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Data from electronic health records (EHR) are prone to errors which
are often correlated across multiple variables. The error structure is further
complicated when analysis variables are derived as functions of two or more
error-prone variables. Such errors can substantially impact estimates, yet we
are unaware of methods that simultaneously account for errors in covariates
and time-to-event outcomes. Using EHR data from 4217 patients, the haz-
ard ratio for an AIDS-defining event associated with a 100 cell/mm3 increase
in CD4 count at ART initiation was 0.74 (95%CI: 0.68–0.80) using unvali-
dated data and 0.60 (95%CI: 0.53–0.68) using fully validated data. Our goal
is to obtain unbiased and efficient estimates after validating a random subset
of records. We propose fitting discrete failure time models to the validated
subsample and then multiply imputing values for unvalidated records. We
demonstrate how this approach simultaneously addresses dependent errors
in predictors, time-to-event outcomes, and inclusion criteria. Using the fully
validated dataset as a gold standard, we compare the mean squared error of
our estimates with those from the unvalidated dataset and the corresponding
subsample-only dataset for various subsample sizes. By incorporating rea-
sonably sized validated subsamples and appropriate imputation models, our
approach had improved estimation over both the naive analysis and the anal-
ysis using only the validation subsample.

1. Introduction. An alarming number of studies are raising concerns regarding the qual-
ity of routinely collected electronic health record (EHR) data and, consequently, misleading
findings (e.g., Chan, Fowles and Weiner (2010), Duda et al. (2012), Floyd et al. (2012)).
Some errors, such as values falling outside specific ranges, can be identified using computer-
ized data quality checks; other errors are harder to detect. For example, the date of treatment
initiation may be incorrectly recorded, but the documented date is within the follow-up pe-
riod. Furthermore, the existence and magnitude of errors may be correlated across multiple
variables. For example, if the treatment initiation date is incorrect, then lab values at the time
of treatment initiation and the calculated time from initiation to some event are also likely
incorrect. To identify such errors, all relevant error-prone variables would have to be veri-
fied; however, such a resource-intensive process may not be feasible in settings with limited
funding.

An alternative to verification of all records is to perform data audits or validation in a
subset of records. This is generally done by selecting a random set of records and verifying
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data accuracy for key variables. If nontrivial error rates are revealed, one might remove the
data in question or reenter all data. These options, however, seem unsatisfactory. A more
appealing option would be to incorporate the audit or validation data into the analysis.

The data available following an audit—an error-prone measurement for all records and a
“gold standard” measurement for a subset of records—resembles the data one might need to
correct for measurement error. While the statistical literature regarding measurement error
is substantial, most methods involving time-to-event data focus only on covariate measure-
ment error. These methods include regression calibration (Prentice (1982), Shaw and Prentice
(2012)), corrected score methods (Nakamura (1990), Huang and Wang (2000)), conditional
score methods (Tsiatis and Davidian (2001)), joint models (Wulfsohn and Tsiatis (1997)) and
SIMEX (Cook and Stefanski (1994), Li and Lin (2003)). There have also been select studies
related to time-to-event outcome measurement error, with methods corresponding to errors
in event indicators (Magaret (2008), Richardson and Hughes (2000), Hunsberger, Albert and
Dodd (2010)) or the failure time (Skinner and Humphreys (1999), Korn, Dodd and Freidlin
(2010)); unlike linear regression, unbiased errors in failure times result in biased estimates
(Oh et al. (2018)). While correlated errors in covariates and uncensored outcomes have been
previously considered (Shepherd and Yu (2011), Shepherd, Shaw and Dodd (2012)), no ex-
isting methods address situations with errors in both the covariates and the time-to-event
outcome. Given that errors in EHR data typically occur across multiple variables and these
errors are generally correlated, the current measurement error literature is not equipped to
handle such multidimensional errors seen in practice.

Measurement error with a validation subsample can also be thought of as a missing data
problem (Little and Rubin (2014)). Because audited records are typically selected by a simple
random sample or a random sample stratified on observed data (e.g., unvalidated disease sta-
tus), the missing data mechanism is missing at random and standard methods for addressing
missing data could be applicable. For example, a multiple imputation (MI) approach could be
employed by fitting models using the complete validated data and imputing missing values
for unvalidated records. This approach has been implemented in previous studies for vari-
ous measurement error scenarios, including mismeasured binary (Edwards et al. (2013)) and
continuous (Shepherd, Shaw and Dodd (2012)) outcomes as well as measurement error in
the exposure of a time-to-event outcome (Cole, Chu and Greenland (2006)). Although rel-
evant, none of this work considers the situation where there are errors, likely correlated, in
both predictors and the time-to-event outcome. Furthermore, it does not address errors in
indicators of patient eligibility that determine whether a patient should be included in the
analysis. These situations, common in practical applications of EHR data for analyses, add
considerable complexity.

In this manuscript we describe and implement a multiple imputation-based strategy to
account for correlated errors in both predictors and time-to-event outcomes as well as analysis
eligibility. We illustrate our approach using unvalidated and validated EHR data from a large
HIV clinic, the Vanderbilt Comprehensive Care Clinic (VCCC). In Section 2 we present
our motivating example. In Section 3 we formalize our problem and present our strategy
for obtaining improved estimates after partial data validation. We first assign a notation for
the variables and errors in our motivating example, and then we coarsen these variables into
discrete-time for analysis. In Sections 4 and 5 we demonstrate and evaluate our approach
using data from the VCCC and simulations. In Section 6 we discuss our results and suggest
areas for future research.

2. Motivating example. In this study we analyzed data on 4217 HIV-positive patients
who established care at the VCCC between 1998 and 2011. Briefly, the VCCC is an out-
patient clinic that provides primary and subspecialty care for persons living with HIV. As
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part of routine treatment and care, data relevant to the patient’s clinical experience were
collected over time. This included both time-invariant variables such as demographic char-
acteristics as well as time-varying variables corresponding to laboratory measurements (e.g.,
CD4 counts), pharmacy dispensations, opportunistic infections and vital status. Data before
enrollment were also recorded, usually during the initial visit, based on patient recall and
outside medical records. The median length of follow-up after enrollment was 3.2 years (in-
terquartile range [IQR]: 1.1–6.8). The majority of patients were male (76%), and the median
age at enrollment was 38 years (IQR: 31–45).

