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Data integration methods that analyze multiple sources of data simulta-
neously can often provide more holistic insights than can separate inquiries
of each data source. Motivated by the advantages of data integration in the era
of “big data,” we investigate feature selection for high-dimensional multiview
data with mixed data types (e.g., continuous, binary, count-valued). This het-
erogeneity of multiview data poses numerous challenges for existing feature
selection methods. However, after critically examining these issues through
empirical and theoretically-guided lenses, we develop a practical solution, the
Block Randomized Adaptive Iterative Lasso (B-RAIL) which combines the
strengths of the randomized Lasso, adaptive weighting schemes and stabil-
ity selection. B-RAIL serves as a versatile data integration method for sparse
regression and graph selection, and we demonstrate the effectiveness of B-
RAIL through extensive simulations and a case study to infer the ovarian can-
cer gene regulatory network. In this case study, B-RAIL successfully identi-
fies well-known biomarkers associated with ovarian cancer and hints at novel
candidates for future ovarian cancer research.

1. Introduction. As the amount of data grows in volume and variety, data integration, or
the analysis of multiple sources of data simultaneously, is becoming increasingly necessary
in numerous disciplines. For example, in genomics, scientists can gather data from many
related, yet distinct sources, including gene expression, miRNA expression, point mutations
and DNA methylation. Since all of these genomic sources interact within the same biological
system, it can be advantageous to analyze them together via data integration. Ultimately,
the abundance and diversity of information captured by integrated data offers an invaluable
opportunity to gain a better and more holistic understanding of the phenomena at hand.

In this work we aim to perform feature selection for a common family of integrated data
sets called high-dimensional multiview data. Multiview data refers to data collected on the
same set of samples but with features from multiple sources of potentially mixed types
(e.g., categorical, binary, count, proportion, continuous and skewed continuous values). More
formally, suppose we observe multiview data with K high-dimensional views (or sources),
X1 ∈ R

n×p1, . . . ,XK ∈ R
n×pK , which are measured on the same n samples but with features

of mixed types. We seek to recover a sparse set of features from each Xk associated with the
response y ∈ R

n by considering

minimize
α,β1,...βK

−1

n
�

(
y;α1n +

K∑
k=1

Xkβk

)
subject to

K∑
k=1

‖βk‖0 ≤ ν.(1.1)

Here, βk ∈ R
pk are the coefficients associated with view k, ν > 0 is a tuning parameter, which

regulates the sparsity level, and �() is the generalized linear model (GLM) log-likelihood
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associated with y. Note, we not only consider continuous (Gaussian) responses but also the
broader class of GLMs including the Poisson (log-linear) and Bernoulli (logistic) families.

While there are many applications for multiview feature selection in genomics, imaging,
national security, economics and other fields, major difficulties, stemming from the hetero-
geneity of features and how to appropriately integrate such differences, have prevented the
successful use of multiview feature selection in practice. To our knowledge, no one has
proposed an effective practical solution to perform feature selection with multiview data.
A plethora of works have studied feature selection in the high-dimensional setting via the
Lasso or GLM Lasso (Tibshirani (1996, 2013), Yuan and Lin (2007), Zhao and Yu (2006)),
and others have studied various data integration problems (Hall and Llinas (1997), Shen,
Olshen and Ladanyi (2009), Acar, Kolda and Dunlavy (2011)). However, there is limited
research at the intersection of the two fields.

The one area that touches on multiview feature selection is in the context of mixed graph-
ical models which estimate sparse graphs between features in multiview data (Cheng et al.
(2017), Lee and Hastie (2013), Yang et al. (2014a, 2014b), Haslbeck and Waldorp (2015)).
Using the nodewise neighborhood estimation approach of Meinshausen and Bühlmann
(2006), mixed graphical models estimate the neighborhood of each node (i.e., feature) sep-
arately via a penalized regression model (typically based on the Lasso or GLM Lasso) and
combine neighborhoods using an “AND” or “OR” rule. Though mixed graphical models per-
form well in idealized settings for which theoretical guarantees have been proven, we will
demonstrate in Section 2 that there are severe limitations with these approaches in realistic
settings with correlated, heterogeneous features commonly found in multiview data.

To facilitate more effective integrative analyses in practice, we investigate the under-
studied problem of high-dimensional multiview feature selection, and we propose a practical
solution. Our work is the first to identify and to critically examine the fundamental challenges
of multiview feature selection, and we leverage this deep understanding of the challenges to
develop a new high-dimensional multiview selection method, the Block Randomized Adap-
tive Iterative Lasso (B-RAIL). B-RAIL is a practical tool for multiview feature selection with
its roots grounded in theory, and it builds upon adaptive �1 penalties, the randomized Lasso
and stability selection (Meinshausen and Bühlmann (2010)) to overcome the issues incurred
by existing methods. Our method can be used for both regression and mixed graphical selec-
tion, thus lending itself to a host of important applications.

In Section 2 we investigate the major challenges of multiview feature selection and high-
light the literature gaps relating to these issues. We also show that the culmination of these
challenges lead to poor feature recovery in existing Lasso-type methods and mixed graphi-
cal models. In Section 3 we introduce our proposed method, B-RAIL, which takes steps to
address the challenges from Section 2. In Section 4 we showcase the strong empirical perfor-
mance of B-RAIL through simulations and contrast it to existing methods. In Section 5 we
further demonstrate the effectiveness of B-RAIL in a novel integrative genomics case study
for ovarian cancer, and we provide concluding remarks in Section 6.

2. Challenges. Before introducing our proposed method, it is instructive to understand
the challenges posed by feature selection in the multiview setting. These challenges have
been overlooked in previous methods and thus contribute to many of their shortcomings. In
this section we focus on the challenges faced by linear models with Lasso-type penalties due
to their overwhelming popularity and desirable statistical properties (Meinshausen and Yu
(2009), Tibshirani (1996, 2013), Yuan and Lin (2007), Zhang and Huang (2008), Zhao and
Yu (2006)). Given data X ∈ R

n×p and response y ∈R
n, recall that the (GLM) Lasso solves

α̂, β̂ = arg min
α∈R,β∈Rp

− 1

n
�(y;α1n + Xβ) + λ‖β‖1,(2.1)
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where λ > 0 is a regularization parameter and �() is the GLM log-likelihood associated with
the response. For clarity, we use the term “Lasso” to refer to the �1-penalized model with
continuous (Gaussian) responses, “GLM Lasso” to mean the �1-penalized model with non-
Gaussian GLM responses (e.g., binary, Poisson) and “Lasso-type” methods to mean either the
Lasso or GLM Lasso with some form of �1 penalty (e.g., a global penalty, separate penalties,
adaptive penalties).

Our focus here is not on deriving new theoretical guarantees for the Lasso in multiview set-
tings. Rather, we highlight deep practical concerns which are rooted in theory and commonly
arise in feature selection for data integration. By identifying these practical challenges, we
open up numerous avenues for future theoretical research and set the stage for the construc-
tion of a new method which overcomes the identified issues.

2.1. Motivating example. To first illustrate the current challenges and motivate the need
for a solution, we present in Figure 1 the estimated graphs from common Lasso-type meth-
ods and our proposed method when applied to real ovarian cancer genomics data. Here, there
are n = 293 samples and p = 836 features from three views: count-valued RNASeq data
(pRNASeq = 408), continuous miRNA data (pmiRNA = 307) and proportion-valued methyla-
tion data (pMethyl = 301) (refer to Section 5 for data collection and preprocessing details).
As in several previous graphical models and mixed graphical models (Meinshausen and

FIG. 1. We compare three different graph selection methods when applied to real ovarian cancer genomics
data. The data is comprised of three blocks: RNASeq, miRNA and methylation, with n = 293 and p = 836. For all
three methods we use stability selection with the threshold 0.98 to select stable edges, and, hence, we can directly
compare the number of selected edges across the various methods. The Lasso with a single global penalty and the
Lasso with separate penalties select few edges within blocks and almost no edges between blocks, indicating that
these methods are highly unstable to small perturbations of the data.
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Bühlmann (2006), Ravikumar, Wainwright and Lafferty (2010), Jalali et al. (2011)), we esti-
mated the graphs using nodewise neighborhood selection. We then combined neighborhoods
using the “AND” rule and applied stability selection (Meinshausen and Bühlmann (2010),
Liu, Roeder and Wasserman (2010)) with the threshold 0.98 to select stable edges.

