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The calculation of quality of care measures based on electronic med-
ical records (EMRs) may be inaccurate because of incomplete capture of
past services. We evaluate the influence of different statistical approaches
for calculating the proportion of patients who are up-to-date for a preven-
tive service, using the example of colorectal cancer (CRC) screening. We
propose an extension of traditional mixture models to account for the uncer-
tainty in compliance which is further complicated by the choice of various
screening modalities with different recommended screening intervals. We
conducted simulation studies to compare various statistical approaches and
demonstrated that the proposed method can alleviate bias when individuals
with complete prior medical history information were not representative of
the targeted population. The method is motivated by and applied to data from
the National Cancer Institute–funded consortium Population-Based Research
Optimizing Screening through Personalized Regiments (PROSPR). Findings
from the application are important for the evaluation of appropriate use of
preventive care and provide a novel tool for dealing with similar analytical
challenges with EMR data in broad settings.

1. Introduction. Accurate assessment of preventive services in health-care systems and
the factors that influence compliance with those services is critical for monitoring and im-
proving health-care delivery in the United States (Kohn et al. (2000)). An important first
step in evaluating the receipt of preventive care services is the identification of the target
population, the set of patients for whom providers and organizations are accountable for the
quality of care (Landon, O’Malley and Keegan (2010)). However, this population is often
dynamic as patients move in and out of various health systems and therefore is difficult to
define clearly. For example, patients might have received services outside the current health
system without documentation in the current data systems. In addition, long windows of time
are often required to assess patient adherence to recommended services. Thus, the calculation
of quality-of-care measures based on electronic medical records (EMR) may be inaccurate
because the history of services received is incompletely documented. Such a challenge is
widely encountered when assessing a variety of preventive services, including screening for
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FIG. 1. Ascertainment of UTD status for CRC screening at the reference date of January 1st, 2010, for seven
hypothetical patients. Patient 1: UTD by FIT; Patient 2: UTD by flexible sigmoidoscopy; Patient 3: UTD by
colonoscopy; Patient 4: not UTD; Patient 5: UTD is uncertain for all modalities; Patient 6: UTD is uncertain
by sigmoidoscopy and colonoscopy; Patient 7: UTD is uncertain by colonoscopy.

breast, cervical, colorectal or lung cancer, immunization for children and adults and those
who switch to a different health system when entering Medicare at age 65.

In this manuscript we evaluate the influence of different statistical approaches for calcu-
lating the proportion of patients up to date for a preventive service, using the example of
colorectal cancer (CRC) screening. CRC screening illustrates several key analytic challenges
to ascertain up-to-date status. National policy groups recommend screening average-risk indi-
viduals with multiple modalities, including high-sensitivity fecal immunochemical or occult
blood testing (FIT/FOBT), flexible sigmoidoscopy or colonoscopy (Lin et al. (2016)). Deter-
mining up-to-date status for screening, therefore, requires taking into account the multiple
screening modalities currently available for CRC. In addition, screening intervals vary de-
pending on the test used and its results, such as annually for a FIT/FOBT and every 10 years
for a colonoscopy for an average-risk individual or more frequent colonoscopies for some
higher-risk populations. For any individual, therefore, up-to-date status for screening relies
upon having accurate ascertainment of prior screening history. However, even health-care
systems that have been using EMRs for a long time may not have 10 years of retrospective
information on all current patients which is the maximum length of CRC screening inter-
val for any modality. Up-to-date screening status is often incomplete in EMRs for quality
measure calculation, and because such incompleteness is often related to individual charac-
teristics, we cannot assume the data are missing completely at random (Chubak and Hubbard
(2016)). Figure 1 illustrates different scenarios for ascertaining patients’ up-to-date screening
status at the beginning of the calendar year 2010 when the proportion of the patients who are
up to date for screening is calculated. The first three patients are up to date by each of the
three modalities, respectively, based on historical information in EMRs prior to 2010, and the
fourth patient had no screening in the prior 10 years of enrollment. For each of the remaining
three patients, the status is ambiguous because the enrollment period is shorter than the inter-
val for which a specific screening modality is recommended, and patients might, potentially,
have received service prior to enrollment in the current health system. Various approaches can
be considered for calculating preventive service up-to-date proportion with data from EMRs.
For CRC screening, one may simply determine up-to-date status for all screening-eligible
patients based on the known prior screening information available in the EMR regardless of
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their length of enrollment in the health-care system (Klabunde et al. (2016)). This approach
may lead to an underestimation of up-to-date proportion because individuals with prior test-
ing done outside their current health system are not be counted. In a regression model where
up to date for screening status is considered as a predictor or an outcome, this approach
may also lead to biased estimation because of misclassification in this variable. Alternatively,
one may specify a targeted population by focusing on people with a specific length of en-
rollment, for example, in a health plan for a number of consecutive years (Brunelli et al.
(2013), Shortreed et al. (2016)). This approach has been shown to lead to different estimates
of screening rates when inclusion criteria differ, and the selected patients, arguably, reflect the
true population for which the health-care system is accountable in terms of administration of
screening (Landon, O’Malley and Keegan (2010)). Further investigations on the impact of
various assumptions on estimations of up-to-date status are warranted, and an alternative ap-
proach is needed to better identify individuals in need of screening services and to improve
modeling of screening compliance.

