitalized on the ability of mHealth techniques to collect rich streams of data capturing sub-
jects’ experiences close to their occurrence at a high temporal resolution. The structure as
well as the complexity of these data provide unique opportunities for the development and
implementation of more advanced analytical methods compared to traditional longitudinal
data analysis methods used in behavioral research (e.g., mixed models, growth curve models)
(Trail et al. (2014)). For example, researchers have applied reinforcement learning (Luckett
et al. (2020)) and dynamic systems approaches (Trail et al. (2014), Rivera, Pew and Collins
(2007), Timms et al. (2013)) to design and assess optimal treatment strategies using mHealth
data. Additionally, Koslovsky et al. (2018), de Haan-Rietdijk et al. (2017) and Berardi et al.
(2018) have applied hidden and observed Markov models to study transitions between dis-
crete behavioral states, Shiyko et al. (2012) and Dziak et al. (2015) have used mixture models
to identify latent structures and Kürüm et al. (2016) have employed joint modeling techniques
to study the complexity of smoking behaviors.

Greater insights into the dynamic relation between risk factors and smoking behaviors have
been generated by the application of functional data techniques (Trail et al. (2014), Vasilenko
et al. (2014), Koslovsky et al. (2018), Tan et al. (2012)). These methods are well suited for
high-dimensional data with unbalanced and unequally-spaced observation times, matching
the format of data collected with EMAs. They also require little assumptions on the structure
of the relations between risk factors and behavioral outcomes. One popular approach uses
varying-coefficient models which belong to the class of generalized additive (mixed) mod-
els. These semiparametric regression models allow a covariate’s corresponding coefficient
to vary as a smooth function of other covariates (Hastie and Tibshirani (1993)). For exam-
ple, Selya et al. (2015) examined how the relation between the number of cigarettes smoked
during a smoking event and smoking-related mood changes varies as a function of nicotine
dependence. More frequently, penalized splines have been employed in varying-coefficient
models to investigate how the effect of a covariate varies as a function of time, leading to
time-varying effect models (TVEM) (Tan et al. (2012), Lanza et al. (2014), Koslovsky et al.
(2018), Shiyko et al. (2012), Mason et al. (2015), Vasilenko et al. (2014)). These approaches
allow researchers to identify the critical moments that a particular risk factor is strongly as-
sociated with smoking behaviors, information that can be used to design tailored intervention
strategies based on a subject’s current risk profile.

1.2. Model overview. While there are various inferential challenges that functional data
analysis models can address, in the application of this paper we focus on incorporating three
recurring themes in behavioral research to explore the relations between risk factors and
smoking behaviors:

1. Model Assumptions: Numerous smoking behavior research studies have relied on semi-
parametric, spline-based methods to learn the relational structure between risk factors and
outcomes (Tan et al. (2012), Vasilenko et al. (2014)).

2. Variable Selection: One of the main objectives of intensive longitudinal data analysis is
to identify or reaffirm complex relations between risk factors and behavioral outcomes over
time (Walls and Schafer (2006)).
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3. Latency: A common aim in smoking behavior research studies is to identify latent struc-
ture in the data, such as groups or clusters of subjects with similar smoking behaviors, over
time (McCarthy et al. (2016), Cursio, Mermelstein and Hedeker (2019), Geiser et al. (2013),
Dziak et al. (2015), Brook et al. (2008)).

To incorporate and expand upon these features in our analysis, we develop a flexible
Bayesian varying-coefficient regression modeling framework for longitudinal binary re-
sponses that uses variable selection priors to provide insights into the dynamic relations
between risk factors and outcomes. We embed spike-and-slab variable selection priors as
mixtures of a point mass at zero (spike) and a diffuse distribution (slab) (George and Mc-
Culloch (1993), Brown, Vannucci and Fearn (1998)) and adopt the formulation of Scheipl,
Fahrmeir and Kneib (2012) to deconstruct the varying-coefficients’ terms, in our case time-
varying effects, into a main effect, linear interaction term and nonlinear interaction term.
Unlike previous approaches in behavioral health research that use time-varying effect mod-
els, our formulation allows us to gain inference on whether a given risk factor is related to
the smoking behavior while also learning the type of relation. Additionally, by performing
selection on fixed as well as random effects, our method is equipped to identify relations
that vary over time and across subjects. For this, we exploit a Pólya-Gamma augmentation
scheme that enables efficient sampling without sacrificing interpretability of the regression
coefficients as log odds ratios (Polson, Scott and Windle (2013)). Furthermore, we adopt a
Bayesian semiparametric approach to model fixed and random effects by replacing the tradi-
tional spike-and-slab prior with a nonparametric construction to cluster risk factors that have
similar strengths of association.

1.3. Just-in-time adaptive interventions for smoking abstinence. Although multiple stud-
ies have examined momentary predictors of smoking lapse (Shiffman et al. (2000), Piasecki
et al. (2003), Businelle et al. (2014)), JITAIs for smoking cessation are still nascent. Thus far,
studies have used participant-labeled GPS coordinates to trigger supportive messages to pre-
vent smoking (Naughton et al. (2016)) or have tailored messages to the duration and intensity
of participant’s self-reported side effects while taking varenicline (McClure et al. (2016)).
Using our proposed approach, we analyze ILD collected in a study investigating the utility
of a novel, smartphone-based smoking cessation JITAI (SmartT). The SmartT intervention
(Businelle et al. (2016)) uses a lapse risk estimator to identify moments of heightened risk
for lapse and tailors treatment messages in real time based upon the level of imminent smok-
ing lapse risk and currently present lapse triggers. To our knowledge, no other studies have
used EMA data to estimate risk for imminent smoking lapse and deliver situation-specific,
individually-tailored treatment content prior to lapse.

In this study, adult smokers (N = 81) recruited from a smoking cessation research clinic
were randomized to the SmartT intervention, the National Cancer Institute’s QuitGuide (NCI
QuitGuide) or weekly counseling sessions (usual care) and followed over a five-week period
spanning one week prior to a scheduled quit attempt to four weeks after. At the beginning
of the assessment period, baseline measures were collected, and subjects were shown how
to complete EMAs on a study-provided smartphone. Throughout the assessment period, sub-
jects completed daily diaries and received four random EMAs from the smartphone to com-
plete each day. For each EMA, subjects were prompted on their recent smoking behaviors,
alcohol consumption as well as various questions regarding their current psychological, social
and environmental factors that may contribute to an increased risk of smoking behaviors.

Findings indicate that our approach is well positioned to help researchers evaluate, de-
sign and deliver tailored intervention strategies in the critical moments surrounding a quit
attempt. In particular, results confirm previously identified temporal relations between smok-
ing behaviors around a quit attempt and risk factors. They also indicate that subjects differ
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in how they respond to different risk factors over time. Furthermore, we identify clusters of
active risk factors that can help researchers prioritize intervention strategies based on their
relative strength of association at a given moment. Importantly, our approach generates these
insights with minimal assumptions regarding which risk factors were related to smoking in
the presence of others, the structural form of the relation for active terms or the parametric
form of regression coefficients.

The rest of the paper is organized as follows. In Section 2 we present our modeling ap-
proach and describe prior constructions. In Section 3 we investigate the relations between risk
factors and smoking behaviors in the critical moments surrounding a scheduled quit attempt
using mHealth data. In Section 4 we conduct a simulation study investigating the variable
selection and clustering performance of our proposed method on simulated data. In Section 5
we evaluate prior sensitivity of our model. In Section 6 we provide concluding remarks.