Figure 1 specifically compares three types of estimation schemas at each node: (a) GLM
Lasso with one global penalty, (b) GLM Lasso with separate penalties for each view and
(c) our proposed B-RAIL algorithm (introduced in Section 3). The first two methods have
been proposed in several mixed graphical models (Chen, Witten and Shojaie (2015), Yang
et al. (2014a), Haslbeck and Waldorp (2015)) and satisfy strong theoretical guarantees in
idealized settings. However, in the real data example the Lasso-type methods are unstable
(illustrated by the fewer edges), favor feature selection within one view and select only a few
edges between views. This overall instability indicates that the Lasso-type methods are not
robust to small perturbations of the data and raises serious concerns about the reproducibility
and reliability of the results (Yu (2013)). Our proposed B-RAIL algorithm, in contrast, avoids
these issues and exhibits greater stability as well as balance, selecting a larger number of
within and between block edges under the same thresholding value. We will later see through
extensive simulations in Section 4 that the issues with existing Lasso-type methods observed
here are recurring problems in very general multiview scenarios.

To begin understanding why existing Lasso-type methods struggle in practice, we identify
and study four major challenges of feature selection for high-dimensional multiview data: (1)
scaling, (2) ultra-high-dimensionality, (3) signal interference and (4) domain-specific beta-
min. These issues stem from a combination of domain differences, signal differences and the
high dimensionality of each view. Together, these challenges can have a significant adverse
effect on feature recovery for data integration. We next examine each of these challenges in
greater detail.

2.2. Scaling. The first and most obvious challenge with integrative analyses revolves
around scaling. That is, each view in a multiview data set is often measured on a different
scale, and it is unclear how to most effectively integrate such differences. Many believe that
normalizing all features to mean 0 and variance 1 remedies the scaling differences, but this
is not always the case. Even after centering and scaling, data views remain distinct if they
differ in ways beyond the first and second moments. This issue is especially problematic
with binary and count-valued data blocks, two common types in multiview data, since they
are defined by much higher moments. We thus highly discourage using the ordinary (GLM)
Lasso with a single penalty (2.1) on normalized multiview data.

Now, while one can use different regularization parameters for each view to help alleviate
the scaling differences, this generates another set of issues that are complicated by the fol-
lowing challenges. We will revisit the scaling issue in light of these complications later in
this section.

2.3. Ultrahigh dimensionality. In addition to the scaling issue, performing exact feature
selection with the Lasso is already difficult in the ordinary high-dimensional setting. For exact
feature selection, the number of samples n must be above a theoretical minimum known as
the sample complexity. In the highly idealized scenario of an i.i.d. standard Gaussian design
and a Gaussian response, Wainwright (2009) showed that the sample complexity scales at ap-
proximately 2s log(p − s), where p is the number of features and s is the number of nonzero
features. This idealized lower bound can be difficult to attain in many applications including
genomics, where typical values of p = 1000 and s = 30 demand n ≈ 400 patients—a large
and highly expensive study. We informally refer to the regime where p � n ≥ 2s log(p − s)

as “high dimensional” and n < 2s log(p − s) as “ultrahigh dimensional.” Roughly, the Lasso
can never perform exact feature selection in the ultrahigh-dimensional regime.
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For non-Gaussian responses and more realistic designs, such as correlated, heterogeneous
views in multiview data, the sample complexity is significantly higher than the idealized
Gaussian bound (Chen, Witten and Shojaie (2015), Ravikumar, Wainwright and Lafferty
(2010)). As an example, the Poisson GLM’s sample complexity scales at approximately
s2 log(p(logp)2) (Yang et al. (2015)), so if p = 1000 and s = 30, we require n ≈ 10,000
samples. This problem is further exacerbated in multiview settings since combining multiple
high-dimensional views for data integration almost always results in an ultrahigh-dimensional
problem.

2.4. Signal interference. The third challenge we identify stems from a problem with the
Lasso known as shrinkage noise. Su, Bogdan and Candès (2017) showed that with high prob-
ability, no matter how strong the effect sizes, false discoveries appear early on the Lasso path
due to pseudo noise introduced by shrinkage in the high- and ultrahigh-dimensional regimes.
When the Lasso selects its first few features using large regularization parameters, the resid-
uals still contain much of the signal associated with the selected features, and it is this extra
noise which Su, Bogdan and Candès (2017) calls shrinkage noise.

In the multiview context, shrinkage noise becomes a very complex and serious issue due to
the different signals across blocks. Since the Lasso naturally selects features from the block
with the highest signal first, the resulting shrinkage noise will mask the weaker signals from
other blocks and compromise our ability to select from these weaker blocks. We refer to this
adverse consequence of shrinkage noise as signal interference.

The problem of shrinkage noise has not been widely studied beyond the i.i.d. Gaussian de-
sign in Su, Bogdan and Candès (2017), but we provide strong empirical evidence in Figure 2
that confirms the existence of shrinkage noise and signal interference in non-Gaussian multi-
view settings. In the case of an i.i.d. Gaussian and an i.i.d. binary block, shown in Figure 2, the
Lasso achieves perfect recovery in the Gaussian block when the signal-to-noise ratio (SNR)
in the binary block is 0, but, as the SNR of the binary block increases, it interferes with our
ability to recover the Gaussian features in the small sample scenario of n = 200. This signal
interference is especially disastrous in the GLM Lasso with binary responses, where support
recovery in the Gaussian block tends to 0. However, when we increase the sample size to
n = 300, there is no decline in the recovery of the Gaussian block in Figure 2(a). This agrees
with the known result from Su, Bogdan and Candès (2017) that shrinkage noise occurs when

FIG. 2. We illustrate signal interference for both Gaussian and binary responses given i.i.d. Gaussian X1 and
i.i.d. binary X2 predictors. We simulate n = 200, p1 = p2 = 1000 and 10 true features in each block. We fix the
SNR for the Gaussian block at 2 and let the SNR of the binary block vary between 0 and 7. The dotted vertical line
highlights the point at which SNR1 = SNR2 = 2. As the SNR of the binary block increases, it interferes with the
ability to recover the true Gaussian features. This signal interference is even more severe for binary responses.
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FIG. 3. We simulate Gaussian responses given four types of predictors (Gaussian, binary, uniform, Poisson) and
compare our ability to recover the true features under the four designs. There are n = 200 samples, p features
and 10 true features. The dashed vertical lines indicate the minimum SNR required to achieve 99% recovery for
p = 500 (darker line) and p = 5000 (lighter line). In the case of non-Gaussian predictors, dotted vertical lines
are overlayed to compare the minimum SNR requirements to those of Gaussian predictors. These results show that
different data types can tolerate different minimum SNRs.

the Lasso’s theoretical conditions are violated and, in particular, when n is not sufficiently
large.

2.5. Domain-specific beta-min condition. Finally, analogous to how signal differences
can exacerbate the Lasso’s shrinkage noise issue, domain differences in multiview problems
can complicate the Lasso’s beta-min condition, which establishes a lower bound for the mini-
mum amount of signal (i.e., SNR) required for feature recovery (Meinshausen and Bühlmann
(2006), Zhao and Yu (2006), Bühlmann (2013)).

In Figure 3 we report our ability to recover the true features for a simple simulation with
i.i.d. features from four data types (Gaussian, binary, uniform and Poisson). In each sub-
plot the dashed lines indicate the minimum SNR needed to recover 99% of all true features
when p = 500 (darker line) and p = 5000 (lighter line). We observe that the minimum SNR
requirement varies based upon the domain of the features and that the Gaussian predictors
can tolerate the lowest SNR. These empirical results reveal that if two blocks have the same
amount of signal but are from different domains, we can only recover the features that pass
the minimum signal threshold dictated by the domains. Put concretely, if we were to per-
form feature selection on our simulated multiview data with p = 500 and SNR = 0.66, we
would be able to recover 99% of the true features in the Gaussian block but only about 3/4 of
the true features in the binary block. This observed phenomenon agrees with previous work
which has shown that an increase in the sparsity in X effectively reduces the SNR in the
high-dimensional setting (Wang, Wainwright and Ramchandran (2010)). Beyond this, how-
ever, the beta-min condition has been relatively unexplored for the GLM Lasso and domain
differences and remains a ripe area for future theoretical work.