To address these complications in CRC screening, we propose a statistical-modeling-based
approach to account for missing EMR information on receipt of preventive services, using
CRC screening as an example. By modeling an individual’s probability of receiving each
screening modality at various time points prior to enrollment, the approach may lead to im-
proved estimates of screening rates and better-calibrated regression models that aim to iden-
tify factors associated with adherence to screening, compared with the aforementioned exist-
ing approaches. While there is vast literature on missing data approaches (Little and Rubin
(2014)), limited methods are available to account for complicated scenarios of missing data,
such as those encountered in the CRC screening setting. Appropriate statistical approaches
are needed to account for the uncertainty of whether individuals screen at all during a tar-
get period which is further complicated by the choice of various screening modalities and
different recommended subsequent screening intervals. Hubbard et al. (2017) considered a
finite mixture model approach to account for potential misclassification in the test indica-
tion of colonoscopy using EMR data. The implications of such misclassification for EHR-
based screening utilization estimates have also been investigated (Hubbard, Chubak and Rut-
ter (2014)). Our approach estimates the probability of being up to date for any screening
by calculating the probabilities of receiving each modality of screening within the modality-
specific interval preceding the time of evaluation. We cast the problem into the framework
of traditional mixture models (Farewell (1982), Sy and Taylor (2000)), where we consider
the proportion of patients without a screening event as the “cure fraction” and extend the
original model to incorporate multiple screening modalities and their various intervals into
the “uncured fraction.” We also provide variance estimators of the resulting screening pro-
portions and parameters in a propensity-augmented logistic regression model estimated si-
multaneously as the cure-fraction model. The methods are applied to data from the NCI-
funded consortium Population-Based Research Optimizing Screening through Personalized
Regimens (PROSPR). The overall aim of PROSPR is to conduct multisite, coordinated, trans-
disciplinary research to evaluate and improve cancer screening processes. The 10 PROSPR
research centers reflect the diversity of the U.S. delivery system organizations. Our study
uses data derived from two PROSPR integrated health-care systems involved in studying the
CRC screening process (Tiro et al. (2014)). Findings from this application are important for
the evaluation of appropriate use of preventive care and provide a novel tool in dealing with
similar analytical challenges using EMR data in broad settings.

The manuscript is organized as follows: We introduce notation and model assumptions in
Section 2. We describe our estimation and inference procedures for the age-specific screening
rates of a screening program in Section 3. We illustrate how to use estimated individual up-
to-date probability in regression models for identifying factors associated with being up to
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date for screening. The results of simulation studies evaluating the proposed procedures and
comparisons among various analytical strategies are presented in Section 4. In Section 5 we
illustrate our methods with PROSPR data.

2. Models for CRC screening.

2.1. Notation and setup. Here, we consider a broad definition of up to date for screening
to mean receiving a test in the recommended time window regardless of the indication of
the test (Burnett-Hartman et al. (2016)). Consider, for evaluating screening up-to-date pro-
portion, a target population of n individuals is eligible for screening. Assume there are M

mutually exclusive scenarios for screening. In the specific context of CRC screening, all in-
dividuals aged 50 to 75 are eligible for screening and constitute the target population, and
M = 4 with the first three types of events representing up-to-date screening by a fecal blood
test, sigmoidoscopy, colonoscopy and the M th category, representing the no-testing group,
or screening-eligible individuals who are not up to date by any of the testing modalities.