2. Methods. The objective of our analysis is to identify relations between a set of risk
factors (i.e., baseline and EMA items) and a binary outcome (i.e., momentary smoking) re-
peatedly collected over time. For this, we employ a Bayesian variable selection framework
that allows a flexible structure for the unknown relations. We achieve this by performing se-
lection not only on main effects but, additionally, on linear and nonlinear interaction terms as
well as random effects. In this work we refer to fixed and random effects in the context of hi-
erarchical or multilevel models, where fixed effects are constant across subjects and random
effects differ at the subject level. We chose this terminology based on its familiarity within
both frequentist and Bayesian paradigms but point out that the fixed or population-level ef-
fects are treated as random variables in our model and thus follow a probability distribution.

2.1. A varying-coefficient model for intensive longitudinal data collected with EMAs. Let
yij ∈ {0,1} represent momentary smoking for subject i = 1, . . . ,N and xij and zij represent
P - and D-dimensional vectors of risk factors collected on each subject at time j = 1, . . . , ni ,
respectively. To maintain temporality in our particular application (see Section 3 for more
details), we model the relation between momentary smoking by the next assessment and
current, potential risk factors as a varying-coefficient model of the type

(2.1) logit
(
P(yi,j+1 = 1|xij ,zij , uij )

) =
P∑

p=1

fp(uij )xijp + α′
izij ,

where fp(u) are smooth functions of a scalar covariate u and αi represents subject specific
random effects. Similar temporal assumptions have been made previously in smoking behav-
ior research studies (Bolman et al. (2018), Minami et al. (2014), Shiffman et al. (1996, 2013),
Shiyko et al. (2014)). Note that, in general, researchers may use the framework of (2.1) to
model the relation between a binary outcome and potential risk factors collected concurrently,
in addition to lagged trends, as is typical in longitudinal studies (Fitzmaurice, Laird and Ware
(2012)). With this formulation, we include varying-coefficient terms for each of the P risk
factors based on u. However, in general, we can specify varying-coefficient terms that depend
on u′ �= u, and, thus, the number of varying-coefficient terms in the full model is not strictly
P . If u is chosen to represent time, then this model is commonly referred to as a time-varying
effect model in smoking behavior research (Tan et al. (2012), Vasilenko et al. (2014), Dziak
et al. (2015), Koslovsky et al. (2018)). Note that zij is typically a subset of xij (Kinney and
Dunson (2007), Cheng et al. (2010), Hui, Müller and Welsh (2017)) and that incorporating a
1 in xij and zij allows for an intercept term that varies as a function of u and a random inter-
cept term, respectively. Additionally, this formulation can handle time-invariant risk factors,
such as baseline items, by fixing xijp (zijd ) to xip (zid ) for all observations j .
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We approximate the smooth functions with spline basis functions. Specifically,

(2.2) fp(uij ) = U ′
ijφp,

where U ij is a spline basis function for uij and φp is a rp-dimensional vector of correspond-
ing spline coefficients. For simplicity, the splines are constructed with an equal number of
equally spaced knots that depend on the minimum and maximum values of u.

2.2. Penalized priors for the spline coefficients. Using a combination of variable selec-
tion and shrinkage priors, our approach generates insights on the underlying structure of the
smooth functions by reconstructing them as the summation of main effect, linear interaction
and nonlinear interaction components. Formally, we rewrite equation (2.2) as

(2.3) fp(uij ) = β∗
pU∗′

ij ξp + β◦
puij + β0p,

where the constant term β0p captures the main effect of xp , β◦
p represents the effect of the

linear interaction between u and xp and β∗
pξp is a parameter-expanded vector of coefficients

corresponding to the nonlinear interaction term.
To derive the nonlinear component in equation (2.3), we start by penalizing the spline

functions in equation (2.2) with a second-order Gaussian random walk prior following

(2.4) Uφp|s2 ∼ N
(
0, s2UP −U ′),

where U is a
∑N

i=1(ni − 1) × rp-dimensional matrix with each row corresponding to U ′
ij

for the ith subject at the j th assessment, s2 controls the amount of smoothness and P is the
appropriate penalty matrix (Lang and Brezger (2004)). Next, we take the spectral decom-
position of UP −U ′ = [U+ U◦ ] [V + 0

0 0

] [ U+
U◦

]
, where U+ is a matrix of eigenvectors with

corresponding positive eigenvalues along the diagonal of matrix V +, and U◦ are the eigen-
vectors associated with the zero eigenvalues. Now, we can redefine the smooth functions in
equation (2.2) as the sum of nonlinear (penalized) interaction, linear (nonpenalized) interac-
tion and main effect terms as presented in equation (2.3), where the penalized term is written
as U∗ϕ∗

p with U∗ = U+V
1/2
+ . By assuming independent normal priors for ϕ∗

p , a proper prior
for the penalized terms that is proportional to equation (2.4) can be obtained.

We take two additional measures to enhance the computational efficiency of the resulting
MCMC algorithm. First, only eigenvalues/vectors that explain a majority of the variability
in equation (2.4) are used to construct U∗. Additionally, we apply a parameter-expansion
technique for the penalized terms in fp(·), setting ϕ∗

p = β∗
pξp , where β∗

p is a scalar and ξp is
a vector with the same dimension as ϕ∗

p . This technique enables us to perform selection on the
penalized terms as a group rather than determining their inclusion separately. By rescaling β∗

p

and ξp at each MCMC iteration such that |ξp| has mean equal to one, ξp maintains the shape
of the smooth function, and β∗

p represents the term’s strength of association while preserving
identifiability, similar to Scheipl, Fahrmeir and Kneib (2012).

For variable selection we impose spike-and-slab prior distributions on the 3 ∗ P = T -
dimensional vector β = (β∗

1 , β◦
1 , β01, . . . , β

∗
P ,β◦

P ,β0P )′. In general, the spike-and-slab prior
distribution is composed of a mixture of a Dirac delta function at zero, δ0(·), and a known
distribution, S(·), such as a normal with mean zero and diffuse variance (George and McCul-
loch (1993), Brown, Vannucci and Fearn (1998)). A latent indicator variable, νt , representing
a risk factor’s inclusion or exclusion in the model, determines whether the risk factor’s regres-
sion coefficient is set to zero (spike) or free to be estimated in the model (slab). Specifically
for a given coefficient βt , we assume

(2.5) βt |νt ∼ νt · S(βt ) + (1 − νt )δ0(βt ).
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To complete the prior specification for this portion of the model, we assume that the slab
component, S(βt ), follows a N(0, τ 2) with variance τ 2 and that the inclusion indicators are
distributed as νt |θt ∼ Bernoulli(θt ) with prior probability of inclusion θt ∼ Beta(aνt , bνt ).
Integrating out θt , we obtain νt ∼ Beta-Binomial(aνt , bνt ), where hyperparameters aνt and
bνt are set to control the sparsity in the model. Lastly, each element of ξp , ξpr, is assumed
to follow a N(μpr,1) with mean μpr = ±1 with equal probability. Placing a majority of the
prior mass for each ξpr around ±1 is motivated by the role it plays in the expansion of ϕ∗

p , as
described above.