2.6. Additional challenges. It is important to note that the four challenges above do not
act independently from one another. In fact, the main source of difficulty with multiview
feature selection is arguably the interactions between challenges. For instance, consider the
problem of selecting features from high-dimensional discrete blocks with weak signals. The
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ultrahigh-dimensionality issue can exacerbate the already existing problem of signal interfer-
ence which can then worsen scaling issues, increase minimum SNR requirements and amplify
the overall difficulty of the problem.

In conjunction with these complex interactions, the need to select an appropriate amount
of regularization λ through model selection methods can also increase the difficulty of multi-
view feature selection. We will compare three common selection methods, namely, stability
selection (Meinshausen and Bühlmann (2010), Liu, Roeder and Wasserman (2010)), cross-
validation (Allen (1974), Stone (1974), Shao (1993)) and extended BIC (Chen and Chen
(2012)), and discuss their additional challenges in Section 4.

We lastly note that the majority of our discussion has been focused on the Lasso. Feature
selection is even more challenging for the GLM Lasso. Chen, Witten and Shojaie (2015)
investigated this for mixed graphical models and concluded that the predictors associated with
Gaussian responses are easier to recover than those with responses from other exponential
families. Specifically, Gaussian responses require fewer samples, allow for a wider range of
tuning parameters and, generally, have a higher probability of success.

2.7. Challenges with existing methods. Having identified a host of challenges, we re-
turn to address why common Lasso-type methods are not well suited for multiview feature
selection.

To begin with its most simple form, the Lasso with a single global penalty (2.1) uses the
same penalty for all views and does not alleviate the scaling issues or signal interference
issues in multiview data. The consequences of these problems are evident, especially in the
case of non-Gaussian blocks with weak signals, in Figure 1(a), where fewer edges are selected
within the proportion-valued methylation block.

By employing the Lasso with separate penalties for each data view, we can mitigate the is-
sue of scaling. Nevertheless, model selection becomes more challenging with multiple penal-
ties, and signal interference remains a driver of poor recovery. In fact, having a separate
penalty for each view exacerbates signal interference and encourages selection from the block
with the strongest signal and no selection from the blocks with weak signals. This signal in-
terference is exemplified in Figure 1 by the extreme selection imbalance among views, with
almost no selection in the miRNA block and heavy selection in the RNASeq block.

In the Adaptive Lasso (Zou (2006)), the amount of �1-regularization associated with βj is
typically λ/|β̂OLS

j |γ for some constants γ,λ > 0. This adaptive penalty mitigates the scaling

issue by adjusting for signal differences through β̂OLS
j , but it also encourages selection of

features with higher signals and penalizes features with weaker signals. The Adaptive Lasso
hence complicates signal interference by treating weaker signals as noise and results in little
to no selection in the blocks with weak signals.

While the previous methods all struggle with signal interference, one simple way to re-
duce the signal interference between blocks is to perform separate Lassos for each data view.
Since independently-estimated blocks cannot possibly interfere with one another, this method
addresses both scaling and signal interference issues. It also avoids the problem of ultrahigh-
dimensionality. However, each view by itself usually does not contain sufficient information
to explain much of the variability in the response, and we lose the advantages of data integra-
tion.

Beyond the Lasso-type methods, there are selection methods with nonconvex penalties
such as SCAD and MCP (Fan and Li (2001), Zhang (2010)). These nonconvex penalties tend
to scale better than the Lasso-type penalties but are still not variable selection consistent in the
ultrahigh-dimensional regime, especially for non-Gaussian responses and highly correlated
data. We investigate MCP/SCAD feature selection in Table 6 in the Supplementary Material
(Baker, Tang and Allen (2020)), but our primary focus in this paper is on the more commonly
used Lasso-type penalties.
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Algorithm 1 Outline of Block—Randomized Adaptive Iterative Lasso

Initialize t = 0 and β̂
(0)

k to have a fixed proportion of sparsity for k = 1, . . .K .

Do until Supp(β̂
(t)

) stops changing:

• Set t = t + 1.
• For k = 1, . . . ,K , estimate β̂

(t)

k blockwise, holding β̂
(t)

l (l < k) and β̂
(t−1)

l (l > k) fixed:

1. Estimate the support Ŝ
(t)
k of block k:

– Use stability selection with the randomized Lasso and adaptive penalties

2. Given Ŝ
(t)
k , estimate [β̂(t)

k ]
Ŝ

(t)
k

, the estimated nonzero coefficient values of block k

Output β̂1, . . . β̂K .

3. Block randomized adaptive iterative lasso. Driven by the many challenges and the
lack of effective tools, we propose a new method for multiview feature selection, the Block
Randomized Adaptive Iterative Lasso (B-RAIL). For the sake of notation, suppose we ob-
serve the response vector y and multiview data X = [X1, . . . ,XK ] with K views of potentially
mixed types, n samples and p total features. We will assume p � n and typically pk � n

for each view. Let S denote the indices of the support, and let [X]S denote the columns of
X indexed by S. We will introduce B-RAIL in the context of regression and later discuss its
extension to graph selection.

Under the regression framework the goal of B-RAIL can be viewed as two-fold: 1) to select
features from each view Xk that are associated with the response y, and 2) to do so while
avoiding the challenges discussed in Section 2. With this goal in mind, we briefly outline the
B-RAIL algorithm in Algorithm 1 and summarize the key steps taken to overcome the current
challenges.

At a high level, B-RAIL iterates across the data blocks k = 1, . . . ,K and estimates β̂k

for each data block Xk separately while holding all other blocks fixed. This iterative proce-
dure is motivated by the advantages of performing separate Lassos, namely, that it mitigates
the ultrahigh-dimensionality and signal interference issues. Then, within each of the indi-
vidual block estimations, B-RAIL first estimates the block’s support and, subsequently, the
coefficient values given the support. Here, B-RAIL leverages ideas from adaptive weighting
schemes, stability selection and the randomized Lasso in an attempt to reduce the scaling
discrepancies and domain-specific beta-min issues.

We next provide the full B-RAIL algorithm in Algorithm 2 and proceed to discuss each
step of the B-RAIL algorithm in greater detail.

3.1. Initialization. In our proposed B-RAIL algorithm the coefficients are first initialized
to a prespecified sparsity level (e.g., 0.2pk nonzero features per block) by fitting separate
Lasso path regressions for each block. As long as the algorithm is initialized to an overselec-
tion of the support of β , we have found in all of our empirical simulations that the B-RAIL
algorithm tends to perform well and is very robust to the exact choice of initialization.

After initializing β , we must specify the order of the blocks to iterate over. This ordering
can slightly alter the estimation results of B-RAIL, as accurate estimation of previous blocks
makes subsequent estimations of other blocks easier, but, in most cases, we have found that
the block ordering is not as important to B-RAIL’s performance as initializing the coefficients
to an overselection of the support. Nevertheless, for best practices, since previous Lasso re-
sults guarantee a high probability of support recovery when n is sufficiently large compared
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Algorithm 2 Block—Randomized Adaptive Iterative Lasso (B-RAIL)
Initialization:

• Set t = 0.
• Initialize β̂

(0) = [
β̂

(0)

1 ··· β̂
(0)

K

]
, where ‖β̂(0)

k ‖0 ≈ 0.2pk for k = 1, . . .K .
• Re-order blocks in the data X, if necessary.

Do:

• Set t = t + 1.
• For k = 1, . . . ,K , estimate β̂

(t)

k blockwise, holding β̂
(t)

l (l < k) and β̂
(t−1)

l (l > k)
fixed:
1. Update Ŝ

(t)
k , the estimated support for block k:

(a) Set adaptive regularization:

λ
(t)
k,j =

{
η

(t)
k if β̂

(t−1)
k,j �= 0,

2η
(t)
k otherwise,

(3.1)

where

(3.2) η
(t)
k = 	max(�̂

(t−1)
)

	max(X
T X)

1√
n

∥∥β̂(t−1)

k

∥∥
2

√
log(pk)

n

∥∥β̂(t−1)

k

∥∥
0

and �̂
(t−1) = XT W (β̂

(t−1)
)X is the estimated Fisher information matrix.