Data at the VCCC were collected and electronically recorded by health care providers, typ-
ically nurses and physicians. Research protocols mandated that chart reviews were performed
for all VCCC records to validate key variables. A team of data abstractors performed the data
validation. After this comprehensive chart review process, two datasets were available. The
first dataset, which we refer to as the unvalidated dataset, contained the values entered for all
4217 records prior to the chart review. The second dataset, which we refer to as the validated
dataset, contained the recorded values for the same 4217 records after thorough chart review.
Throughout this study we consider the validated dataset to be correct.

For this study, we considered the association between CD4 count at time of antiretroviral
therapy (ART) initiation and the time from ART initiation until first AIDS-defining event
(ADE). Specifically, we calculated the incidence of ADE using Kaplan–Meier methods and
the hazard ratio (HR) for a 100 cell/mm3 increase in CD4 count at ART initiation using a
multivariable Cox proportional hazards regression model. All patients included in the analysis
cohort were adults (≥ 18 years) at time of ART initiation. Patients were excluded if they
started ART prior to enrollment, had an indeterminate ART start date or had a documented
ADE prior to ART initiation. These inclusion and exclusion criteria are common for HIV
studies.

We performed the same statistical analysis for both the unvalidated and validated datasets.
The incidence of ADE was higher in the unvalidated dataset across the entire study period.
The estimated incidence of ADE at five years was 19.7% (95% confidence interval [CI]:
17.1%–22.2%) for the unvalidated dataset and 8.3% (95% CI: 6.6%–10.0%) for the validated
dataset. A 100 cell/mm3 increase in CD4 count at ART initiation was associated with a much
weaker decrease in the hazard of ADE in the unvalidated dataset (HR: 0.74; 95%CI: 0.68–
0.80) compared to the validated dataset (HR: 0.60; 95%CI: 0.53–0.68).

There were many discrepancies between the unvalidated and validated datasets. In the un-
validated dataset 1743 patients satisfied the criteria for inclusion in the analysis cohort. In the
validated dataset 1580 patients met all inclusion criteria. A total of 1392 met the inclusion cri-
teria for both analysis cohorts, suggesting 539 (13%; 351 wrongly included and 188 wrongly
excluded) patients were incorrectly classified in the unvalidated dataset. Among patients in-
cluded in both analysis cohorts, there was discordancy in variables indicating baseline CD4
count (5%), ADE status (9%) and time from ART initiation to an ADE or end of study (32%).
Table 1 includes further details comparing the unvalidated and validated datasets.

As with most studies using EHR data, the variables used in our analyses were primarily
derived variables (e.g., baseline CD4 was determined by identifying the laboratory measure-
ment in one table with a date closest to the first ART initiation date in a separate table).
Discrepancies in derived variables were mostly due to errors in the indicators and dates of
ART and ADE. Among all 4217 patients there were 1745 (41%) patients with an incor-
rect ART start date and 1253 (30%) patients with an incorrect ADE (or end of follow-up)
date. All discrepancies in the baseline CD4 count were due to discrepancies in the ART start
date.
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TABLE 1
Comparison of variables in the unvalidated and validated datasets among the 4217 patients

Notation Discrepancy magnitude
(see Section 3) n or median(IQR)

All patients 4217
Different ART start date T0 �= T ∗

0 1745 (41.4%)
Discrepancy in ART start dates (days) T0 − T ∗

0 | T0 �= T ∗
0 14 (−222, 37)

Different ADE date TE �= T ∗
E 1253 (29.7%)

Discrepancy in ADE date (days) TE − T ∗
E | TE �= T ∗

E 14 (−5, 165)

Met inclusion criteria in both datasets W = 1, W∗ = 1 1392
Different ADE status D �= D∗ 130 (9.3%)

ADE in unvalidated, no ADE in validated D∗ = 1, D = 0 116
ADE in validated, no ADE in unvalidated D∗ = 0, D = 1 14

Different time from ART initiation to ADE Y �= Y ∗ 441 (31.7%)
Discrepancy in time from ART to ADE (days) Y − Y ∗ | Y �= Y ∗ 1 (−357, 20)

Different baseline CD4 count X1 �= X∗
1 76 (5.4%)

Discrepancy in baseline CD4 X1 − X∗
1 | X1 �= X∗

1 22 (−23, 88)

Abbreviations: ADE, AIDS-defining event. ART, antiretroviral therapy. IQR, interquartile range.

3. Our approach. In the previous section we showed that estimates using just the un-
validated dataset were markedly biased. These findings highlight, at least in our setting, the
importance of validating EHR data. Our goal in this study is to obtain low bias and low vari-
ance estimates after validating only a subsample of the EHR. In this section we formalize the
problem analytically and describe our analysis approach.

3.1. Notation. Let TB denote the date of enrollment, T0 the date of ART initiation, TE the
date of first ADE and TC the last follow-up (“end of study”) date. Note that some patients will
not initiate ART or experience an ADE during the study; in such instances, as is convention in
time-to-event analyses, T0 and TE are assumed to be unobserved dates after TC . Using these
dates, we derive the variables corresponding to the outcome: the time from ART initiation
to the first of ADE or end of study, Y = min(TE,TC) − T0 and an indicator of an ADE,
D = I (TE ≤ TC).

Let X(t) = (X1(t),X2(t), . . . ,Xp(t)) denote a vector of p covariates for a patient on a
given date, t . For example, let X1(t) denote CD4 count on date t . While this notation al-
lows each covariate to change values over time, we note that some covariates may be time-
invariant. Since we are interested in values at time of ART initiation (T0), we define a vector
of “baseline” variables as X = X(T0) = (X1(T0),X2(T0), . . . ,Xp(T0)), where X1(T0) corre-
sponds to baseline CD4 count and X2(T0), . . . ,Xp(T0) correspond to the remaining baseline
covariate values. Finally, let W denote whether a patient was included in the analysis cohort.
Patients were included if they started ART after enrollment (TB ≤ T0 < TC) and if they did
not have an ADE before starting ART (T0 < TE). The quadruplet (W,X,Y,D) represents the
data for our time-to-event analyses from the validated records (i.e., the gold standard).