Denote by Y a random matrix of n by M dimension with element

Yij =
{

1 if the ith subject is up to date for j th screen modality at the time of evaluation;

0 otherwise;

for j = 1, . . . ,M − 1, i = 1, . . . , n. Individuals with no prior screening are considered in the
M th category, YiM = 1 if Yij = 0 for all j �= M . Y thus has a multinomial distribution with
πj = P(Yij = 1) and

∑M
j=1 πj = 1. Note that Y represents the true screening status and, due

to incomplete information in EMR, it is not always observed for all.
Since a prior screening event is ascertained by looking back from the time of evaluation,

we consider a composite backward failure time T ∗
ij , which is the time from the date when

screening receipt is evaluated (time 0) to the time that the j th type of prior test/procedure
is observed, for j = 1, . . . ,M − 1, conditioning on Yij = 1, and T ∗

ij = ∞ for j = M . We
note that in this notation, as time increases it indicates going further back into the past.
Let Ci denote the censoring time for individual i, that is, the farthest time in history that
an individual has data available. A similar idea with backward recurrence time models
was considered in estimating trends in receipt of colonoscopy before age 50 (Rutter et al.
(2015)).

Time to a prior observed screening event T ∗
ij can be censored, for example, by an indi-

vidual’s new enrollment into a health-care setting and capacity to ascertain screening history
electronically from existing medical records in the health system. In addition, let aj denote
the upper limit of the time window in which the j th type of the test can occur for an indi-
vidual to be considered up to date. aj is often related to the recommended screening inter-
val and initial age of screening specific to the j th modality, for example, for colonoscopy
aj = 10 years. For the j th screening modality, let Cij = aj ∧ Ci . The observed time of the
j th screening event in the past is denoted as Tij = T ∗

ij ∧ Cij , and δij = 1 if T ∗
ij ≤ Cij (i.e.,

Yij = 1 and Yik = 0 for j �= k). Let δi = ∑M−1
j=1 δij , and denote Vi an indicator for screening

up-to-date ascertainment, Vi = δi + (1 − δi)I (maxj (aj ) ≤ Ci). When Vi = 1, either one of
the test modality is observed or none is observed within the upper-limit of screening inter-
val.

2.2. Model specification. Let Zij be a covariate vector for subject i that predicts the
choice of screening modality j . Our key models of interests are multinomial incidence mod-
els (Kleinbaum and Klein (2002)) for j = 1, . . . ,M − 1,

(1) log
[

πj (zij ;α)

πM(zij ;α)

]
= α

T

j zij ,
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TABLE 1
A List of Variables used in Model Specification

Variable Interpretation

Y true screening status, partially known
V indicator if Y is known from the data
T ∗
j time to a prior observed screening test of modality j , partially known

C censoring time due to membership enrollment
aj recommended screening interval for modality j

Tj minimum of T ∗
j , Ci and aj , fully known

δj censoring indicator equals 1 if T ∗
j is observed.

zj covariates related the j th modality in the multinomial incidence model for Y
xj covariates related the j th modality in the survival model for T

where πk(zik;α) = P(Yik = 1 | zik). For a specific screening modality, the likelihood of ob-
serving receipt of the test is dependent on the length of the time window that an individual
remains up to date for a given test and the length of enrollment of the patient. Therefore, for
each screening type j , j = 1, . . . ,M − 1, a statistical model for T ∗

ij in relation to predictor
Xij can then be specified with a survival model,

(2) P
(
T ∗

ij > t |Xij = xij , yij = 1
) = T0

{
log

[
H0j (t)

] + β
T

j xij

}
I (yij = 1),

where βxj are the regression parameters associated with xij , T0 is a specific distribu-
tional function and log[H0j (t)] is a unknown monotonic increasing function. Model 2 in-
cludes both the popular Cox model (Cox (1975)) and other class of linear transformation
model, such as the proportional odds model (Cheng, Wei and Ying (1995)), as special
cases.

A brief outline of variables defined in the model specification is summarized in Table 1.