(b) Perform stability selection:
i. Take B bootstrap samples: {y∗b,X∗b}Bb=1.

ii. Solve the randomized Lasso: For each b = 1, . . . ,B ,

β̂
(t)

k (b) = arg min
α,β

−1

n
�
(
y∗b;α + X∗b

k β + �
(t)
k (b)

) +
pk∑

j=1

γjλ
(t)
k,j |βj |(3.3)

where γj
IID∼ U([0.5,1.5]) and �

(t)
k (b) = ∑

l<k X∗b
l β̂

(t)

l + ∑
l>k X∗b

l β̂
(t−1)

l .
iii. Select features at stability level τ :

Ŝ
(t)
k =

{
j : 1

B

B∑
b=1

1
(
β̂

(t)
k,j (b) �= 0

) ≥ τ

}
.(3.4)

2. Update [β̂(t)

k ]
Ŝ

(t)
k

, the estimated nonzero coefficients for block k:

[
β̂

(t)

k

]
Ŝ

(t)
k

= arg min
α,β

−1

n
�
(
y;α + [Xk]Ŝ(t)

k

β + �
(t)
k

) + ε‖β‖2
2,(3.5)

where �
(t)
k = ∑

l<k Xlβ̂
(t)

l + ∑
l>k Xlβ̂

(t−1)

l .

Until: Supp(β̂
(t)

) = Supp(β̂
(t−1)

), where Supp(·) denotes the signed support of a vector.
Output: β̂B-RAIL = [

β̂
(t)

1 ··· β̂
(t)

K

]
.

to p, we advise estimating the blocks with the smallest p first, especially if p ≤ n. If dimen-
sions of all the blocks are of similar sizes or much larger than n, we recommend starting with
Gaussian blocks which tend to have better support recovery than non-Gaussian blocks.
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3.2. Estimating support (Ŝ(t)
k ). After initialization, we repeatedly iterate across the K

data blocks and estimate the support of each block separately, holding the estimates of all
other blocks fixed. This blockwise estimation avoids the ultrahigh-dimensionality issue, and,
because shrinkage noise is mainly a problem in the ultrahigh-dimensional regime, the signal
interference issue is also mitigated as a direct biproduct.

Furthermore, to effectively handle correlated features in practice, we incorporate stability
selection with the randomized Lasso (Meinshausen and Bühlmann (2010)) to estimate each
block. As given by step 1(b) in Algorithm 2, we solve the Lasso B times using the bootstrap
and randomized penalty terms, and we threshold the stability score at τ (3.4) to select the most
stable features. Though τ ∈ (0,1) is a user-specified hyperparameter, the B-RAIL algorithm
is insensitive to choices of τ within reasonable ranges. This insensitivity to τ has also been
observed in previous work on stability selection (Meinshausen and Bühlmann (2010)). Ulti-
mately, by utilizing randomized penalties and stability selection when estimating the support
of each block, B-RAIL leverages the key property that the randomized Lasso is feature se-
lection consistent, even when the Lasso’s irrepresentable condition is violated (Meinshausen
and Bühlmann (2010)), and hence can effectively handle correlated features.

3.3. Adaptive regularization (λ). Now, looking more closely at the penalty term in (3.3)
of the randomized Lasso, the penalty term includes a random weight γ like the original ran-
domized Lasso. However, in order to account for the scaling discrepancies, signal variability
and domain differences between blocks, we introduce a block-specific adaptive penalty λ in
(3.3) as well. For feature j in block k, we define the adaptive weight

λ
(t)
k,j =

{
η if β̂

(t−1)
k,j �= 0,

2η otherwise,
(3.1)

where

η = 	max(�̂
(t−1)

)

	max(XT X)︸ ︷︷ ︸
(a) domain
correction

1√
n

∥∥β̂(t−1)

k

∥∥
2︸ ︷︷ ︸

(b) signal
correction

√
log(pk)

n

∥∥β̂(t−1)

k

∥∥
0︸ ︷︷ ︸

(c) Lasso
penalty

.(3.2)

Here, �̂
(t−1)

is the Fisher information matrix corresponding to the GLM of the response y,
and 	max denotes the maximum eigenvalue.

In this definition of λ, there are two moving parts. First, the multiplicative scheme in (3.1)
encourages previously selected features to remain selected while still allowing all features to
freely enter or exit the model. Second, η accounts for the heterogeneity of multiview data and
helps to mitigate the challenges of Section 2.

Though the exact form of η was derived experimentally, η can be interpreted as the product
of three factors, each of which is rooted in solid theoretical foundations. Namely, part (c)
of (3.2) is closely related to the theoretical bound on the regularization parameter needed
for selection consistency of the Lasso (Zhao and Yu (2006), Meinshausen and Bühlmann
(2006)). The ratio of eigenvalues in part (a) (i.e., the domain correction term) is motivated by
the theoretical conditions imposed on the Fisher information matrix for exponential family
distributions (Yang et al. (2015)), and part (b) of (3.2) (i.e., the signal correction term) can be
viewed as the average signal in block k since 1√

n
is derived from the theoretical sparsity level

within each block (Bunea, Tsybakov and Wegkamp (2007)).
By constructing the adaptive penalty η in this way, B-RAIL accounts for different block

sizes through the log(pk)
n

term and automatically penalizes non-Gaussian blocks less heavily

than Gaussian blocks since 	max(�̂) is larger for Gaussian blocks. This helps to balance the
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inherently different beta-min conditions. In addition, because ‖β̂k‖2 captures information
about both the signal and scale of the kth block, η addresses the scaling differences and
penalizes the stronger signal blocks more heavily to allow for the possibility of selection
from weaker blocks.

While, in theory, this specific combination of weights should correct for scaling and
domain-specific beta-min differences across views, we reinforce our choice of η through
strong empirical results in Section 4. We also note that even if the form of η is slightly
misspecified, stability selection is known to be fairly robust to the exact amount of regular-
ization as long as the amount of regularization is within reason (Meinshausen and Bühlmann
(2010)). Incorporating stability selection with the randomized Lasso thus serves as a built-in
check within B-RAIL which is advantageous in practice.

3.4. Coefficient estimations. After estimating the blockwise support using the random-
ized Lasso with adaptive weights, we seek to estimate the coefficients of the support as ac-
curately as possible since these values are used in future block estimations and iterations
of B-RAIL. We hence refit a penalized regression model with a small ridge penalty (e.g.,
ε ≈ 10−4) in (3.5) to avoid the known bias issues with the Lasso. The only reason to include
the tiny ridge penalty is to ensure that we can still estimate coefficients when the selected
support is greater than n. The exact choice of ε has a negligible impact in practice because it
is chosen to be so small.

3.5. Convergence. We finally declare convergence of B-RAIL’s iterative block estima-
tion procedure when the estimated support remains unchanged. Our empirical analysis in-
dicates that B-RAIL has quick support convergence, and we provide one example of this
fast convergence in Figure 6 in the Supplementary Material (Baker, Tang and Allen (2020)).
Using the ovarian cancer simulation (see Section 5) for three different responses (Gaussian,
binary and Poisson), we report that the average number of iterations until convergence is
between four and five with the maximum number of iterations reaching 15 (over 100 runs).
These ranges are similar for all designs, empirically demonstrating B-RAIL’s fast conver-
gence.

Though convergence of the full-blown B-RAIL algorithm is currently limited to empirical
analysis, B-RAIL can be viewed as a block coordinate descent algorithm which can be stud-
ied theoretically under some simplifications to gain additional insights into the full B-RAIL
algorithm. Namely, if we omit the adaptive regularization parameter and apply the ordinary
(GLM) Lasso in each block of the algorithm (as detailed in Algorithm 3 in the Supplemen-
tary Material (Baker, Tang and Allen (2020))), we call the resulting algorithm the blockwise
(GLM) Lasso and discuss its convergence below.

PROPOSITION 1. Consider the optimization problem

α̂, β̂ = arg min
α1,...,αK∈R,

β1,...,βK∈Rp

−1

n

K∑
k=1

�(y;αk1n + Xkβk) +
K∑

k=1

pk∑
j=1

λk,j |βk,j |,(3.6)

where α̂ = [α̂1, . . . , α̂K ], β̂ = [β̂1, . . . , β̂K ] and λk,j ≥ 0, and suppose that the objective
function in (3.6) is bounded below. Then, the blockwise (GLM) Lasso converges to a global
solution of (3.6).

To prove Proposition 1, we leverage the block coordinate descent view of the blockwise
Lasso and apply Theorem 4.1 from Tseng (2001) since the objective function is convex and
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separable with respect to each block βk . The detailed proof is provided in the Supplementary
Material (Baker, Tang and Allen (2020)).