In our specific application, among those meeting inclusion criteria (W = 1), we are inter-
ested in estimating the incidence of an event at time t , P(TE −T0 ≤ t) and the hazard ratio in
the proportional hazards model, λ(t | X) = λ0(t) exp(βX). In our example the last follow-up
may be determined by a number of different censoring mechanisms (administrative censor-
ing, lost to follow-up, death). Except where specified differently, the date of the last follow-up
TC is considered to be the minimum time amongst these potential events. While deaths may
act as a competing event, this approach reflects the common practice of investigators treating
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deaths as noninformative, censored observations when the frequency of death is low. Note
that even with noninformative censoring, Kaplan–Meier estimates of incidence are biased if
death is treated as a censoring event because it is not possible for someone to have an ADE
after death; however, for small numbers of deaths, this bias can be small and that is why
it is often ignored in practice. In contrast, Cox regression may still be appropriate if one is
interested in cause-specific hazards.

Since patient records are potentially error-prone, we use asterisks to denote data from the
unvalidated records. Let the unvalidated time of ART initiation be T ∗

0 , the unvalidated time
of ADE be T ∗

E , the end of study date in the unvalidated dataset be T ∗
C and the date-specific

vector of covariates in the unvalidated dataset be X∗(t).
The derived variables corresponding to the outcome in the unvalidated dataset are D∗ =

I (T ∗
E ≤ T ∗

C) and Y ∗ = min(T ∗
E,T ∗

C) − T ∗
0 . The unvalidated baseline predictor variables

are defined as X∗ = X∗(T ∗
0 ). Let W ∗ be an indicator for inclusion, defined as I (TB ≤

T ∗
0 < T ∗

C)I (T ∗
0 < T ∗

E). We denote the unvalidated data used for analyses as the quadruplet
(W ∗,X∗, Y ∗,D∗).

Finally, let V = 1 denote that data validation was performed for all variables. For records
with V = 1, we have (W ∗,X∗, Y ∗,D∗) and (W,X,Y,D), whereas for those records with
V = 0 we have only (W ∗,X∗, Y ∗,D∗). In our VCCC example, V = 1 for all records, so
an analyst would ignore the error-prone unvalidated data and draw inference using only the
validated data. We will consider the situation where V = 1 for only a subsample of patients.

As highlighted in the Introduction, there are methods for time-to-event outcome studies
regarding covariate (X∗, Y,D), event indicator (X,Y,D∗) or time-to-event (X,Y ∗,D) mea-
surement error. However, methods for simultaneously dealing with errors in predictors, event
indicators and times-to-event (X∗, Y ∗,D∗) have not been considered, and because of poten-
tial dependence between these errors, it is not possible to simply sequentially apply existing
methods. Furthermore, for our motivating example we also need to consider errors with the
inclusion criteria (W ∗,X∗, Y ∗,D∗).

3.2. Multiple imputation: Model fitting and time discretization. Our strategy is to ap-
proach this as a missing data problem where the quadruplet (W ∗,X∗, Y ∗,D∗) is available
for all records and the quadruplet (W,X,Y,D) is missing for those with V = 0. This re-
quires the construction of a model for the joint distribution of (W,X,Y,D) conditional on
(W ∗,X∗, Y ∗,D∗). The model will be fit using a subsample of records with V = 1; values
for the remaining records (V = 0) will be imputed using these fitted models. Therefore, the
primary challenge is obtaining adequate models.

Consider the factorization of the distribution of (W,X,Y,D) conditional on (W ∗,X∗,
Y ∗,D∗),

f
(
W,X,Y,D | W ∗,X∗, Y ∗,D∗) = f

(
W | W ∗,X∗, Y ∗,D∗)

× f
(
X | W,W ∗,X∗, Y ∗,D∗)

× f
(
Y | W,X,W ∗,X∗, Y ∗,D∗)

× f
(
D | W,X,Y,W ∗,X∗, Y ∗,D∗)

,

(3.1)

where f (·) denotes a generic probability density/mass function. With this factorization each
component of (3.1) could be fit using existing data from the subsample of records with V = 1.
However, these models would be constructed using derived variables that are functions of
other error-prone variables, (T0, TE,TC,X(t)), likely making their predictive ability poor.
For example, errors in (W,X,Y ) are frequently due to errors in the date of ART initiation
(T0), and a marked drop in a time-varying covariate, viral load, is highly predictive of T0 that
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someone has begun ART; however, it is unclear how to incorporate such information into
models based on the derived variables (W,X,Y ).

Another strategy, which we adopt here and refer to as time-discretized modeling, divides
time into intervals (e.g., months) and assesses values for variables during each interval. This
approach employs a well-known strategy for modeling time-to-event data using pooled lo-
gistic regression (D’Agostino et al. (1990), Efron (1988)). Similar approaches have been
implemented with marginal structural models (Hernán, Brumback and Robins (2001)) and
ecological statistics (McClintock et al. (2014), Turchin (1998)), where discretization is used
to allow for time-varying covariates and to reduce computationally-intensive tasks.

Here, variables are divided into monthly intervals, indexed by m, since the date of enroll-
ment (m = 0). Specifically, let Am be an indicator for a patient initiating at least one different
ART drug during month m; if a patient is not on ART or continues the same ART regimen
as the previous month, they are assigned Am = 0. Let Dm be an indicator of an ADE occur-
ring during month m. Let Xm correspond to the most recent covariate values observed during
month m, and, finally, let Cm be an indicator that the last follow-up visit for a patient occurred
during month m.

Let A = {A0,A1, . . . ,AMpost} designate the complete set of monthly new ART drug indi-
cators in the validated dataset, where Mpost denotes the longest possible length of follow-up
(in months) among all patients. The variables D, C and X are similarly defined. For the unval-
idated dataset we have A∗, D∗, C∗ and X ∗. This notation implicitly assumes that the date of
enrollment is correct in the unvalidated dataset; this assumption is met in the VCCC dataset
but could be relaxed by using some other date to anchor time.