2.3. Prior specification for the random effects. We perform selection on the random ef-
fects, αi , using the modified Cholesky decomposition approach of Chen and Dunson (2003).
Specifically, we reparameterize the random effects

(2.6) αi = K�ζ i ,

where K a positive diagonal matrix with elements κ = (κ1, . . . , κD)′ and � a lower triangle
matrix with diagonal elements set to one and free elements otherwise. To perform variable
selection, we set the prior for κ to follow a similar spike-and-slab prior distribution, as in
Section 2.2, where the slab distribution S(κd) = FN(m0, v0). Here, FN represents a folded
normal distribution defined as

FN(m0, v0) = (2πv0)
−1/2 exp

(−(κd − m0)
2/(2v0)

)
+ (2πv0)

−1/2 exp
(−(κd + m0)

2/(2v0)
)
,

where m0 ∈ R and v0 > 0 are location and scale parameters, respectively. Note that we forgo
the parameter-expansion approach of Kinney and Dunson (2007), which introduces a re-
dundant multiplicative parameter in the implied random effect covariance matrix, in favor
of a model that enables meaningful inference for κ and, ultimately, their cluster assign-
ments. Similar to Section 2.2, we let the corresponding inclusion indicators λd follow a
Beta-Binomial(aλd

, bλd
) to induce sparsity on the random effect terms. Lastly, we assume

the D(D − 1)/2-dimensional vector of free elements in � follow N(γ 0,Vγ ) · I (γ ∈ Z),
where I represents an indicator function and Z represents the parameters with corresponding
random effects included in the model. For example, if the dth random effect is included (i.e.,
λd = 1), then γd1, . . . , γd,d−1 and γd+1,d , . . . , γD,d ∈ Z . Lastly, we assume ζ i ∼ N(0, I ).

2.4. Spiked nonparametric priors. To complete our approach, we investigate nonpara-
metric prior constructions for the spike-and-slab components of the reparameterized fixed
and random effects by assuming that the slab component follows a Dirichlet process (DP).
These priors are commonly referred to as spiked DP (SDP) priors (Canale et al. (2017),
Kim, Dahl and Vannucci (2009), Savitsky and Vannucci (2010), Dunson, Herring and Engel
(2008)). In the context of our model, SDP priors allow us to simultaneously select influen-
tial risk factors while clustering effects with similar relations to the smoking outcome. The
formulation we use here is sometimes refers to as an “outer” SDP prior, since the point mass
at zero is outside of the base distribution of the DP. Alternatively, the “inner” construction
places the spike-and-slab prior inside the DP, serving as the base distribution. The inner for-
mulation provides the opportunity for coefficients to cluster at zero but does not force a point
mass at zero explicitly. As such, the likelihood that a coefficient is assigned to the trivial clus-
ter grows with the number of coefficients excluded from the model. Alternatively, the outer
formulation is a more informative prior, since it explicitly assigns a point mass at zero, and, in
addition, carries less computational demands since it does not require auxiliary variables for
MCMC sampling (Neal (2000), Savitsky and Vannucci (2010)). We refer readers to Canale
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et al. (2017) for a detailed explanation of the structural differences between the two prior
formulations.

First, we assume the regression coefficients associated with the main effects and linear
interaction terms follow a SDP to provide insights on risk factors that share underlying lin-
ear trends with momentary smoking by the next assessment over the course of the study.
Specifically, we assume the slab component in equation (2.5) is a Dirichlet process prior
H ∼ DP(ϑ,H0) with base distribution H0 = N(0, τ 2) and concentration parameter ϑ . Fur-
thermore, we assume a hyperprior, ϑ ∼ G(aϑ, bϑ), with aϑ, bϑ > 0. For the nonlinear inter-
action terms, we avoid the SDP since it would produce uninterpretable cluster assignments
due to the parameter-expansion approach taken to improve selection performance. For exam-
ple, similar values for β∗

t and β∗
t ′ may correspond to vastly different ϕ∗

t and ϕ∗
t ′ , depending on

their respective ξ and spline basis functions. Similarly, placing a DP prior on the individual
components in ξ , or even ϕ, would not provide interpretable results on the overall nonlinear
effect. We take a similar approach for the random effects. Here, we assume the slab compo-
nents for the diagonal elements of K , S(κd) = W , W ∼ DP(A,W0), where W0 ∼ FN(m0, v0)

and A is the concentration parameter of the DP. To complete the prior assumptions for the
random effects portion of the model, let A ∼ G(aA, bA), where aA, bA > 0 are shape and
rate parameters, respectively.

There is evidence that relaxing parametric assumptions for random effects using DP pri-
ors may cause inferential challenges, as the mean of the random effects are nonzero almost
surely (Li, Müller and Lin (2011), Yang (2012), Cai and Bandyopadhyay (2017)). Our ap-
proach differs in that we do not directly replace the typical normal assumption for random
effects with a nonparametric prior. Instead, we place a nonparametric prior on the covari-
ance decomposition components, K , while letting ζ i follow a normal distribution centered
at zero. As such, our approach avoids any identifiability issues with the fixed effects while
still relaxing the parametric assumption on the reparameterized random effects, K�ζ i . It is
important to note that by doing this we are adopting a Bayesian semiparametric modeling
structure, since the random effects are linear combinations of spiked Dirichlet process and
normal random variables (Müller, Quintana and Rosner (2007)).

2.5. Posterior inference. For posterior inference we implement a Metropolis–Hastings
within Gibbs algorithm. The full joint model is defined as

f (y|�,ω,x,u,z)p(ω)p(β|ν)p(ν)p(ϑ)p(K|λ)p(λ)p(A)p(ξ |μ)p(μ)p(ζ )p(�),

where � = {β, ξ ,K,�, ζ }. We use the Pólya-Gamma augmentation of Polson, Scott and Win-
dle (2013) to efficiently sample the posterior distribution for the logistic regression model.
Following Polson, Scott and Windle (2013), we express the likelihood contribution of yi,j+1
as

f (yi,j+1|·) = (eψij )yi,j+1

(1 + eψij )
∝ exp(ki,j+1ψij )

∫ ∞
0

exp
(−ωi,j+1ψ

2
ij /2

)
p(ωi,j+1|ni,j+1,0)∂ω,

where ki,j+1 = yi,j+1 − ni,j+1/2, p(ωi,j+1|ni,j+1,0) ∼ PG(ni,j+1,0) and PG is the Pólya-
Gamma distribution. Using the notation presented in the previous sections, we set

ψij =
P∑

p=1

(
β∗

pU∗
ij ξp + β◦

puij + β0p

)
xijp + z′

ijK�ζ i .

The MCMC sampler used to implement our model is outlined below in Algorithm 1.
A more detailed description of the MCMC steps as well as a graphical representation of
the model are provided in the Supplementary Material (Koslovsky et al. (2020)). After burn-
in and thinning, the remaining samples obtained from running Algorithm 1 for T̃ iterations
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Algorithm 1 MCMC Sampler
1: Input data y,x,u,z
2: Initialize parameters: �,ω, ν,λ, ϑ,A,μ
3: Set DPβ̄ and DPK to True or False to indicate DP for slab on fixed or random effects,

respectively.
4: for iteration t̃ = 1, . . . , T̃ do
5: for i = 1, . . . ,N do
6: for j = 1, . . . , ni − 1 do
7: Update ωi,j+1 ∼ PG(1,ψij )

8: end for
9: end for

10: if DPβ̄ then

11: Update cluster assignment of β̄ following Neal (2000) algorithm 2.
12: end if
13: Jointly update β and ν with Between and Within Step following Savitsky, Vannucci

and Sha (2011).
14: Update ξ from FCD N(μξ ,Vξ ).
15: for p = 1, . . . ,P do
16: Rescale ξ∗

p and β∗
p so ϕ∗

p remains unchanged.
17: end for
18: for p = 1, . . . ,P do
19: for r = 1, . . . , rp do
20: Set μpr = 1 with probabilty 1/(1 + exp(−2ξpr)).
21: end for
22: end for
23: Update ϑ by the two-step Gibbs update of Escobar and West (1995).
24: if DPK then
25: Update cluster assignment of DPK following Neal (2000) algorithm 2.
26: end if
27: Jointly update K and λ with Between and Within Step following Savitsky, Vannucci

and Sha (2011).
28: Update A following two-step Gibbs update of Escobar and West (1995).
29: Update � from FCD N(γ̂ , V̂γ ) · I (γ ∈ Z).
30: for i = 1, . . . ,N do
31: Update ζ i from FCD N(ζ̂ i , V̂ζi

).
32: end for
33: end for

are used for inference. To determine a risk factor’s inclusion in the model, its marginal poste-
rior probability of inclusion (MPPI) is empirically estimated by calculating the average of its
respective inclusion indicator’s MCMC samples (George and McCulloch (1997)). Note that
inclusion for both fixed and random effects is determined marginally for βt and λd , respec-
tively. Commonly, covariates are included in the model if their MPPI exceeds 0.50 (Barbieri
and Berger (2004)) or a Bayesian false discovery rate threshold which controls for multiplic-
ity (Newton et al. (2004)).