The two main differences between the blockwise Lasso and B-RAIL are the adaptive reg-
ularization parameter η and the use of stability selection with the randomized Lasso in each
block’s update. If the estimated support from stability selection converges to a common sup-
port across the many block iterations in B-RAIL, then B-RAIL reduces to the blockwise
Lasso algorithm, for which we have shown convergence. While there is empirical evidence
to believe that stability selection applied iteratively with the adaptive regularization parame-
ter, as in B-RAIL, converges to a common support, proving this is theoretically challenging
due to the purely algorithmic and random nature of stability selection. In addition, existing
optimization-theoretic frameworks cannot handle adaptive parameters (η) that are dependent

on previous iterates (β̂
(t−1)

). Developing such a framework to handle both of these issues is
beyond the scope of this work, but we plan to further investigate it in the future. For now, due
to these serious difficulties, we rely on our empirical analysis to demonstrate B-RAIL’s quick
convergence.

3.6. B-RAIL summary. While we have introduced B-RAIL under the regression frame-
work, B-RAIL can be naturally extended to estimate mixed graphical models via a penalized
nodewise regression approach (Meinshausen and Bühlmann (2006)). As in the motivating ex-
ample in Section 2, we can use B-RAIL to estimate the neighborhood of each node separately
via penalized regressions and then combine the neighborhoods using an“AND” or “OR” rule
to obtain the graph.

In either the regression or graph selection setting, our B-RAIL algorithm deliberately takes
steps to exploit the practical advantages of existing Lasso-type methods while avoiding the
drawbacks described in Section 2. For instance, by performing iterative block-by-block esti-
mations, B-RAIL inherits the advantages of performing separate Lassos and avoids the issue
of ultrahigh-dimensionality. This, in turn, reduces signal interference between blocks since
shrinkage noise is only a concern when n is not sufficiently large relative to p. Further-
more, we mitigate the scaling and beta-min problems by engineering adaptive �1 penalties
in B-RAIL to correct for domain and signal differences between blocks. In this construc-
tion, slightly weaker non-Gaussian blocks are penalized less heavily and thus not completely
overshadowed by Gaussian blocks. Still, selecting an appropriate amount of �1 regularization
is challenging in practice, especially due to highly correlated data. B-RAIL thus incorpo-
rates randomized stability selection, which is known to be feature selection consistent under
stronger and more complex dependencies than can be handled by the Lasso. This boosts
the support estimation of correlated features, and together, with the previous components,
B-RAIL effectively overcomes the many practical challenges of multiview feature selection
and lends itself to a plethora of data integration applications.

4. Numerical studies. We next reinforce the theoretically-guided choices in our B-
RAIL construction and demonstrate its effectiveness through extensive simulations. In these
simulations we evaluate B-RAIL against four common Lasso-based parametric methods:
(i) Lasso with a global penalty for all blocks, (ii) Lasso with separate penalties for each
block, (iii) separate Lassos for each block and (iv) Adaptive Lasso. For the Adaptive Lasso
we use ridge weights, as they are better adapted to handle correlated features. Moreover, to
avoid biases from penalty selection methods, we use oracle information to select features in
the Lasso-based models. That is, if k is the number of true features in the simulation, we fit
the full path of the Lasso and select the first k features. In the case of the Lasso with separate
penalties, we select the k features with the largest number of true positives. We do not, how-
ever, use oracle information for B-RAIL. Instead, B-RAIL internally selects the number of
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features using stability selection with the threshold τ = 0.8, as outlined in Algorithm 2, and
we set ε = 0.001/p.

To systematically compare these methods, we simulate from various designs of X with
three blocks—namely, a Gaussian X1, Bernoulli X2 and Poisson X3 block—and various types
of GLM responses y. Due to the popular use of the Gaussian, Bernoulli and Poisson GLMs,
we run simulations with responses y from each of these families. For the Gaussian response
we fit the linear model y = Xβ +ε, where ε ∼ N(0,1). For the binary and Poisson responses,
we use copula transformations (Nelsen (1999)) to simulate y.

In addition to these response models for y, we consider four simulation designs for X to
understand model behavior under different assumptions. The four simulations designs are:
(i) i.i.d. features, (ii) independent features with nonconstant variance, (iii) correlated features
with covariance structure from a Block Directed Markov Random Field and (iv) a real data-
inspired simulation with features from The Cancer Genome Atlas (TCGA) ovarian cancer
study. We elaborate on each of these designs below.

Note, in all of the simulations we set the number of true features in each covariate block to
10, and the magnitudes of the true features are drawn from Unif(4,10) with random sign as-
signment. However, for the Gaussian block in the non-i.i.d. simulations below, we artificially
lowered the SNR since we know that recovering continuous features is easier than recovering
noncontinuous features (see Figure 3). Unless stated otherwise, we simulate n = 200 sam-
ples and p1 = p2 = p3 = 300 features. We also center and scale the design matrix X before
estimation.

I.i.d. design. For each of the three covariate blocks, we simulate n = 200 samples from
i.i.d. features. Here, p1 = p2 = p3 = 300 for the high-dimensional design and p1 = p2 =
p3 = 100 for the low-dimensional design.

Heteroscedasticity design. In this design we assume that the features are independent but
have nonconstant variance. For the Gaussian block the entries in each column are simulated
from the normal distribution N(0, σ 2), where σ ∼ �(3,0.6). In the Bernoulli block each col-
umn is simulated independently with entries drawn from Bern(p) with p ∼ Unif(0.2,0.8).
Similarly, in the Poisson block the mean λ of each column is drawn from the Gamma distri-
bution �(4,0.6) (using the shape/scale parameterization).

Block directed graph design. We next drop the independence assumption and use a Block
Directed Markov Random Field (BDMRF) (Yang et al. (2014a)) graph to simulate correlated
features. In this case, X is simulated via Gibbs sampling with the partial ordering of the
underlying mixed graph given by P [X1,X2,X3] = P [X1|X2,X3]P [X2|X3]P [X3], where
P [X1|X2,X3] is a pairwise Gaussian conditional random field (CRF), P [X2|X3] is a pair-
wise Ising CRF (Ravikumar, Wainwright and Lafferty (2010)) and P [X3] is a pairwise Pois-
son Markov Random Field (MRF) (Yang et al. (2013, 2012)). We set high correlations for
the Gaussian and Poisson blocks and low correlations for the binary block and between block
structure.

Ovarian cancer inspired simulation design. In an attempt to simulate data closest to real-
world scenarios, we take the continuous-valued miRNA data, proportion-valued methylation
data and the count-valued RNASeq data from The Cancer Genome Atlas (TCGA) ovarian
cancer database (The Cancer Genome Atlas Research Network (2011)) to be our covariates.
After merging and preprocessing the TCGA ovarian cancer data (refer to Section 5 for de-
tails), we arrive at n = 293 samples and pRNASeq = 408, pmiRNA = 307 and pMethyl = 301
features.
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Under each of these simulation scenarios, we evaluate the performance of B-RAIL and
the oracle Lasso-type methods by reporting the true positive rate (TPR) and false discovery
proportion (FDP) for overall feature recovery and individual block recoveries. Due to the
large number of features, we use FDP, defined as the number of false positives divided by
total the number of recovered nonzero features, instead of the false discovery rate.

We summarize the results of our simulations with Gaussian responses in Table 1 and those
with binary and Poisson responses in Table 2. Note that, for the binary and Poisson responses,
we show the block directed graph results here and provide the other simulation results in
the Supplementary Material (Baker, Tang and Allen (2020)). We also highlight in bold the
TPR/FDP combination with the highest TPR*(1-FDP) value for overall recovery. In almost
all scenarios the results in Table 1 and Table 2 indicate that B-RAIL (with no oracle informa-
tion) is able to achieve a higher TPR and lower FDP than its competitive Lasso-type methods
with oracle information.

When oracle information is unavailable, model selection techniques can introduce addi-
tional errors and further complicate feature selection. Table 3 shows one such case and com-
pares the block directed graph simulation performance of B-RAIL against the Lasso-type
methods using five-fold cross-validation, extended BIC and stability selection to select the
penalty parameters. We also include the oracle estimators for the same set of simulations
to emphasize the large decrease in performance when the Lasso-type methods do not have
oracle information. These simulations indicate that cross-validation tends to overselect the
number of features in the model while extended BIC underselects, and stability selection
performs the best but pales in comparison to oracle selection. In contrast, B-RAIL, when
initialized to an over-selection using the prespecified sparsity level of 0.2pk , outperforms the
Lasso-type methods even when oracle selection is used for these competitive methods. Addi-
tional simulations, confirming the strong empirical performance of B-RAIL, are provided in
the Supplementary Material (Baker, Tang and Allen (2020)).