With this framework we can construct a model for the joint distribution of the variables
in the validated dataset (X ,C,A,D) conditional on the distribution of the variables in the
unvalidated dataset (X ∗,C∗,A∗,D∗) by decomposing it into separate components,

f
(
X ,C,A,D | X ∗,C∗,A∗,D∗) = f

(
X | X ∗,C∗,A∗,D∗)

× f
(
C | X ,X ∗,C∗,A∗,D∗)

× f
(
A | C,X ,X ∗,C∗,A∗,D∗)

× f
(
D | A,C,X ,X ∗,C∗,A∗,D∗)

.

(3.2)

With this decomposition we directly model discretized versions of the original variables
that are in error, rather than downstream, derived variables. By incorporating error-prone
and corrected variables in models, we account for potential dependencies in errors across
variables. Time-varying covariates are also easier to incorporate. For example, the probability
of starting a new ART regimen in a given month, Am, can be modeled conditional on the
unvalidated indicator of starting a new ART regimen for that month, A∗

m, and time-varying
covariates X such as viral load prior to, during and after month m. Specific implementation
details are given in the next section.

Component models can be fit using the records with validated data (i.e., those with V = 1)
using appropriate methods (e.g., binary variables can be modeled using logistic regression).
When predicting values for the remaining records (i.e., those with V = 0), we account for the
uncertainty in the prediction model using a multiple imputation procedure. First, we draw an
independent sample of the parameter estimates of the fitted models (e.g., we sample from a
multivariate normal distribution with the mean as the parameter estimates and variance as the
variance-covariance matrix of the parameter estimates). Using (X ∗,C∗,A∗,D∗) and these
randomly drawn parameter estimates, we impute values of (X ,C,A,D) for all records with
V = 0.

Having successfully imputed discretized versions of the original variables, values are con-
verted back to the unit of measurement of the original variables using a fixed conversion.
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For example, an imputed ART initiation two months after enrollment would be reported as
60 days after enrollment. We choose to “undiscretize” our imputed values to incorporate full
information from our validated data in the time-to-event analyses. However, this undiscretiza-
tion is not necessary; the impact of this choice will be evaluated in sensitivity analyses. With
these imputed “undiscretized” values, we derive imputed versions for the variables to be used
in our Cox regression and Kaplan–Meier analyses, denoted as (Ŵ , X̂, Ŷ , D̂). Thus, we gen-
erate a complete dataset consisting of the true, observed values of the audited records and the
predicted values of the unaudited records, denoted as

(
Wc,Xc,Y c,Dc) =

{
(Ŵ , X̂, Ŷ , D̂) if V = 0,

(W,X,Y,D) if V = 1.

We then repeat the process of randomly sampling parameter estimates, predicting values and
combining datasets, until we have B complete datasets. Here, B is the number of imputations
performed. For each of the B complete datasets, we obtain estimates using Kaplan–Meier
and Cox regression methods. The parameter estimates from these procedures are then av-
eraged across iterations. To properly account for uncertainty in the setting of incompatible
imputation and analysis models, we use the multiple imputation variance estimator proposed
by Robins and Wang (2000) to calculate confidence intervals.

For this time-discretized modeling and imputation (TDMI) approach to yield unbiased
estimates in large samples, standard assumptions for the validity of multiple imputation
must be met (Van Buuren (2018)). The missing at random assumption can be translated as
V ⊥⊥ (X ,C,A,D) | (X ∗,C∗,A∗,D∗), or that conditional on the observed data, selection
for validation (V ) is independent of the correct values. Another key assumption is that the
imputation model, f (X ,C,A,D | X ∗,C∗,A∗,D∗), is properly specified. This requires the
identification of covariates in the unvalidated dataset predictive of values in the validated
dataset as well as a model that properly specifies the relationships. When the imputation
model is not properly specified, parameter estimates may be biased and confidence interval
coverage probabilities may differ from nominal levels (Carpenter, Kenward and Vansteelandt
(2006), McIsaac and Cook (2017)). The TDMI approach handles differential measurement
error through the imputation model (i.e., it requires no assumption of nondifferential measure-
ment error), but covariates associated with differential error need to be correctly included in
the model. Finally, because we are estimating parameters defined on an approximately con-
tinuous time scale (days) after imputing data from models on a discrete time scale (months),
we assume that the discrete time scale is a good approximation to the continuous time scale
which has been seen by others to be the case as long as the unit of discretized time is not too
coarse (e.g., D’Agostino et al. (1990), Efron (1988)).

3.3. Implementation details. In this section we highlight key simplifications and note-
worthy specifications that were made in our application of the TDMI to EHR data from the
VCCC. Full model details are in the posted analysis code, http://biostat.mc.vanderbilt.edu/
ArchivedAnalyses.

The end of study date for each patient did not vary between the unvalidated and validated
records, and, thus, we did not need to model C as it was perfectly predicted by C∗. This
simplification allowed us to model

f
(
X ,A,D | X ∗,C∗,A∗,D∗) = f

(
X | X ∗,C∗,A∗,D∗)

× f
(
A | X ,X ∗,C∗,A∗,D∗)

× f
(
D | A,X ,X ∗,C∗,A∗,D∗)

.

(3.3)

http://biostat.mc.vanderbilt.edu/ArchivedAnalyses
http://biostat.mc.vanderbilt.edu/ArchivedAnalyses
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Laboratory measurements (e.g., CD4 count and viral load) also did not vary between the
unvalidated and validated records. Thus, we also did not need to model X as it was per-
fectly predicted by X ∗. However, these time-varying variables were not necessarily collected
monthly. In most instances we carried forward values from months where previous measure-
ments were available. In instances where no laboratory measurement was available at the
time of enrollment, we needed to input values. Let X ∗

1,0 and X ∗
2,0 denote CD4 count and viral

load at time of enrollment, respectively, and denote the remaining covariates that comprise
X ∗ as XC∗. Our imputation model for these two covariates was

f
(
X ∗

1,0,X ∗
2,0 | XC∗,C∗,A∗,D∗) = f

(
X ∗

1,0 | XC∗,C∗,A∗,D∗)
× f

(
X ∗

2,0 | X ∗
1,0,XC∗,C∗,A∗,D∗)

.
(3.4)