3. Case study. In this section we study the smoking behaviors in a group of adult smok-
ers recruited from a smoking cessation research clinic. The overall research goal of this study
was to identify and investigate the structural form of the relations between a set of risk factors
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and smoking over a five-week period surrounding a scheduled quit attempt, using intensive
longitudinal data collected with EMAs.

3.1. Data analysis. In the study design, momentary smoking, our outcome of interest,
was defined as whether or not a subject reported smoking in the four hours prior to the cur-
rent EMA. However, at each EMA a subject was prompted on their current psychological,
social, environmental and behavioral status. Thus, to maintain temporality in this study, we
assessed the relations between momentary smoking and measurements collected in the pre-
vious EMA. As such, regression coefficients are interpreted as the log odds of momentary
smoking by the next assessment for a particular risk factor. In this study we investigated psy-
chological and affective factors including urge to smoke, feelings of restlessness, negative
affect (i.e., irritability, frustration/anger, sadness, worry, misery), positive affect (i.e., happi-
ness and calmness), being bored, anxiousness and motivation to quit smoking. Additionally,
we investigated numerous social and environmental factors, such as whether or not the subject
was interacting with a smoker, if cigarettes were easily available (cigarette availability) and
whether or not the subject was drinking alcohol (alcohol consumption). Also, we included a
set of baseline, time-invariant measures (i.e., heaviness of smoking index (HSI), age (years),
being female and treatment assignment) into the model. For each of these risk factors, we
included a fixed main effect, linear interaction and nonlinear interaction term as well as a
random main effect and linear interaction term. All interactions investigated in this analysis
were between risk factors and assessment time (i.e., uij = tij ), and tij were centered so that
t = 0 represents the beginning of the scheduled quit attempt.

Only complete EMAs with corresponding timestamps were included in this analysis, re-
sulting in 9634 total observations with the median number of assessments per individual 151
(IQR 101.5-162). All continuous covariates were standardized to mean zero and variance
one before analysis to help reduce multicollinearity and place covariates on the same scale
for interpretation. The spline functions were initially generated with 20 basis functions, but
only the eigenvalues/eigenvectors that captured 99.9% of the variability were included in
the model to reduce the parameter space and computation time, similar to Scheipl, Fahrmeir
and Kneib (2012). This reduced the column space of the penalized covariates U∗ to 8 in
our application. We applied our model with the traditional spike-and-slab prior as well as
the spiked DP. When fitting each model, we chose a noninformative prior for the fixed and
random effects’ inclusion indicators, aνt = bνt = aλd

= bλd
= 1. This assumption reflects

the exploratory nature of our study aimed at learning potential relations between risk fac-
tors and smoking behaviors with little or no information regarding their occurrence in the
presence of other risk factors. We assumed a mildly informative prior on the fixed regres-
sion coefficients by setting τ 2 = 2. This places a 95% prior probability of included regres-
sion coefficients between an odds ratio of 0.06 and 16. Additionally, we set v0 = v∗ = 10,
m0 = m∗ = 0, and � ∼ N(γ 0 = 0,V γ = I ). Lastly, when using the SDP prior, the hyperpa-
rameters for the concentration parameters ϑ and A were set to aϑ = bϑ = aA = bA = 1. For
posterior inference we ran our MCMC algorithm with and without SDP priors for both fixed
and random effects for 10,000 iterations, treating the first 5000 as burn-in and thinning to
every 10th iteration. Trace plots of the parameters’ posterior samples indicated good conver-
gence and mixing. Additionally, we observed a relatively high correlation (∼97%) between
the posterior probabilities of inclusion obtained from two chains initiated with different pa-
rameter values and potential scale reduction factors, R̂, for each of the selected β and K
below 1.1 (Gelman and Rubin (1992)), further demonstrating that the MCMC procedure was
working properly and the chains converged. To assess model fit, a residual plot and a series
of posterior predictive checks were performed in which we compared replicated data sets
from the posterior predictive distribution of the model to the observed data (Gelman et al.
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(2000)). Overall, we found strong evidence of good model fit; see the Supplementary Ma-
terials for details (Koslovsky et al. (2020)). Inclusion in the model was determined using
the median model approach (Barbieri and Berger (2004)) (i.e., marginal posterior proba-
bility of inclusion (MPPI) ≥ 0.50). For the SDP model, clusters of regression coefficients
were determined using sequentially-allocated latent structure optimization to minimize the
lower bound of the variation of information loss (Wade and Ghahramani (2018), Dahl and
Muller (2017)). To compare the predictive performance of both models, we performed a
leave-one-out cross-validation approximation procedure, following the approach proposed
by Vehtari, Gelman and Gabry (2017). This approach approximates leave-one-out (LOO)
cross-validation with the expected log pointwise predictive density (epld). By using Pareto
smoothed importance sampling (PSIS) for estimation, it provides a more stable estimate com-
pared to the method of Gelfand (1996). We used the R package loo (Vehtari, Gelman and
Gabry (2016)), which requires the pointwise log-likelihood for each subject i = 1, . . . ,N at
each observation j = 1, . . . , ni calculated at each MCMC iteration s = 1, . . . , S and produces
an estimated êpld value with larger values implying a superior model.

3.2. Results. Overall, we found better predictive performance for the model with SDP
priors vs. the traditional spike-and-slab priors, êpldSDP = −2985.1 and êpldSS = −3062.7,
respectively. Plots of the marginal posterior probabilities of inclusion for the fixed and ran-
dom effects selected using our proposed approach with SDP priors are found in Figure 1.

FIG. 1. Smoking cessation study: Marginal posterior probabilities of inclusion (MPPI) for fixed (top) and ran-
dom (bottom) effects. Selected fixed effects in ascending order: NCI (NL-INTX), urge to quit (NL-INTX), cigarette
availability (all), interacting with a smoker (NL-INTX), negative affect (NL-INTX, main), being bored (NL-INTX),
alcohol consumption (main), motivation to quit (main), HSI (NL-INTX). Selected random effects in ascending or-
der: Urge (main), cigarette availability (main), being bored (main), motivation to quit (main), SmartT (L-INTX),
interacting with a smoker (L-INTX), being bored (L-INTX). Dotted lines represent the inclusion threshold of 0.50.
NL-INTX: Nonlinear interaction, L-INTX: Linear interaction.
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FIG. 2. Smoking Cessation Study: Time-varying effects on momentary smoking by the next assessment of those
covariates selected by our model with SDP priors. Shaded regions represent pointwise 95% CI. Dashed lines
indicate an odds ratio of one.