5. Case study: Integrative genomics of ovarian cancer. One promising practical ap-
plication for our research on multiview feature selection lies in integrative cancer genomics.
Here, scientists seek to integrate data from multiple sources of high-throughput genomic data
to more holistically model the genomic systems in cancer cells, leading to a better under-
standing of disease mechanisms and possible therapies.

In this case study we seek to integrate three different types of genomic data to study how
epigenetics and short RNAs influence the gene regulatory system in ovarian cancer. Specifi-
cally, we are interested in discovering miRNAs and CpG sites which affect the gene expres-
sion of well-known oncogenes in ovarian cancer and hence can serve as potential drug targets
for blocking or decreasing the expression of these oncogenes. Driven by this goal of discov-
ering potential drug targets, we use our proposed B-RAIL method to estimate the integrative
ovarian cancer gene regulatory network with the specific intention of identifying miRNAs
and CpG sites that are directly linked to known oncogenes of ovarian cancer.

In this investigation we integrate the following three data sets: (1) count-valued gene
expression measured via RNASeq, (2) continuous (Gaussian) miRNA expression and (3)
proportion-valued DNA methylation data from The Cancer Genome Atlas (TCGA) ovar-
ian cancer study which is publicly available (The Cancer Genome Atlas Research Network
(2011)). The TCGA data originally contained 19,990 genes, 27,578 CpG sites and 799 miR-
NAs but only n = 293 common patients across all three data sets of interest. We hence re-
duced the number of features to manageable sizes by first filtering features according to their
association with several important clinical outcomes—survival via a univariate cox model,
chemo-resistance via a univariate logistic model and recurrence via a univariate logistic
model. In addition, we transformed the RNASeq data using the Kolmogorov–Smirnov test
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TABLE 1
We compare various selection methods under five different simulation scenarios. For each scenario we simulate X with three blocks (continuous, binary, counts) and a Gaussian

response y. We report the true positive rate (TPR) and false discovery proportion (FDP) for overall feature recovery and individual block recoveries, averaged across 200 runs with
standard errors in parentheses. We bold the best overall TPR ∗ (1 − FDP) values for each simulation scenario. Note that we used oracle information for the Lasso-type methods

Total Continuous Binary Counts

TPR FDP TPR FDP TPR FDP TPR FDP

i.i.d. Case, p = 300
B-RAIL 1.00 (1.1e−3) 0.00 (0.0e−0) 1.00 (1.7e−3) 0.00 (0.0e−0) 1.00 (1.4e−3) 0.00 (0.0e−0) 1.00 (1.4e−3) 0.00 (0.0 0)
Lasso-λ (oracle) 0.87 (1.2e−3) 0.12 (1.9e−3) 0.90 (1.4e−3) 0.12 (5.3e−3) 0.81 (2.9e−3) 0.20 (5.2e−4) 0.90 (0.0 0) 0.03 (4.5e−3)
Lasso-λk (oracle) 0.92 (1.6e−3) 0.08 (1.6e−3) 0.96 (4.8e−3) 0.00 (0.0e−0) 0.90 (0.0e−0) 0.15 (4.5e−3) 0.90 (0.0e−0) 0.08 (4.4e−3)
Separate Lasso (oracle) 0.75 (1.6e−3) 0.24 (4.9e−4) 0.80 (0.0e−0) 0.20 (0.0e−0) 0.70 (1.7e−3) 0.30 (5.7e−4) 0.77 (4.8e−3) 0.21 (1.4e−3)
Adaptive Lasso (oracle) 1.00 (0.0e−0) 0.00 (0.0e−0) 1.00 (0.0e−0) 0.00 (0.0e−0) 1.00 (0.0e−0) 0.00 (0.0e−0) 1.00 (0.0e−0) 0.00 (0.0e−0)

i.i.d. Case, p = 900
B-RAIL 0.94 (7.3e−3) 0.12 (1.4e−2) 0.98 (5.0e−3) 0.14 (1.7e−2) 0.95 (9.9e−3) 0.08 (1.1e−2) 0.90 (9.2e−3) 0.12 (1.5e−2)
Lasso-λ (oracle) 0.63 (3.3e−4) 0.37 (5.0e−4) 0.80 (0.0e−0) 0.20 (0.0e−0) 0.50 (1.0e−3) 0.50 (1.4e−3) 0.60 (0.0e−0) 0.40 (0.0e−0)
Lasso-λk (oracle) 0.74 (1.7e−3) 0.26 (1.7e−3) 0.98 (4.4e−3) 0.19 (3.3e−3) 0.63 (7.4e−3) 0.36 (6.5e−3) 0.62 (3.9e−3) 0.20 (7.4e−3)
Separate Lasso (oracle) 0.53 (9.6e−4) 0.46 (1.3e−3) 0.60 (0.0e−0) 0.38 (4.4e−3) 0.49 (2.9e−3) 0.51 (1.6e−3) 0.50 (0.0e−0) 0.50 (0.0e−0)
Adaptive Lasso (oracle) 0.66 (9.6e−4) 0.34 (6.9e−4) 0.79 (3.1e−3) 0.28 (1.3e−3) 0.50 (3.5e−3) 0.44 (1.7e−3) 0.70 (0.0e−0) 0.30 (9.0e−4)

Nonconstant Variance (Heteroscedasticity)
B-RAIL 0.97 (3.3e−4) 0.01 (1.3e−3) 0.90 (1.0e−3) 0.00 (0.0e−0) 1.00 (0.0e−0) 0.00 (0.0e−0) 1.00 (0.0e−0) 0.02 (3.7e−3)
Lasso-λ (oracle) 0.77 (2.2e−3) 0.21 (2.2e−3) 0.88 (3.9e−3) 0.19 (2.9e−3) 0.83 (4.7e−3) 0.06 (5.4e−3) 0.60 (0.0e−0) 0.37 (3.6e−3)
Lasso-λk (oracle) 0.83 (0.0e−0) 0.17 (0.0e−0) 0.90 (0.0e−0) 0.11 (2.8e−3) 1.00 (0.0e−0) 0.18 (2.4e−3) 0.60 (0.0e−0) 0.22 (4.9e−3)
Separate Lasso (oracle) 0.56 (1.4e−3) 0.43 (1.1e−3) 0.58 (4.3e−3) 0.41 (1.9e−3) 0.80 (0.0e−0) 0.19 (2.3e−3) 0.30 (0.0e−0) 0.70 (1.4e−3)
Adaptive Lasso (oracle) 0.86 (1.3e−3) 0.13 (1.2e−3) 0.90 (1.0e−3) 0.10 (1.8e−3) 1.00 (0.0e−0) 0.11 (3.4e−3) 0.69 (3.4e−3) 0.20 (5.6e−3)
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TABLE 1
(Continued)

Total Continuous Binary Counts

TPR FDP TPR FDP TPR FDP TPR FDP

Block Directed Graph Structure
B-RAIL 0.88 (4.8e−3) 0.16 (1.1e−2) 0.79 (4.8e−3) 0.12 (1.4e−2) 0.96 (6.8e−3) 0.12 (7.0e−3) 0.89 (5.2e−3) 0.22 (1.4e−2)
Lasso-λ (oracle) 0.72 (1.9e−3) 0.27 (1.9e−3) 0.88 (5.8e−3) 0.17 (3.2e−3) 1.00 (0.0e−0) 0.28 (3.5e−3) 0.30 (0.0e−0) 0.42 (4.2e−3)
Lasso-λk (oracle) 0.77 (0.0e−0) 0.23 (0.0e−0) 1.00 (0.0e−0) 0.20 (4.0e−3) 1.00 (0.0e−0) 0.24 (5.4e−3) 0.30 (0.0e−0) 0.26 (1.5e−2)
Separate Lasso (oracle) 0.51 (2.0e−3) 0.46 (1.9e−3) 0.79 (3.1e−3) 0.18 (4.6e−3) 0.55 (5.0e−3) 0.42 (2.8e−3) 0.20 (0.0e−0) 0.79 (1.3e−3)
Adaptive Lasso (oracle) 0.70 (0.0e−0) 0.30 (3.4e−4) 0.80 (0.0e−0) 0.20 (0.0e−0) 1.00 (0.0e−0) 0.29 (1.3e−3) 0.30 (0.0e−0) 0.49 (3.0e−3)