3. Estimation.

3.1. Estimating up-to-date screening rates. Let β = (β
T

1, . . . ,β
T

M−1)
T

with length pβ ,

α = (α
T

1, . . . ,α
T

M−1)
T

with length pα , θ = (β
T
,α

T
)

T
. Note that, when Vi = 0, Yij can be

either 0 or 1 because a screening event could have occurred in the time interval between Ci

and aj . Therefore, the corresponding observed likelihood is given by

L(θ) =
n∏
i

{
M−1∏

j

[
πj (zij ;αj )fj (tij |Yij = 1,xij ;βj )

]Yij

[
1 −

M−1∑
j

πj (zij ;αj )

]YiM
}Vi

×
{[

1 −
M−1∑
j=1

πj (zij ;α)

]
+

M−1∑
j=1

πj (zij ;αj )Sj (tij |Yij = 1,xij ;βj )

}1−Vi

,

where f and S represent density and survival functions of T ∗
ij , respectively. The likelihood

is the product of two components: the first component of the likelihood reflects the prob-
ability of observing each test modality in the past or of observing none among patients
whose screening status are observable from their EHR, while the second component reflects
such probabilities among these whose status are uncertain. As a likelihood based approach,
the validity of the estimation relies on the correct specification of all components of the
likelihood which implies that models of Y and T are correctly specified for each modal-
ity.



ESTIMATING SCREENING RATE WITH PARTIAL HISTORICAL DATA 1035

Since Yij is unknown for Vi = 0, we consider an iterative expectation maximization (EM)
estimation procedure. Specifically, in the kth iteration of the E-step, we calculate the condi-
tional expectation Y ∗

ij (θ
(k)) ≡ Pr{Yij = 1|Tij ,Vi, zij ,xij ; θ(k)} as

ViYij

(3)

+ (1 − Vi)
πj (zij ;α(k)

j )Sj (tij |Yij = 1,xij ;β(k)
j )

1 − ∑M−1
j=1 πj (zij ;α(k)

j ) + ∑M−1
j=1 πj (zij ;α(k)

j )Sj (tij |Yij = 1,xij ;β(k)
j )

,

where Sj (tij |Yij = 1,xij ;β(k)
j ) can be estimated as T0{log[β̂(k)

0 (tij )] + β̂
(k)T

j xij }. Note that
Sj (aj ) = 0 as screening beyond aj will not be considered as an up-to-date event. Here, Y ∗

ij

takes the observed Yij when Vij = 1 and when Vij = 0, we impute Yij with a conditional
probability based on the known information. In M-step we can obtain θ (k+1) by solving the
sets of (M − 1) × 2 estimating equations Uθ(θ) = (Uθ

1 (θ)T, . . . ,Uθ
M−1(θ)T)T = 0, where the

j th component is

Uθ
j (θ) =

(
Uα

j (θ)

U
β
j (θ)

)
≡

⎛⎜⎜⎝
∑
i

Uα
ij (θ)∑

i

U
β
ij (θ)

⎞⎟⎟⎠ with

Uα
ij (θ) = zij

{
Y ∗

ij

(
θ (k)) − πj (zij ;αj )

}
,

Uβ
ij (θ) = Y ∗

ij

(
θ (k)) ∫ aj

0

{
xij − n−1 ∑

i Y
∗
ij I (Tij ≥ s)xij exp(βT

j xij )

n−1 ∑
i Y

∗
ij I (Tij ≥ s) exp(βT

j xij )

}
dMij (s),

Mij (s) = Nij (s)−∫ s
0 I (Tij ≥ u) exp(β

T

j xij ) dH0j (u) and Nij (s) = I (Tij ≤ s), under the pro-

portional hazards model. Estimators of θ , denoted as θ̂ = (β̂
T

, α̂
T
)

T
, can be obtained when the

expectation maximization (EM) iterations converge by a criteria such as |θ (k+1) − θ (k)| ≤ ε

with a prespecified ε.
An empirical estimator of the up-to-date rate (UTD) P(YiM = 0) is then calculated as

̂UTD(̂θ) = 1

n

M−1∑
j=1

n∑
i=1

Ŷ ∗
ij (̂θ),

where Ŷ ∗
ij (̂θ) is obtained by replacing θ in equation (3) with θ̂ .

To make an inference for ̂UTD(̂θ), we first show that the process Ûθ = √
n(̂θ − θ)

is asymptotically equivalent to a sum of n i.i.d terms, n− 1
2
∑

i ηi(θ), where ηi(θ) =
{I θ (θ)}−1Uθ

i (θ) and I θ (θ) is the limit of the observed information matrix, a block diago-
nal with the j th diagonal element as

I θ
j (θ) =

⎛⎜⎜⎜⎜⎝
∂Uα

j (θ)

∂α1
. . .