Because we were only interested in the time of first ART initiation, not all subsequent
ART changes, we were able to model the time of first ART initiation directly. Specifically,
let A1

m = maxk≤m(Ak) be the indicator that ART had been initiated prior to or during month
m. Instead of f (A | X ∗,C∗,A∗,D∗), we used f (A1 | X ∗,C∗,A∗,D∗) as our model of ART
status. This can be further simplified to

f
(
A1 | X ∗,C∗,A∗,D∗) = f

(
A1

0 | X ∗,C∗,A∗,D∗)
×

Mpost∏
m=1

f
(
A1

m | A1
m−1,X ∗,C∗,A∗,D∗)

,
(3.5)

where Pr(A1
m = 1 | A1

m−1 = 1,X ∗,C∗,A∗,D∗) = 1. Note that in this model we condi-

tioned on A∗, the unvalidated vector of new ART drug indicators, rather than A1∗ =
{A1∗

0 ,A1∗
1 , . . . ,A1∗

Mpost
}, the unvalidated vector of the indicator of having initiated ART, be-

cause A∗ is richer than A1∗ and may improve modeling (e.g., if the first date of ART initiation
in the unvalidated data is incorrect, the second date of ART initiation in the unvalidated data
might be a good candidate for the true first date of ART initiation). This model was fit using
pooled logistic regression.

Although we were similarly interested in the first date of ADE, we chose to model all
ADEs (i.e., the complete vector D) rather than just focusing on the first. Unlike ART status,
the variables associated with a given ADE were not likely to differ based on the ordering of
the ADE. Because ADE at a specific time is a binary variable, logistic regression was again
used for model fitting.

Many VCCC patient records included data for months prior to enrollment; for example,
dates of ART used prior to enrollment may have been included in the patient record. It was
important to include this information in the analysis (e.g., a patient starting ART prior to
enrollment does not meet analysis eligibility criteria). Thus, the time-discretized variables
included time prior to enrollment, for example, A = {AMpre, . . . ,A−1,A0,A1, . . . ,AMpost}
where Mpre designated the longest length of preenrollment follow-up among all patients.
For this study Mpre = −100 and Mpost = 167. We constructed separate imputation models
for before (m < 0) and after (m ≥ 0) enrollment. Therefore, we fit a total of six imputation
models: two linear regression models (CD4 count and viral load at enrollment) and four
logistic regression models (ART initiation prior to enrollment, ART initiation on or after
enrollment, ADE prior to enrollment and ADE on or after enrollment).

A total of 30 covariates, X ∗, were used for the imputation models based on their clinical
relevance and a priori belief that they might be predictive of validated values. Time-invariant
covariates (calendar year of enrollment, age at first visit and sex) were attributed to each
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person-month observation. Time-varying covariates included months since enrollment, cur-
rent CD4, previous and next CD4, current viral load, previous and next viral loads. We note
that only a select number of covariates were considered relevant predictors for all six mod-
els. Models used to impute missing viral load and CD4 count values at time of enrollment
only included time-invariant covariates and lab measurements at enrollment. For the ART
and ADE models restricted to the months preceding enrollment, no lab measurements were
included. For the ART status model, additional time-varying covariates included an indicator
for any ART drug initiation during the entirety of follow-up. Since the type of ADE in the un-
validated dataset was highly predictive of the presence or absence of an ADE in the validated
data, we included dummy variables corresponding to 14 specific ADEs in the unvalidated
data for the ADE status model. All continuous variables were modeled using restricted cubic
splines. Twenty iterations were used for the MI procedure.

Following imputation, values were switched from a discrete time scale to a continuous
time scale. When undiscretizing imputed dates of ART or ADE, an imputed event date was
assigned to the first day in the monthly interval. This was due to practical considerations as
most ART initiations occurred on the same day as enrollment and we wanted imputed ART
initiations during that monthly interval to map back to day 0 rather than say day 15 or 30.
The cumulative incidence of ADE over time was estimated using the Kaplan–Meier method.
To model the association between baseline CD4 and time to ADE, we fit a multivariable Cox
regression model that adjusted for sex, age and year of enrollment. We applied a square-root
transformation to the baseline CD4 count prior to model fitting and reported the estimated
hazard ratio corresponding to an increase in baseline CD4 count from 100 cells/mm3 to 200
cells/mm3 (i.e., a 100 cell/mm3 increase). The Efron method was used to handle ties. Due to
the relatively infrequent occurrence of death prior to ADE, deaths prior to ADE were treated
as censored in both Kaplan–Meier and Cox regression analyses.

Several sensitivity analyses were also performed. The TDMI approach included a step
where we switch back from the discrete time scale to the continuous scale prior to analysis.
In one sensitivity analysis we fit a multivariable pooled logistic regression model for the as-
sociation between baseline CD4 and time to ADE using the imputed discrete-time variables.
As a separate sensitivity analysis we implemented the TDMI approach using reduced impu-
tation models with just the unvalidated variables corresponding to ART and ADE for a given
month and six predictor variables (sex, age at first visit, months since enrollment, year of
enrollment, current CD4 and current viral load). Finally, we also estimated the cumulative
incidence of ADE treating death as a competing risk.

4. Results. For this section we applied our TDMI procedure to data from the VCCC
and compared its performance with estimates obtained via alternative strategies. Specifically,
we selected a simple random sample of patient records to serve as our validation subsample.
For the records that were not randomly selected, we ignored the validation data (i.e., we pre-
tended that no validation data were available). We then applied our TDMI approach using the
unvalidated data on all records together with the validation subsample. TDMI estimates were
compared to the gold standard postaudit estimates using the fully validated data for all pa-
tient records. Additionally, estimates from our multiple imputation approach were compared
to two nonimputation-based estimates: the naive preaudit estimates using only the unvali-
dated data for all patient records and estimates calculated using only the subset of validated
records (i.e., complete-case estimates).