OV Data
B-RAIL 0.95 (2.9e−3) 0.11 (4.7e−3) 0.85 (8.7e−3) 0.23 (4.9e−3) 1.00 (0.0e−0) 0.09 (8.2e−3) 1.00 (1.0e−3) 0.03 (4.4e−3)
Lasso-λ (oracle) 0.57 (8.5e−4) 0.43 (1.2e−3) 0.80 (0.0e−0) 0.38 (0.0e−0) 0.41 (2.6e−3) 0.31 (6.2e−3) 0.50 (0.0e−0) 0.54 (1.5e−3)
Lasso-λk (oracle) 0.65 (1.6e−3) 0.35 (1.6e−3) 0.80 (1.0e−3) 0.37 (2.3e−3) 0.51 (3.6e−3) 0.00 (1.7e−3) 0.63 (4.6e−3) 0.48 (4.6e−3)
Separate Lasso (oracle) 0.40 (1.6e−3) 0.60 (1.3e−3) 0.58 (4.1e−3) 0.41 (1.9e−3) 0.30 (0.0e−0) 0.70 (0.0e−0) 0.30 (2.0e−3) 0.69 (2.3e−3)
Adaptive Lasso (oracle) 0.93 (1.2e−3) 0.09 (1.1e−3) 0.80 (0.0e−0) 0.12 (2.8e−3) 0.98 (3.6e−3) 0.00 (1.0e−3) 1.00 (0.0e−0) 0.09 (1.7e−3)
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TABLE 2
We compare various selection methods under the block directed graph simulation design with binary responses and with Poisson responses. We report the TPR and FDP for feature

recovery, averaged across 200 runs with standard errors in parentheses. We bold the best overall TPR ∗ (1 − FDP) values for each simulation scenario

Total Continuous Binary Counts

TPR FDP TPR FDP TPR FDP TPR FDP

Binary Response Block Directed Graph Structure
B-RAIL 0.81 (8.6e−3) 0.07 (5.2e−3) 0.80 (0.0e−0) 0.04 (5.4e−3) 0.97 (5.7e−3) 0.09 (6.2e−3) 0.68 (2.1e−2) 0.07 (1.2e−2)
Lasso-λ (oracle) 0.70 (0.0e−0) 0.29 (1.3e−3) 0.90 (0.0e−0) 0.23 (4.1e−3) 0.90 (0.0e−0) 0.37 (2.0e−3) 0.30 (0.0e−0) 0.18 (1.3e−2)
Lasso-λ (oracle) 0.70 (8.5e−4) 0.30 (8.5e−4) 0.89 (2.6e−3) 0.21 (4.3e−3) 0.90 (0.0e−0) 0.27 (3.6e−3) 0.30 (0.0e−0) 0.52 (7.4e−3)
Separate Lasso (oracle) 0.50 (1.3e−3) 0.46 (2.3e−3) 0.80 (0.0e−0) 0.20 (0.0e−0) 0.51 (3.9e−3) 0.41 (7.0e−3) 0.20 (0.0e−0) 0.79 (1.7e−3)
Adaptive Lasso (oracle) 0.70 (9.6e−4) 0.29 (1.4e−3) 0.81 (2.9e−3) 0.20 (1.3e−3) 1.00 (0.0e−0) 0.36 (2.5e−3) 0.30 (0.0e−0) 0.27 (5.7e−3)

Poisson Response Block Directed Graph Structure
B-RAIL 0.81 (8.6e−3) 0.07 (5.2e−3) 0.80 (0.0e−0) 0.04 (5.4e−3) 0.97 (5.7e−3) 0.09 (6.2e−3) 0.68 (2.1e−2) 0.07 (1.2e−2)
Lasso-λ (oracle) 0.70 (0.0e−0) 0.29 (1.3e−3) 0.90 (0.0e−0) 0.23 (4.1e−3) 0.90 (0.0e−0) 0.37 (2.0e−3) 0.30 (0.0e−0) 0.18 (1.3e−2)
Lasso-λ (oracle) 0.70 (8.5e−4) 0.30 (8.5e−4) 0.89 (2.6e−3) 0.21 (4.3e−3) 0.90 (0.0e−0) 0.27 (3.6e−3) 0.30 (0.0e−0) 0.52 (7.4e−3)
Separate Lasso (oracle) 0.50 (1.3e−3) 0.46 (2.3e−3) 0.80 (0.0e−0) 0.20 (0.0e−0) 0.51 (3.9e−3) 0.41 (7.0e−3) 0.20 (0.0e−0) 0.79 (1.7e−3)
Adaptive Lasso (oracle) 0.70 (9.6e−4) 0.29 (1.4e−3) 0.81 (2.9e−3) 0.20 (1.3e−3) 1.00 (0.0e−0) 0.36 (2.5e−3) 0.30 (0.0e−0) 0.27 (5.7e−3)
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TABLE 3
We compare feature recovery for B-RAIL and Lasso-type methods with various model selection methods. Here, we simulate from the block directed graph simulation design with
Gaussian responses and report the TPR and FDP, averaged across 200 runs with standard errors in parentheses. We highlight the best overall TPR ∗ (1 − FDP) values in bold.

Note, for stability selection, we initialize λ using the λ selected by CV

Total Continuous Binary Counts

TPR FDP TPR FDP TPR FDP TPR FDP

Block Directed Graph Structure
B-RAIL 0.86 (1.2e−2) 0.20 (2.8e−2) 0.78 (9.2e−3) 0.15 (3.6e−2) 0.93 (1.9e−2) 0.16 (1.8e−2) 0.88 (1.2e−2) 0.29 (4.3e−2)
Lasso-λ (oracle) 0.72 (3.5e−3) 0.27 (4.8e−3) 0.87 (1.1e−2) 0.20 (5.0e−3) 1.00 (0.0e−0) 0.40 (1.6e−2) 0.30 (0.0e−0) 0.21 (5.0e−3)
Lasso-λk (oracle) 0.77 (0.0e−0) 0.23 (0.0e−0) 1.00 (0.0e−0) 0.24 (1.4e−2) 1.00 (0.0e−0) 0.32 (2.7e−2) 0.30 (0.0e−0) 0.14 (2.2e−2)
Separate Lasso (oracle) 0.51 (5.0e−3) 0.44 (5.6e−3) 0.79 (8.2e−3) 0.18 (1.2e−2) 0.55 (1.1e−2) 0.41 (5.0e−3) 0.20 (0.0e−0) 0.73 (1.1e−2)
Adaptive Lasso (oracle) 0.70 (0.0e−0) 0.30 (2.3e−3) 0.80 (0.0e−0) 0.20 (0.0e−0) 1.00 (0.0e−0) 0.42 (9.2e−3) 0.30 (0.0e−0) 0.27 (1.1e−2)

Five-Fold Cross-Validation
Lasso-λ 0.98 (3.0e−3) 0.62 (4.1e−3) 1.00 (0.0e−0) 0.58 (6.3e−3) 1.00 (0.0e−0) 0.63 (4.0e−3) 0.95 (8.9e−3) 0.63 (3.9e−3)
Lasso-λk 0.60 (2.3e−3) 0.17 (2.2e−3) 0.80 (0.0e−0) 0.13 (3.6e−3) 0.69 (6.8e−3) 0.07 (6.3e−3) 0.30 (0.0e−0) 0.40 (1.0e−3)
Separate Lasso 0.37 (8.1e−3) 0.28 (1.5e−2) 0.58 (9.9e−3) 0.05 (9.9e−3) 0.54 (1.8e−2) 0.38 (2.0e−2) 0.00 (0.0e−0) 0.47 (5.0e−2)
Adaptive Lasso 0.73 (3.0e−3) 0.37 (7.8e−3) 0.87 (6.8e−3) 0.23 (6.4e−3) 1.00 (2.0e−3) 0.39 (8.1e−3) 0.31 (2.9e−3) 0.55 (9.5e−3)