Figure 2 presents the time-varying effects selected using the same model. Compared to usual
care, we found a higher odds of momentary smoking by the next assessment for those as-
signed to the NCI QuitGuide group prior to the quit attempt. However, immediately after
the quit attempt we observed a lower odds of momentary smoking by the next assessment
for those assigned to the NCI QuitGuide group which gradually increased to the initial level
over the remainder of the study (top left panel). Similarly, we observed a positive relation be-
tween having the urge to smoke and momentary smoking by the next assessment prior to the
quit attempt that diminished during the three weeks following the quit attempt before sharply
increasing during the fourth week post-quit (top right panel). Throughout the assessment pe-
riod we observed a positive relation between negative affect and momentary smoking by the
next assessment that increased during the first week post-quit, leveling off at an odds ratio
of 1.75 until the third week after the quit attempt. We additionally found a positive relation
between cigarette availability and the odds of momentary smoking by the next assessment
that strengthened over the assessment window. For a 1 SD increase in cigarette availability,
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the odds of momentary smoking by the next assessment increased by 300% for the typical
subject one week after the quit attempt, holding all else constant. In the two lower panels of
Figure 2, we observe a relatively weak, oscillating effect of being bored and interacting with
a smoker on momentary smoking by the next assessment, respectively. In addition to these
effects, the model identified a constant effect for alcohol consumption in the last hour and
motivation to quit smoking over the assessment period. A similar set of fixed effect relations
were identified by our model without the SDP prior, with the exception of not selecting being
bored.

Compared to standard TVEMs, our approach deconstructs the structure of the relations be-
tween risk factors and smoking behaviors over time, aiding the interpretation of the underly-
ing trends. This information may help the development and evaluation of tailored intervention
strategies targeting smoking cessation using mHealth data. For example, negative effect has
an obvious positive association with momentary smoking by the next assessment that wavers
around an odds ratio of 1.2 to 1.5 for a majority of the study. However, based on Figure 2,
it is unclear whether or not the effect linearly diminishes over time. By performing selection
on the main effect, linear interaction, and nonlinear interaction terms separately, we are able
to obtain an actual point estimate for the constant effect of negative affect (OR 1.40), as op-
posed to subjectively assuming a range of values from the plot. Additionally, since the linear
interaction term was not selected, we can claim that the effect was not linearly decreasing
over time and that it was simply wavering around the constant effect throughout the study.

Tables 1 and 2 present the estimated variances and corresponding 95% credible intervals
(CI) for the random effects selected using SDP priors and traditional spike-and-slab priors,
respectively. Using SDP priors, our method identified a random main effect for urge to smoke,
cigarette availability, being bored and motivation to quit smoking as well as a random linear
interaction between being assigned to the SmartT treatment group, interacting with smokers
and being bored with time. Thus, even though we did not discover an overall difference in
the odds of momentary smoking by the next assessment for those assigned to the SmartT
treatment vs. usual care, we observed evidence that the subjects responded differently to the
SmartT treatment across the assessment window. With the traditional spike-and-slab priors,
we found similar results overall. However, the model only selected a random main effect for
interacting with smokers and, additionally, suggested a random effect for anxiousness.

By using SDP priors, our approach is capable of clustering covariates that share similar
linear trends with momentary smoking by the next assessment over time. In practice, this
information can be used to help construct decision rules when designing future intervention
strategies. In our analysis, only five main effect and linear interaction terms were selected,

TABLE 1
Smoking cessation study: Estimated variances with corresponding
95% credible intervals (CI) for selected random effects with SDP

priors based on MPPI ≥ 0.50

Random effect σ̂ 2 95% CI

Intercept 0.923 (0.539,1.528)

Urge 0.152 (0.031,0.278)

Cigarette Availability 0.865 (0.394,1.467)

Bored 0.183 (0.076,0.398)

Motivation to Quit Smoking 0.156 (0.045,0.311)

SmartT × Time 0.077 (0.010,0.210)

Interacting with a Smoker × Time 0.016 (0.002,0.050)

Bored × Time 0.002 (0.000,0.005)
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TABLE 2
Smoking cessation study: Estimated variances with corresponding

95% credible intervals (CI) for selected random effects with
traditional spike-and-slab priors based on MPPI ≥ 0.50

Random effect σ̂ 2 95% CI

Intercept 1.317 (0.676,2.487)

Urge 0.099 (0.011,0.248)

Cigarette Availability 0.905 (0.503,1.607)

Interacting with a Smoker 0.848 (0.286,1.924)

Bored 0.244 (0.065,0.517)

Anxiousness 0.140 (0.001,0.361)

Motivation to Quit Smoking 0.212 (0.076,0.448)

SmartT × Time 0.062 (0.016,0.155)

Bored × Time 0.002 (0.000,0.004)

and each of them were allocated to their own cluster. With this knowledge, researchers can
prioritize targeting risk factors based on their relative strength of association at a given mo-
ment. Had some of these risk factors’ effects been clustered together, researchers may rely
more heavily on other pieces of information, such as the cost or success rates for a particular
intervention strategy, when assessing which risk factors to target during a high-risk moment.

Similar to previous studies investigating the temporal relation between risk factors and
smoking behaviors around a quit attempt, our results show a convex relation between urge to
smoke and momentary smoking after the quit attempt, a positive association with cigarette
availability throughout the quit attempt and a positive, increasing relation between negative
affect and momentary smoking during the first week after the quit attempt (Koslovsky et al.
(2018), Vasilenko et al. (2014)). Existing TVEMs approaches, however, typically model the
repeated measures structure of the data by simply including a random intercept term in the
model, neglecting to investigate random main effects or interaction terms. They also do not
incorporate variable selection. Our approach, on the other hand, delivers insights on how
relations vary over time as well as how they vary across individuals.

3.3. Sensitivity analysis. To investigate our model’s sensitivity to prior specification, we
set each of the hyperparameters to default values and then evaluated the effect of manipulating
each term on the results obtained in Section 3. For the default parameterization we set the
hyperparameters for the prior inclusion indicators ν and λ to aνt = bνt = aλd

= bλd
= 1. For

interpretation, aνt = bνt = 1 implies that the prior probability of inclusion for a fixed effect is
aνt /(aνt + bνt ) = 0.50. The default values for the variance of the normal distribution for the
slab of β0 and β◦ as well as the base distribution for β∗ were each fixed at 5. Additionally,
the mean and variance for the random effect terms’ proposal and prior distributions were
set to 0 and 5, respectively. The hyperparameters for the concentration parameters ϑ and A
were set to aϑ = bϑ = aA = bA = 1. Lastly, we assumed � ∼ N(γ 0 = 0,V γ = I ). We ran
our MCMC algorithm for 10,000 iterations, treating the first 5000 iterations as burn-in and
thinning to every 10th iteration for the SDP model, similar to our case study. For each of
the fixed and random effects, inclusion in the model was determined using the median model
approach (Barbieri and Berger (2004)).