In Figure 1 we show the estimated cumulative incidence of ADE over time using the
unvalidated dataset, the fully validated dataset, the complete-case analysis using a simple
random sample of 1000 validated records and the TDMI strategy using the same 1000 val-
idated records. For this particular sample the TDMI estimates appeared to have similarly
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FIG. 1. Estimated cumulative incidence of AIDS-defining event over time using unvalidated, validated, time-dis-
cretized modeling and imputation (TDMI) and complete-case approaches. Estimates for TDMI and complete-case
approaches are based on one randomly selected iteration.

small bias but narrower confidence intervals compared to the complete-case estimates. Both
the complete-case and the TDMI estimates were closer to the gold standard estimates than the
naive estimates at most time points. Specifically, the TDMI estimate of the incidence of ADE
at five years was 8.2% (95% CI: 5.8%–10.5%) and the complete-case estimate was 7.3%
(95% CI: 3.8%–10.7%), compared to the naive estimate of 19.7% (95% CI: 17.1%–22.2%)
and the gold standard estimate of 8.3% (95% CI: 6.6%–10.0%).

Similarly, the estimated HR for the association between a 100 cell/mm3 increase in base-
line CD4 count and ADE was 0.59 (95% CI: 0.53–0.66) for the TDMI approach and 0.51
(95% CI: 0.39–0.68) for the complete-case approach compared to the naive estimate of 0.74
(95%CI: 0.68–0.80) and the gold standard estimate of 0.60 (95%CI: 0.53–0.68). The TDMI
estimate based on a pooled logistic regression model that kept time discretized was 0.60 (95%
CI: 0.50–0.73).

While promising, these results were based on a single validation sample. Because we had
the fully validated data on all patient records, we were able to repeat the process many times,
compare estimates to the fully validated data and empirically study the performance of our
TDMI approach. To quantitatively compare approaches, we calculated the difference and the
squared difference between each candidate estimate of the five-year incidence and the log HR
to their corresponding estimates based on the complete validated data (i.e., the gold standard
estimates) for 1000 replications. The mean difference (bias), variance and mean squared dif-
ference (mean squared error; MSE) for each candidate estimator (TDMI, complete-case and
naive) were then calculated.

Using an audit size of 1000, the MSE of the TDMI estimator for ADE incidence at five
years was similar but slightly lower than that of the complete-case estimator (2.1 × 10−4 vs.
2.4 × 10−4). This result was driven by the TDMI estimator’s lower variance (6.6 × 10−5 vs.
2.4 × 10−4), despite a larger absolute bias (−0.0120 vs. 0.0004). The MSE for the TDMI
estimator for the log HR was substantially lower than that of the complete-case estimator
(0.003 vs. 0.015). The bias and variance of the TDMI estimator for the log HR were 0.030
and 0.002, respectively, compared with 0.001 and 0.015 for the complete-case estimator. The
MSE for the TDMI approach using a pooled logistic regression model that kept time on a
discrete scale yielded a similar MSE (0.004).

Our original selection of an audit size of 1000 records was chosen a priori but was arbitrary.
To assess how the TDMI approach performed for varying audit sizes, we repeated the entire
exercise for various audit sample sizes, ranging from n = 300 to n = 4000 records. The MSEs
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FIG. 2. Mean squared errors (top row), bias (middle row) and variance (bottom row) for estimates of the log
hazard ratio (first column) and five-year incidence of AIDS-defining event (second column) from each candidate
estimator (including a TDMI estimator where fewer predictor variables are included in the imputation model)
and various audit sizes. Estimates are calculated as the average of 1000 replications.

for the estimated log HR and incidence at five years across various audit sizes are shown in
Figure 2 as well as a bias-variance decomposition of MSEs. At all validation sample sizes,
the TDMI estimators had lower MSE than the naive estimators. For the log HR, the TDMI
estimator beat the complete-case estimator at all audit sample sizes. When estimating the
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incidence of ADE at five years, the MSE for the TDMI approach tended to be higher than
the complete-case analysis for audit sample sizes less than 750 but slightly lower thereafter.
In general, the TDMI estimator was less variable but more biased, particularly at the smaller
audit sizes, than the complete-case estimator.

Figure 2 also includes results using the TDMI approach with a reduced imputation model
that included fewer predictor variables. TDMI estimates of the log HR using the reduced im-
putation models had substantially lower MSE than the full model when the audit sample size
was small (750 or less) but fairly similar MSE thereafter; the MSEs remained lower relative
to the complete case estimator at all subset sample sizes. In contrast, the TDMI approach
based on these reduced imputation models performed worse when estimating the incidence
of ADE at five years at all audit sample sizes above 400. The bias of these new estimates was
such that the TDMI estimator had a higher MSE than the complete case estimator at all audit
sample sizes. These results are intuitive and highlight the challenges of model fitting at vary-
ing audit sizes. The original model was chosen for an audit size of 1000 records; with small
audit sizes, fitting similarly complicated models can lead to over-fitting and resulting bias, as
seen with the log HR. In contrast, in the reduced model we did not include specific types of
ADEs which were very predictive of having any ADE; therefore, the estimated incidence of
ADE from the reduced model was more biased, likely due to poor model specification.

Among the 1580 patients in the validated analysis dataset, there were 99 (6.3%) deaths
that occurred prior to an ADE. Within the first five years, there were 65 (4.1%) deaths prior
to an ADE. We also considered a time-to-event analysis model where death was treated as
a competing risk. Using the full validated dataset, cumulative incidence estimates from the
competing risks model were similar to Kaplan–Meier estimates (Web Figure 2). We again
calculated the incidence of ADE at five years for varying audit sizes using the TDMI approach
with the full and reduced imputation models as well as the complete case-approach. In Web
Figure 3 we show the bias, variance and MSEs across various audit sizes. Findings were
similar to those regarding the Kaplan–Meier estimates of the cumulative incidence of ADE
at five years. The MSE for the TDMI approach tended to be higher than the complete-case
analysis for audit sample sizes less than 500 but fairly similar thereafter.

5. Simulation. We conducted a simulation study to better understand how the TDMI
approach performs when the imputation model is misspecified. Simulated data were based
on a simplified version of the VCCC example. In this section we briefly highlight impor-
tant features of the data generation and analyses needed to interpret the results. Following
the recommendation of Burton et al. (2006), complete details are provided in a simulation
protocol (Web Appendix C) and all R code is available at http://biostat.mc.vanderbilt.edu/
ArchivedAnalyses.