Extended BIC
Lasso-λ 0.03 (0.0e−0) 0.00 (0.0e−0) 0.10 (0.0e−0) 0.00 (0.0e−0) 0.00 (0.0e−0) 0.00 (0.0e−0) 0.00 (0.0e−0) 0.00 (0.0e−0)
Lasso-λk 0.58 (2.0e−3) 0.18 (3.1e−3) 0.80 (0.0e−0) 0.15 (5.3e−3) 0.64 (5.9e−3) 0.04 (6.1e−3) 0.30 (0.0e−0) 0.42 (4.0e−3)
Separate Lasso 0.18 (1.7e−3) 0.07 (7.9e−3) 0.50 (1.0e−3) 0.00 (0.0e−0) 0.04 (4.9e−3) 0.00 (0.0e−0) 0.00 (0.0e−0) 0.47 (5.0e−2)
Adaptive Lasso 0.30 (0.0e−0) 0.00 (0.0e−0) 0.50 (0.0e−0) 0.00 (0.0e−0) 0.40 (0.0e−0) 0.00 (0.0e−0) 0.00 (0.0e−0) 0.00 (0.0e−0)

Stability Selection
Lasso -λ 0.67 (2.4e−3) 0.01 (1.8e−3) 0.80 (0.0e−0) 0.02 (4.2e−3) 0.92 (6.9e−3) 0.00 (9.1e−4) 0.29 (2.4e−3) 0.00 (0.0e−0)
Lasso-λk 0.58 (2.7e−3) 0.04 (2.3e−3) 0.80 (0.0e−0) 0.09 (4.7e−3) 0.66 (6.5e−3) 0.00 (0.0e−0) 0.28 (4.3e−3) 0.00 (2.5e−3)
Separate Lasso 0.42 (3.9e−3) 0.28 (6.6e−3) 0.69 (2.7e−3) 0.13 (7.2e−3) 0.55 (1.1e−2) 0.39 (8.8e−3) 0.00 (0.0e−0) 0.29 (4.6e−2)
Adaptive Lasso 0.65 (1.7e−3) 0.08 (2.6e−3) 0.80 (0.0e−0) 0.11 (0.0e−0) 0.84 (5.1e−3) 0.07 (6.0e−3) 0.30 (0.0e−0) 0.01 (4.3e−3)
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(α = 0.262) to alleviate the problem of very large counts (up to 20,000). This preprocessing
yielded p1 = 408 genes, p2 = 301 CpG sites and p3 = 307 miRNAs in the RNASeq, methy-
lation and miRNA data sets, respectively. Lastly, per the recommendation of scientists we
included 20 additional highly mutated genes that were experimentally identified as important
in ovarian cancer, resulting in p1 = 428 genes in the RNASeq data set.

To estimate the integrated ovarian cancer network, we fit a Block Directed Markov Ran-
dom Field (BDMRF) model (Yang et al. (2014a)) using B-RAIL to estimate the neighbor-
hood of each node in the graph. Note that since miRNAs and methylation are both gene
regulatory mechanisms, miRNAs and methylation can affect expression levels (measured
via RNASeq), but the converse is not possible. To agree with this known physical mecha-
nism, we set the partial ordering of the mixed graph underlying BDMRF as P [X1,X2,X3] =
P [X1|X2,X3]P [X2]P [X3], where P [X2] is a pairwise Ising MRF for the proportion-valued
methylation data, P [X3] is a pairwise Gaussian MRF for the continuous miRNA data and
P [X1|X2,X3] is a pairwise Poisson CRF for the count-valued RNASeq data. However, we
recall that only negative conditional dependencies are permitted in the Poisson MRF and
CRF models. Since this constraint is unrealistic for genomics data, we fit a sublinear Poisson
CRF, in lieu of the usual Poisson CRF, to allow for both positive and negative conditional
dependencies (Yang et al. (2013)). Under this specified BDMRF model, we employ node-
wise neighborhood selection (Meinshausen and Bühlmann (2006), Yang et al. (2015)) using
B-RAIL to learn the edge structure of the integrated network.

Our overall BRAIL-estimated network is presented in Figure 4, and in Figure 5 we more
closely examine the relationships between the oncogenes, miRNAs and CpG sites by zoom-
ing in on the subnetworks for the well-known oncogene, BRCA1, and its direct neighbor,
miRNA23b. Both BRCA1 and miRNA23b are well-known biomarkers and have been im-
plicated in several ovarian cancer studies (Antoniou et al. (2003), BRCA (1994), Geng et
al. (2012), King et al. (2003), Li et al. (2014), Yan et al. (2016)). Moreover, miRNA23b is

FIG. 4. We present the integrated ovarian cancer genetic network estimated by the B-RAIL algorithm. The
diamond nodes denote miRNAs, square nodes denote CpG sites, circle nodes denote gene expression via RNASeq
and the size of each node is proportional to the number of connected first neighbors.
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FIG. 5. We zoom in on the subnetworks for two known biomarkers which have been previously implicated in
ovarian cancer studies. Key mutated cancer biomarkers, such as miR23b and BRCA1, are found to have many
interconnections to biomarkers, which are circled, that are consistent with the cancer literature (Buchholtz et al.
(2014), Freier (2016), Gao et al. (2009), Giannakakis et al. (2008), Obermayr et al. (2010), Tong et al. (2017),
Toyama et al. (1999)).

known to play a key role in p53 signaling (via TP53) (Boren et al. (2009)), agreeing with the
estimated edge between the TP53 oncogene and miRNA23b in Figure 5(b).

Aside from this link, however, the estimated edges between genes, CpG sites and miR-
NAs in Figure 4 are largely unexplored and unknown by researchers since B-RAIL is one of
the first practical approaches for multiview feature selection. Nevertheless, we can partially
validate our B-RAIL-estimated network by highlighting the many genes with verified con-
nections in the ovarian cancer and cancer proliferation/suppression literatures. In Figure 5
we circle this collection of implicated genes which includes LDOC1, SGCB and miRNA210
(Buchholtz et al. (2014), Obermayr et al. (2010), Giannakakis et al. (2008)).

As we have noted, there is substantial evidence in the scientific literature, suggesting
that our proposed B-RAIL algorithm successfully identified promising candidates as well
as known biomarkers involved in ovarian cancer. By taking into account the relationships
between genes, miRNAs and CpG sites, our integrative analysis via B-RAIL leads to valu-
able insights beyond a single biomarker type and to novel discoveries of direct connections
between miRNAs, CpG sites and known oncogenes which may aid the development of tar-
geted drug therapies for ovarian cancer. This is the first integrative analysis of its kind, and
future experiments studying the connections between known ovarian cancer oncogenes and
candidate miRNAs and CpG sites would be of great value to validate our findings.
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6. Discussion. Though we have primarily focused on applications to integrative ge-
nomics in this work, B-RAIL is not limited to this context. B-RAIL can be applied to any
field that yields high-dimensional multiview data, and, with the rapid advances in technolo-
gies, we expect B-RAIL to have a growing and far-reaching impact in fields such as imaging
genetics, national security, climate studies, spatial statistics, Internet data, marketing and eco-
nomics. B-RAIL is also a versatile tool that can be used to for any sparse regression or graph
selection problem in this multiview context.

In addition to developing an effective data integration tool for multiview feature selection,
our work addresses the many difficulties of performing multiview feature selection in prac-
tice. These practical challenges were severely understudied prior to this work, but we partially
resolve this gap, identifying four root challenges which interact with one another to impede
recovery. Throughout our investigation of these practical challenges, we provide strong em-
pirical evidence of the existence as well as the adverse consequences of such challenges.
However, the theoretical underpinnings of these issues are still unknown. Understanding ex-
actly how challenges such as shrinkage noise and the beta-min condition are influenced by
varying domains and signals would be of great benefit to the field of data integration as a
whole. We also highlight that, while the Lasso has been well studied under Gaussianity and
idealized assumptions, the increasing abundance of correlated non-Gaussian data in multi-
view settings requires a greater push for theoretical studies on feature selection with hetero-
geneous data and the GLM Lasso.

Overall, we have demonstrated many challenges posed by multiview feature selection,
and, in our investigation of these challenges, we opened up new avenues for future theo-
retical work to rigorously understand how the heterogeneity of multiview data complicates
feature selection. Driven by these challenges and the ineffectiveness of existing methods, we
developed a practical solution to overcome the current challenges. Our method, B-RAIL, is
one of the first practical tools for multiview feature selection and is grounded in deep theo-
retical foundations. With its versatility and strong empirical performance, B-RAIL facilitates
impactful integrative analyses across a broad spectrum of fields.
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SUPPLEMENTARY MATERIAL

Supplement to “Feature selection for data integration with mixed multiview data”
(DOI: 10.1214/20-AOAS1389SUPP; .pdf). We provide additional plots to further support the
strong empirical performance of B-RAIL and its quick convergence. We also provide the
proof of Proposition 1.
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