Since the true model is never known in practice, we evaluated each model parameteriza-
tion in terms of sparsity levels and overlap with the results reported in the case study section.
Specifically, we present the total number terms selected for both fixed and random effects
(# Fixed and # Random). We also provide the proportion of active risk factors in our case
study that were also included by each model and the proportion of inactive risk factors that
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TABLE 3
Case study data: Sensitivity results for the proposed model with SDP across various prior specifications. Total
number of terms selected for both fixed and random effects are indicted as # Fixed and # Random, respectively.
The proportion of active (inactive) risk factors presented in the case study that were also included (excluded) by
each model is reported as f-IN and r-IN (f-EX and r-EX), for fixed and random effects, respectively. Finally, the
overall proportion of active (inactive) risk factors presented in the case study that were also included (excluded)

by each model is represented as IN (EX)

avt = aλd
= 1, bvt = bλd

= 9 τ2 = v0 = 2 aϑ = bϑ = aA = bA = 0.1

# Fixed 4 8 6
# Random 5 5 7
IN 0.60 0.70 0.80
f-IN 0.44 0.67 0.56
r-IN 0.50 0.50 0.83
EX 0.80 0.60 1.00
f-EX 1.00 1.00 1.00
r-EX 0.78 0.78 0.89

avt = aλd
= 9, bvt = bλd

= 1 τ2 = v0 = 10 aϑ = bϑ = aA = bA = 10

# Fixed 10 7 6
# Random 8 5 4
IN 1.00 0.60 0.80
f-IN 0.78 0.67 0.56
r-IN 0.83 0.50 0.33
EX 0.60 1.00 1.00
f-EX 0.83 0.80 1.00
r-EX 0.67 0.78 0.78

were also excluded by each model, for fixed (f-IN and f-EX) and random effects (r-IN and r-
EX) as well as overall (IN and EX). Results of the sensitivity analysis are reported in Table 3.
Compared to the results presented in the case study, we found relatively consistent overlap
in the risk factors included and excluded by each model overall. We observed moderate sen-
sitivity to hyperparameter values in terms of percent overlap for fixed and random effects of
risk factors included in the model, an artifact of the relatively weak associations identified for
some of the risk factors. Notably, risk factors showing stronger associations with momentary
smoking at the next assessment (e.g., negative affect, cigarette availability and motivation to
quit smoking) were selected by the model regardless of prior specification. Likewise, weaker
relations between momentary smoking at the next assessment and risk factors, such as being
bored and interacting with a smoker, were more sensitive to hyperparameters. We also ob-
served that the number of selected fixed and random effects increased (decreased) as the prior
probability of inclusion increased (decreased), as expected. In practice, there are a variety of
factors researchers should consider when setting the prior probability of inclusion, including
the aim of the research study, the desired sparsity of the model and prior knowledge of co-
variates inclusion as well as results from simulation and sensitivity analyses to name a few.
From a clinical perspective, τ 2 = 10 reflects a relatively diffuse prior for a given risk factor
(i.e., odds ratio between 0.002 and roughly 500). To further investigate the model’s sensitiv-
ity to regression coefficients’ variances, we set τ 2 = v0 = 1000, and found somewhat similar
results to the model with τ 2 = v0 = 10 overall (i.e., IN = 0.8, EX = 0.8). Here, we unex-
pectedly found nonmontonic behavior in the proportion of included and excluded terms as a
function of the coefficients’ variance, which might also reflect our model’s sensitivity to rel-
atively weak associations, as previously noted. In theory, the selection of random effects may



1892 KOSLOVSKY, HÉBERT, BUSINELLE AND VANNUCCI

be sensitive to the order in which the columns of Z are ordered, since the Cholesky decom-
position is, itself, order dependent (Müller, Scealy and Welsh (2013)). In our case study we
did not observe any differences regarding which random effects were selected with a random
permutation of the Z columns. In Section 5 we further demonstrate our model’s robustness
to the ordering of Z on simulated data.

4. Simulation study. In this section we evaluate our model in terms of variable selec-
tion and clustering performance on simulated data similar in structure to our case study data.
We compared our method with and without SDP priors on varying-coefficient and random
effects to two other Bayesian methods which are designed to handle this class of models.
The first is the method of Scheipl, Fahrmeir and Kneib (2012) which has previously shown
promising results performing function selection in structural additive regression models us-
ing continuous spike-and-slab priors. Their approach differs from ours in that they assume
parameter-expanded normal-mixture-of-inverse-gamma (peNMIG) distribution priors for se-
lection, inspired by Ishwaran and Rao (2005), and design a Metropolis–Hastings with penal-
ized iteratively weighted least-squares algorithm for updating regression coefficients within
the logistic framework. A popular alternative to spike-and-slab priors to induce sparsity in
high-dimensional regression settings is to assume global-local shrinkage priors on the re-
gression coefficients (see van Erp, Oberski and Mulder (2019), Bhadra et al. (2019) for de-
tailed reviews). At the request of a reviewer, we additionally compared our proposed model
to a reparameterized version with shrinkage priors (Carvalho, Polson and Scott (2009)). To
achieve this, we replaced the spike-and-slab priors on β with horseshoe priors which belong
to the class of global-local scale mixtures of normal priors (Polson and Scott (2010)). For
random effects, K , we assumed a similar global-local structure for the scale parameters of
the folded-normal distribution, v0. To our knowledge, the theoretical properties and selec-
tion performance of global-local scale mixtures of nonnormal priors have yet to be explored.
However, we conjectured that the global-local framework should effectively shrink inactive
random effects toward zero and allow active terms to be freely estimated. Details of the re-
sulting model and accompanying MCMC algorithm are found in the Supplementary Material
(Koslovsky et al. (2020)).

We simulated N = 100 subjects with 20–40 observations randomly spaced across an as-
sessment window with tij ∈ [0,1], without loss of generality. For each observation, we gen-
erated a set of 15 covariates, xi , comprised of an intercept term and 14 continuous covariates
simulated from a N14(0,�), where �st = w|s−t | and w = 0.3. To simulate time-varying
covariate trajectories, we randomly jittered half of the elements within xi by N(0,1). Ad-
ditionally, we set zij = xij . Thus, each full model contained 15 main effects, linear interac-
tions, nonlinear interactions and random main effects, corresponding to 60 potential terms (or
groups of terms for the nonlinear interaction components) to select. The first five functional
terms in the true model were defined as:

• f1(tij ) = π sin(3πtij ) + 1.4tij − 1.6
• f2(tij ) = π cos(2πtij ) + 1.6
• f3(tij ) = −πt sin(5πtij ) + 1.7tij − 1.5
• f4(tij ) = −1.5tij + 1.6
• f5(tij ) = −1.6,

and the random effects ai ∼ N(0,�α) with σkk = 0.75 and σjk = 0.4 for j, k = 1, . . . ,5.
Thus, in the true model, ψij = ∑5

p=1 fp(tij )xijp + z′
ijai . Note that to impose an inherent

clustering for the main effects and linear interaction terms, their values were specified to
center around ±1.5.

We ran each of the MCMC algorithms on 50 replicated data sets, using 7500 iterations,
treating the first 3750 iterations as burn-in and thinning to every 10th iteration for each model.
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The spline functions were generated similar to our application. We set the hyperparameters
for the inclusion indicators, aνt = bνt = aνt = bνt = 1, imposing a noninformative prior for
selection of fixed and random effect terms. Additionally, we fixed the regression coefficient
hyperparameters to τ 2 = 2 and m0 = 0 with v0 = 10. For the concentration parameters ϑ and
A, we assumed aϑ = bϑ = aA = bA = 1. Before analysis, the covariates were standardized
to mean 0 and variance 1.

For each of the models with spike-and-slab priors, inclusion in the model for both fixed
and random effects was determined using the median model approach (Barbieri and Berger
(2004)). For the horseshoe model, fixed effects were considered active if their corresponding
95% credible interval did not contain zero, similar to Bhadra et al. (2019). The 95% credible
interval for random effects will almost surely not contain zero. As a naive alternative we
assumed a random effect was active in the model if its posterior mean exceeded a given
threshold. For the sake of demonstration, we evaluated the performance of the model over
a grid of potential threshold values and presented the results for the best performing model
overall. Notably, this solution is only feasible when the true answer is known, which is never
the case in practice. Variable selection performance was evaluated via sensitivity (SENS),
specificity (SPEC) and Matthew’s correlation coefficient (MCC) for fixed and random effects
separately. These metrics are defined as

SENS = TP

FN + TP
,

SPEC = TN

FP + TN
,

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

,

where TN, TP, FN and FP represent the true negatives, true positives, false negatives and
false positives, respectively. For the SDP models, clusters of regression coefficients were
determined using sequentially-allocated latent structure optimization to minimize the lower
bound of the variation of information loss (Wade and Ghahramani (2018), Dahl and Muller
(2017)). Once clusters were determined, clustering performance was evaluated using the vari-
ation of information, a measure of distance between two clusterings ranging from 0 to logR,
where R is the number of items to cluster and lower values imply better clustering (Meilă
(2003)).