The simulated cohort included 4000 subjects. Two datasets were generated to correspond
to the unvalidated and validated datasets. Each subject was assigned two continuous variables,
X1 and X2, which, for simplicity, were time-invariant and error-free. Indicator variables cor-
responding to whether the subject was active (Cm), initiated at least one different ART drug
(Am) and had an ADE (Dm) were generated at each month m = 0, . . . ,99. Error-prone values
of these variables, A∗

m, D∗
m, and C∗

m, were also generated such that the true and error-prone
variables were highly dependent. In particular, (Am,Dm,Cm) were generated from models
that induced correlation between the true values, A∗

m, D∗
m, C∗

m, X1, X2, and time, m.
The parameters (σ,β2, γ2) represent, respectively, the covariance between X1 and X2; the

log-odds of Am for X2 after conditioning on m, X1, A∗
m and D∗

m; and the log-odds of Dm

for X2 after conditioning on m, X1, D∗
m and Am. A total of 12 scenarios were constructed by

varying (σ,β2, γ2).

http://biostat.mc.vanderbilt.edu/ArchivedAnalyses
http://biostat.mc.vanderbilt.edu/ArchivedAnalyses
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Analysis datasets for the validated, (W,X1,X2, Y,D) and unvalidated (W ∗,X1,X2,

Y ∗,D∗) data were subsequently derived by undiscretizing the data. A subset of 1000 sub-
jects were randomly selected to represent an audited cohort (V = 1). For the remaining
3000 records with V = 0, the validated variables (Am,Dm,Cm) and their derived variables
(W,Y,D) were masked.

The parameters of interest were P(TE − T0 ≤ 60) estimated using Kaplan–Meier tech-
niques and β from the Cox proportional hazards model, λ(m | X1) = λ0(m) exp(βX1). The
TDMI procedure was implemented to the partially validated data with B = 20 imputation
replications to estimate the parameters of interest. Two candidate sets of imputation models
were considered for the TDMI procedure: (i) perfectly specified models for A and D that in-
cluded X1 and X2 and (ii) misspecified models that did not include X2. Note that imputation
models for C were always perfectly specified.

For each scenario, estimates and corresponding 95% confidence intervals for both the per-
fectly specified and misspecified TDMI implementations were generated for 1000 indepen-
dent replications. We assessed the relative bias, MSE and the coverage for 95% confidence
intervals. The true value for the two parameters of interest were approximated with empirical
estimates from a sample size of 500,000 using only validated records. The Monte Carlo sim-
ulation error of the coverage was estimated using a bootstrap method (Koehler, Brown and
Haneuse (2009)).

Table 2 shows the relative bias, MSE and coverage of the log HR using the TDMI approach
under the different simulation settings. When the imputation model was correctly specified,
the estimated log HR was approximately unbiased and 95% confidence intervals had coverage
at or just below the nominal level (93%–95%). When the imputation model was incorrectly
specified, relative bias increased and coverage decreased as the relative strength of association
for the omitted covariate increased. For example, with (β2, γ2) = (0,0), models not including
X2 were correctly specified, so bias was low and coverage was near the nominal level. In
contrast, with (β2, γ2) = (1,2), failure to include X2 in imputation models led to substantial
bias and very poor coverage.

TABLE 2
Summary of simulation results for time-discretized modeling and imputation (TDMI) log hazard ratio estimates

from Cox regression with different levels of misspecification in the imputation model∗

Imputation Model

Fixed values Correctly specified Misspecified

(β2, γ2) σ Bias (%) MSE Coverage Bias (%) MSE Coverage

(1,2) −0.25 −0.1% 0.0025 0.94 29.7% 0.1227 0.09
(1,2) 0 −1.0% 0.0020 0.94 36.6% 0.1189 0.04
(1,2) 0.25 −0.3% 0.0018 0.95 46.6% 0.1203 0.03

(0.5,1) −0.25 0.7% 0.0042 0.94 17.9% 0.0955 0.13
(0.5,1) 0 0.1% 0.0038 0.94 18.3% 0.0812 0.20
(0.5,1) 0.25 0.6% 0.0039 0.95 18.4% 0.0664 0.22

(0.25,0.5) −0.25 0.8% 0.0054 0.93 6.4% 0.0213 0.64
(0.25,0.5) 0 0.4% 0.0047 0.95 6.0% 0.0179 0.70
(0.25,0.5) 0.25 −0.4% 0.0048 0.94 5.0% 0.0136 0.79

(0,0) −0.25 −0.5% 0.0052 0.93 −0.4% 0.0050 0.93
(0,0) 0 0.3% 0.0044 0.95 0.4% 0.0046 0.94
(0,0) 0.25 −0.2% 0.0048 0.94 −0.1% 0.0048 0.94

∗Population parameters were estimated with empirical estimates from a sample size of 500,000 using only vali-
dated records.
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TABLE 3
Summary of simulation results for time-discretized modeling and imputation (TDMI) parameter estimates from

Kaplan–Meier estimation for P(TE − T0 ≤ 60) with different levels of misspecification in the imputation model∗

Imputation Model

Fixed values Correctly specified Misspecified

(β2, γ2) σ Bias (%) MSE Coverage Bias (%) MSE Coverage

(1,2) −0.25 −0.0% 0.0001 0.95 −14.3% 0.0120 0.00
(1,2) 0 −0.0% 0.0001 0.95 −13.7% 0.0116 0.00
(1,2) 0.25 0.0% 0.0001 0.94 −10.9% 0.0079 0.00

(0.5,1) −0.25 0.1% 0.0001 0.92 −2.3% 0.0005 0.60
(0.5,1) 0 −0.0% 0.0001 0.94 −2.3% 0.0005 0.61
(0.5,1) 0.25 0.1% 0.0001 0.94 −1.5% 0.0003 0.76

(0.25,0.5) −0.25 −0.0% 0.0001 0.94 −0.5% 0.0001 0.91
(0.25,0.5) 0 0.0% 0.0001 0.93 −0.4% 0.0001 0.93
(0.25,0.5) 0.25 −0.1% 0.0001 0.93 −0.5% 0.0001 0.92

(0,0) −0.25 −0.0% 0.0001 0.93 −0.0% 0.0001 0.93
(0,0) 0 0.2% 0.0001 0.93 0.2% 0.0001 0.94
(0,0) 0.25 −0.0% 0.0001 0.94 −0.0% 0.0001 0.95

∗Population parameters were estimated with empirical estimates from a sample size of 500,000 using only vali-
dated records.