Figure 3 presents the estimated smooth functions obtained using our proposed method
with SDP priors on a randomly selected replicated data set from the simulation study. Here,
f1(tij ) represents the global intercept comprised of a main effect, linear interaction and non-
linear interaction term that were forced into the model. Of interest is the ability of the model
to properly select the influential components in f2(tij ) and f3(tij ) and, additionally, capture
their structure. Using the method proposed in Dahl and Muller (2017) to identify latent clus-
ters of fixed main effect and linear interaction terms, our method successfully clustered the
linear interaction in f1(tij ) and the main effects in f2(tij ) and f4(tij ) while incorrectly as-
signing the linear interaction term in f3(tij ) to its own cluster. Additionally, the main effects
in f1(tij ), f3(tij ) and f5(tij ) were appropriately clustered together, while the linear interac-
tion term in f4(tij ) was incorrectly assigning to its own cluster. The remaining, uninfluential
terms were all allocated to the trivial group. Despite f1(tij ) and f3(tij ) having similar main
effect and linear interaction terms, they are dramatically different in terms of their nonlinear
interaction terms. However, by clustering their underlying linear trajectories our model with
SDP priors was able to uncover similarities in their relations with the outcome over time that
traditional approaches would fail to discover.
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FIG. 3. Simulated Data: Estimated smooth function f1(tij ), f2(tij ), f3(tij ) for a randomly selected replicate
data set generated in the simulation study. The estimated smooth function is represented by a solid black line with
pointwise 95% credible regions in gray. Dashed lines represent the true log odds ratios as a function of time.

Table 4 reports results for our proposed method with SDP priors (PGBVSDP), our pro-
posed method without SDP priors (PGBVS), peNMIG and our model with horseshoe pri-
ors (PGHS) in terms of average sensitivity, specificity and MCC for fixed (fSENS, fSPEC,
fMCC) and random (rSENS, rSPEC, rMCC) effects across the replicate data sets with stan-
dard errors in parentheses. Additionally, for the PGBVSDP model we provide clustering
performance results for fixed (fCLUST) and random effects (rCLUST). Since each of the
random effects were simulated similarly, clusterings were compared to a single cluster for
the nonzero terms. Overall, the methods had relatively similar results for fixed effects, with
PGBVS and PGHS performing the best in terms of sensitivity (1.00 and 1.00) and MCC
(0.96 and 0.99), respectively. Our method with SDP priors, PGBVSDP, obtained the highest
specificity for fixed effects overall. Given that the maximum possible values fCLUST and
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TABLE 4
Simulated Data: Results for the proposed model with and without the SDP on regression coefficients compared to

peNMIG (Scheipl, Fahrmeir and Kneib (2012)) and our model with horseshoe priors (Carvalho, Polson and
Scott (2009)). Results are averaged over 50 replicate data sets with standard deviations in parentheses

PGBVSDP PGBVS peNMIG PGHS

fSENS 0.96 (0.09) 1.00 (0.02) 0.93 (0.11) 1.00 (0.00)
fSPEC 0.99 (0.02) 0.98 (0.02) 0.94 (0.04) 0.96 (0.01)
fMCC 0.94 (0.08) 0.96 (0.05) 0.83 (0.10) 0.99 (0.02)
fCLUST 0.39 (0.21) – – –
rSENS 0.76 (0.21) 0.62 (0.25) 0.46 (0.23) 0.86 (0.24)
rSPEC 0.88 (0.10) 0.96 (0.05) 0.64 (0.16) 0.90 (0.11)
rMCC 0.63 (0.26) 0.64 (0.23) 0.11 (0.33) 0.76 (0.21)
rCLUST 0.92 (0.50) – – –
Time (s) 4658 (271) 2235 (46) 10,720 (1116) 3076 (74)

rCLUST could take on were 3.4 and 2.7, respectively, we found fairly strong clustering per-
formance for both fixed (0.39) and random (0.92) effects with PGBVSDP. We observed more
variability in the selection of random effects across models. Random effect selection sensi-
tivity was significantly lower compared to the fixed effects for all of the models. In terms of
specificity (1-false positive rate) for random effects, our methods, regardless of prior formu-
lation, dramatically outperformed peNMIG, with PGBVS obtaining the highest specificity
overall (0.96). However, PGBVSDP and PGBVS had lower sensitivity with respect to ran-
dom effects, compared to PGHS. While PGHS performed well separating active from inactive
random effects, recall that the truth was used to select the optimal selection threshold. The
improved performance of PGBVS, PGBVSDP and PGHS in terms of variable selection was
achieved in considerably less computation time compared to peNMIG. Our core method was
able to run 7500 iterations in a fifth of the time compared to peNMIG, accessed via Scheipl
(2011). Using the SDP priors, which requires additional updates for clustering the regression
coefficients, we observed a two-fold increase in computation time for PGBVSDP compared
to PGBVS. However, on average, the PGBVSDP approach still achieved about a 50% reduc-
tion in computation time compared to peNMIG. It is important to note that, for comparison,
all algorithms were run in series, even though the R package spikeSlabGAM (Scheipl (2011))
provides functionality to run multiple chains in parallel.

5. Sensitivity analysis. To assess the model’s sensitivity to hyperparameter settings, we
set each of the hyperparameters to default values and then evaluated the effect of manipulating
each term on selection and clustering performance. For the default parameterization, we set
the hyperparameters for the prior inclusion indicators ν and λ to aνt = bνt = aλd

= bλd
= 1.

The default values for the variance of the normal distribution for the slab of β0 and β◦ as well
as the base distribution for β∗ were each fixed at 5. Additionally, the mean and variance for
the random effect terms’ proposal and prior distributions were set to 0 and 5, respectively. The
hyperparameters for the concentration parameters, ϑ and A aϑ = bϑ = aA = bA = 1. Lastly,
we assumed � ∼ N(γ 0 = 0,V γ = I ). We ran our MCMC algorithm on the 50 replicated data
sets generated in the simulation study, using 7500 iterations, treating the first 3750 iterations
as burn-in and thinning to every 10th iteration for the SDP model.

Results of the sensitivity analysis are reported in Table 5. As expected, we found that the
sensitivity (specificity) increased (decreased) as the prior probability of inclusion for the fixed
and random effects increased. The model did not seem sensitive to the variance assumed for
the normal and folded normal priors assigned to the fixed and random effect slab distributions,
respectively. Similarly, we found comparable results in terms of sensitivity and specificity for
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TABLE 5
Simulated data: Sensitivity results for the proposed model with SDP on regression coefficients. Results are

averaged over 50 replicated data sets with standard errors in parentheses

avt = aλd
= 1, bvt = bλd

= 9 τ2 = v0 = 2 aϑ = bϑ = aA = bA = 0.1

fSENS 0.92 (0.13) 0.97 (0.08) 0.94 (0.12)
fSPEC 0.99 (0.02) 0.99 (0.02) 0.99 (0.02)
fMCC 0.93 (0.10) 0.96 (0.07) 0.94 (0.09)
fCLUST 0.45 (0.30) 0.35 (0.20) 0.45 (0.25)
rSENS 0.50 (0.20) 0.79 (0.20) 0.54 (0.28)
rSPEC 0.87 (0.09) 0.88 (0.08) 0.85 (0.10)
rMCC 0.40 (0.26) 0.66 (0.23) 0.41 (0.29)
rCLUST 1.30 (0.36) 0.91 (0.44) 1.25 (0.50)

avt = aλd
= 9, bvt = bλd

= 1 τ2 = v0 = 10 aϑ = bϑ = aA = bA = 10

fSENS 0.99 (0.03) 0.96 (0.07) 0.94 (0.11)
fSPEC 0.96 (0.03) 0.99 (0.02) 0.99 (0.02)
fMCC 0.91 (0.06) 0.95 (0.07) 0.93 (0.11)
fCLUST 0.40 (0.20) 0.39 (0.23) 0.41 (0.24)
rSENS 0.85 (0.20) 0.78 (0.20) 0.74 (0.23)
rSPEC 0.84 (0.10) 0.89 (0.10) 0.86 (0.10)
rMCC 0.66 (0.19) 0.67 (0.25) 0.60 (0.27)
rCLUST 0.84 (0.49) 0.89 (0.47) 0.97 (0.49)

different values of the concentration parameters’ hyperparameters. In terms of clustering, we
saw marginally better variation of information measures with larger concentration parame-
ter hyperparameters. However, across simulations runs we observed relatively high standard
errors in terms of the variation of information measures. To assess potential sensitivity to
the order of random effects in our simulations, we reran the simulation study with a random
permutation of the columns of Z. Similar to the case study, we found no evidence of sensi-
tivity to random effect ordering with our model as the results were almost identical to those
presented in Table 4 with PGBVSDP (rSENS = 0.76 (0.20), rSPEC = 0.87 (0.09), rMCC =
0.62 (0.20), rCLUST = 0.94 (0.42)).

6. Conclusions. Using a semiparametric Bayesian time-varying effect modeling frame-
work, in this paper we have investigated intensive longitudinal data, collected in a novel,
smartphone-based smoking cessation study to better understand the relation between poten-
tial risk factors and smoking behaviors in the critical moments surrounding a quit attempt.
Unlike standard TVEMs, our approach deconstructs the structure of the relations between
risk factors and smoking behaviors over time which aids in formulating hypotheses regard-
ing dynamic relations between risk factors and smoking in the critical moments around a
quit attempt. By performing variable selection on random effects, the approach delivers ad-
ditional insights on how relations vary over time as well as how they vary across individuals.
Furthermore, the use of non- and semiparametric prior constructions allows simultaneous
variable selection for fixed and random effects while learning latent clusters of regression
coefficients. As such, our model is designed to discover various forms of latent structures
within the data without requiring strict model assumptions or burdensome tuning procedures.
Results from our analysis have confirmed previously identified temporal relations between
smoking behaviors and urge to smoke, cigarette availability and negative affect. They have
also identified subject-specific heterogeneity in the effects of urge to smoke, cigarette avail-
ability and motivation to quit. Additionally, we have found that subjects differed in how they
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responded to the SmartT treatment (compared to usual care), interacting with a smoker and
being bored over time. This has practical relevance as researchers can use this information
to design adaptive interventions that prioritize targeting risk factors based on their relative
strength of association at a given moment. They also reinforce the importance of designing
dynamic intervention strategies that are adaptive to subjects’ current risk profiles.

Throughout this work we have demonstrated how our method is well suited to aide the
development and evaluation of future JITAI strategies targeting smoking cessation using
mHealth data. The existing SmartT algorithm delivers treatment based on the presence of
six lapse triggers which are weighted based on their relative importance in predicting risk of
lapse (Businelle et al. (2016)). The results of this study allow for a more dynamic algorithm
that takes into account not only the time-varying relationships between psychosocial and
environmental variables and smoking lapse but also the different ways in which individuals
experience a quit attempt. For example, the results suggest that providing momentary support
to cope with urge to smoke and negative affect may be more useful if delivered in the early
stages of a quit attempt but become less important by week 4 post-quit. However, messages
that address cigarette availability, alcohol consumption and motivation to quit smoking may
be a more important focus for the entire quit attempt. Although the findings for this small
sample may not be generalizable to larger, more diverse populations, these methods are the
next step in developing a personalized smoking risk algorithm that can inform highly specific,
individualized treatment to each smoker.

It is important to note that selection of a risk factor by our proposed method (or any vari-
able selection technique), does not imply clinical significance. Notably, the pointwise cred-
ible intervals often contained odds ratios of one, and most risk factors were only influential
for brief moments throughout the study period. While these results highlight the importance
of understanding risk factors’ dynamic relations with smoking to design tailored interven-
tion strategies, we recommend using our method for hypothesis generation in practice and
conducting confirmatory studies before generalizing results.

Compliance rates for EMA studies typically range between 70% and 90%, with a recom-
mended threshold of 80% (Jones, Xu and Grunwald (2006)). In our case study the compli-
ance rate was 84%. Additionally, 97.3% of all assessments were completed once initiated,
and subjects were unable to skip questions within an assessment. Since subjects were as-
sessed multiple times per day, nonresponse was attributed more to situational context (e.g.,
driving) than smoking status. Thus, for this study we found the missing completely at random
assumption for missing observations justified. However, future studies may consider the de-
velopment of advanced analytical methods for EMA data sets that can handle different types
of missingness assumptions and other potential biases, such as social desirability bias.

In this analysis we focus on time-varying effects due to their recent popularity in smok-
ing behavior research—Tan et al. (2012), Vasilenko et al. (2014), Koslovsky et al. (2018),
Lanza et al. (2014), Shiyko et al. (2012, 2014). A promising alternative for investigating
the complexity of smoking behaviors around a quit attempt is the varying index coefficient
model which allows a covariate’s effect to vary as a function of multiple other variables
(Ma and Song (2015)). By incorporating variable selection priors, researchers could identify
which variables are responsible for modifying a covariate’s effect. Oftentimes, behavioral
researchers are interested in exploring other forms of latent structure, such as clusters of in-
dividuals who respond similarly to treatments or have similar risk profiles over time. Taking
advantage of the flexibility and efficiency of our approach, future work could extend our core
model to address these research questions by recasting it into a mixture modeling framework.
In addition, while we have developed our method for binary outcomes due to their preva-
lence in smoking behavior research studies, our approach is easily adaptable to other data
structures found within and outside of smoking behavior research, such as time to event data
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(Sha, Tadesse and Vannucci (2006)) and continuous outcomes. While our method borrows
information across regression coefficients, we avoided imposing structure among covariates
via heredity constraints which restrict the model space for higher order terms depending on
the inclusion status of the lower order terms that comprise them. Researchers interested in ex-
tending our approach to accommodate these and other forms of hierarchical constraints may
adjust the prior probabilities of inclusion (Chipman (1996)). Lastly, while we were hesitant to
present variable selection results for PGHS, due to the limited understanding of global-local
priors for non-Gaussian distributions, this showed good results in simulations. Furthermore,
when applied to the case study data, we obtained promising predictive performance (i.e.,
êpldHS = −2955.5) that warrant future investigation of its theoretical properties.
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SUPPLEMENTARY MATERIAL

Supplemental code (DOI: 10.1214/20-AOAS1402SUPPA; .zip). R-package PGBVS con-
tains code to perform the methods described in the article. The package also contains func-
tionality for reproducing the data used in the sensitivity and simulation studies and for poste-
rior inference. The R package is located at https://github.com/mkoslovsky/PGBVS.

Supplemental simulations and results (DOI: 10.1214/20-AOAS1402SUPPB; .pdf). This
file contains a description of the full joint distribution of our model with a graphical represen-
tation, a detailed description of our proposed MCMC algorithm with and without SDP priors,
and derivations for the prior marginal likelihood used to sample latent cluster assignments.
Additionally, we include details of the goodness-of-fit analysis for the case study.
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