Simulation results for Kaplan–Meier TDMI estimates of the incidence of an event by
m = 60 are shown in Table 3. Conclusions were largely the same as for the log HR. When the
imputation model was correctly specified, estimates of the 60-month incidence were approx-
imately unbiased with coverage probabilities at or just below the nominal level (92%–95%).
When the imputation model was incorrectly specified, absolute bias increased and coverage
decreased as the relative strength of association for the omitted covariate increased. For both
parameters, the Monte Carlo simulation error was 1.6% or lower for coverage estimates, 0.4%
or lower for relative bias estimates and 0.0024 or lower for MSE estimates for all scenarios.

6. Discussion. Using EHR data from an HIV cohort, we have illustrated the bias that
can arise by ignoring data errors, and we have proposed a missing data analysis solution that
incorporates validation data to address multidimensional errors in time-to-event analyses. To
our knowledge, this is the first study to simultaneously address errors in both predictors and
outcomes in a time-to-event analysis. We were also able to address errors in study eligibility.
The TDMI approach did not outperform the complete-case approach under all scenarios,
but we are encouraged that it led to improved estimation under most conditions, particularly
when estimating the log HR.

The TDMI procedure is subject to various assumptions generally similar to those required
for multiple imputation in standard missing data settings (Van Buuren (2018)). The key miss-
ing at random assumption (in fact, the stronger missing completely at random assumption)
was satisfied in our example as the audited sample was a simple random sample. This as-
sumption can also be satisfied in more complicated settings, where subjects are sampled
based on the observed unvalidated data with known probabilities, but will likely be violated
if the validation sample is one of convenience.

Another basic assumption underlying the TDMI approach is that the imputation model is
properly specified. This is difficult in practice. Despite our best efforts—the incorporation of
over 30 covariates, both time-fixed and time-varying exposures—estimates for our approach
were still biased, especially at smaller validation sample sizes. Results from both our reduced
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model TDMI and the simulation study highlight potential challenges with model misspecifi-
cation. Model overfitting can be a problem at smaller validation sample sizes, as seen by our
reduced model TDMI out-performing the original model TDMI at small audit sample sizes
when estimating the log HR. But the reduced model was not sufficiently rich to obtain good
estimates for the incidence of ADE at modest audit sizes. We are currently studying gener-
alized raking methods to combine potentially biased but efficient estimators like the TDMI
estimator with unbiased but less efficient complete-case estimators (Lumley, Shaw and Dai
(2011)).

We considered alternative modeling approaches (e.g., classification and regression trees,
random forests, support vector machines and linear discriminant analysis) but, ultimately,
fit logistic regression models. Given the improbability of knowing, a priori, which model
will perform best for a certain setting, it might be worthwhile to add a preliminary step that
selects the most appropriate model through cross-validation or some other model-selection
procedure in the audit subsample.

We estimated standard errors using the Robins and Wang (2000) imputation variance es-
timator instead of the more popular (and easier to implement) approach proposed by Rubin
(Little and Rubin (2014)) because of incompatibility between imputation and analysis mod-
els. There were two sources of incompatibility in our setting. First, the unit of observation
was different between the imputation model (subject-month observations) and the analysis
model (subject-level observations). Second, our study had exclusion criteria that removed
observations from the analysis model that contributed information to the imputation model.
Standard errors calculated using Rubin’s rule in our setting led to inflated standard errors and
conservative confidence intervals (e.g., coverage of 98–99% in simulations, data not shown).

There are potential issues from coarsening the data into time intervals when fitting the
imputation models. One potential issue with discretization is a loss of information. However,
losses of information due to discretization to the level of months will be minimal in clinical
settings where visits typically occur no more than monthly. As an additional sensitivity anal-
ysis, we coarsened the data from the validated records into monthly intervals and reestimated
the incidence of ADE at five years for a validation subsample of size 1000. Using the estimate
from the nondiscretized fully validated data for all patients as the gold standard, the MSE of
the discretized version of the complete-case estimator (2.4 × 10−4) was nearly identical to
the nondiscretized complete-case estimator (2.4×10−4), suggesting little loss of information.
Other potential issues may arise when we convert our imputed discrete-time data (in months)
back to the original measurement scale (days). This conversion is not completely necessary;
estimates were similar when we fit discrete-time pooled logistic regression models compared
to estimates when we switched back to time measured in days and fit Cox regression models.
Note that, even after the data are converted back to the original measurement, the imputed
failure times may still be grouped. When we use Cox regression, we are thus fitting grouped
proportional hazards models (Tutz and Schmid (2016)). To account for ties, we used Efron’s
partial likelihood to approximate the discrete hazard model partial likelihood.

Although our analyses focused on Kaplan–Meier and Cox regression estimates, a strength
of our multiple imputation approach is that we could have also performed other estimation
procedures. For example, we estimated the cumulative incidence treating death as a compet-
ing risk and obtained similar results. As another example, instead of excluding those with
ART prior to enrollment, we could have applied a TDMI-like approach that incorporated
these patients in an analysis using an estimation procedure that accounted for left-truncation.
The flexibility of the TDMI approach to handle other estimation procedures is important be-
cause analyses of EHR data typically require addressing multiple problems simultaneously
(e.g., confounding, missing data and informative censoring). Methods for dealing with these
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other sources of bias could potentially be applied to the multiply imputed dataset without sub-
stantial modification. Of course, the performance of our approach may vary across analysis
methods, as we saw in this study.

In our example dataset there were only errors in two variables, date of ART and date of
ADE, so we did not illustrate how our TDMI approach performs when there are errors in
the predictor variable beyond those induced by errors in the date of ART initiation. Although
we believe general performance would be similar to that seen in the analyses presented here,
computation would be more complicated and require at least one additional model.

Future research will consider improving the efficiency of these methods by applying prin-
ciples of two-phase sampling, such as oversampling exposures or events that are rare or con-
sidered a priori to be more error-prone.
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