∂Uα
j (θ)

∂αM−1

∂Uα
j (θ)

∂β1
. . .

∂Uα
j (θ)

∂βM−1

∂U
β
j (θ)

∂α1
. . .

∂U
β
j (θ)

∂αM−1

∂U
β
j (θ)

∂β1
. . .

∂U
β
j (θ)

∂βM−1

⎞⎟⎟⎟⎟⎠ .

We can then further show that ÛUTD = √
n{̂UTD(̂θ) − UTD(θ)} is asymptotically equivalent

to a sum of n i.i.d terms, n− 1
2
∑

i ξi(θ), where ξi(θ) = ∑
j {Y ∗

ij (θ) − πj } + AUTDηi(θ) and

AUTD = ∂UTD(θ)
∂θ . By the central limit theorem, ÛUTD converges weakly to a normal distri-

bution with zero mean and variance σ 2
UTD. A consistent estimator of σ 2

UTD can be estimated
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empirically as

σ̂ 2
UTD = 1

n

∑
i

ξ2
i (θ).

3.2. Estimating parameters in a regression model for failure of screening up-to-date rates.
Often, there is an interest in investigating the association of various factors W with not up to
date for screening. One may specify a regression model of the following form:

(4) log
[

P(YiM = 1|Wi = wi )

P(YiM = 0|Wi = wi )

]
= γ0 + γ

T

zwi ,

where γ = (γ 0,γ
T

w)
T

of length pγ are coefficients measuring the associations between co-
variates and failure of being up-to-date for screening. Note in the presence of model (4),
model (1) can be considered a working model for the purpose of deriving partially observed
Yij . Since YiM is not always observable, we show below how to address such a challenge in
estimation.

In the presence of censoring due to varying lengths of enrollment, the results from the
above procedure provide a probability score for up-to-date screening as

∑M−1
j=1 Ŷ ∗

ij (θ) for
each individual, and it can be used to estimate parameters in a regression model for up-to-
date screening, as specified in model (4) (Hubbard et al. (2017)). Estimators of γ , γ̂ , can be
obtained by solving the following estimation equation:

(5) Uγ (θ ,γ ) ≡ ∑
i

wi

{
1 −

M−1∑
j=1

Ŷ ∗
ij (θ) − exp(γ

T
wi)

1 + exp(γ
Twi)

}
= 0,

where Ŷ ∗
ij (θ) is obtained from fitting both the survival model and the incidence model as spec-

ified in equation (3). To make an inference for γ̂ (̂θ), it can be shown that the process Ûγ =√
n[γ̂ (̂θ) − γ (θ)] is asymptotically equivalent to a sum of n i.i.d terms, n− 1

2
∑

i ζi(θ ,γ ),
where ζi(θ ,γ ) = T {I (θ ,γ )}−1Ui(θ ,γ ), with Ui(θ ,γ ) = (U θ

i (θ),U
γ
i (θ ,γ )), T is a pγ ×

(pβ + pα + pγ ) matrix, with elements Tjk = 1 for j = pβ + pα + 1, . . . , pβ + pα + pγ ,
k = j and Tjk = 0 otherwise, and I θ,γ (θ ,γ ) is the limit of the observed information matrix
of the form

I θ,γ (θ ,γ ) =
(

I θ,θ 0
I θ,γ I γ ,γ

)
,

where I θ ,γ is a pγ × (pα + pβ) matrix with its jkth element as the limit of
∂Uγ (θ,γ )(j)

∂θ (k)
, for

j = 1, . . . , pγ , k = 1, . . . , pα + pβ and I γ ,γ is a pγ × pγ matrix with the jkth component

as I
γ ,γ
jk = ∂Uγ (θ ,γ )(j)

∂γ (k)
. By the central limit theorem, Ûγ converges weakly to a normal dis-

tribution with zero mean and variance σ 2
γ . A consistent estimator of σ 2

γ can be estimated
empirically as

σ̂ 2
γ = 1

n

∑
i

ζ 2
i (θ).

4. Simulation. We conducted simulation studies to examine the finite sample perfor-
mances of our proposed procedures and the impact of different analysis strategies on esti-
mation. We considered a screening cohort of size n = 5000 with three possible screening
modalities. We first generated two covariates that are associated with the choice of screening
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modality as well as timing of a screening event—Z1, a binary variable from the Bernoulli dis-
tribution with a probability of 0.2, and Z2, a standard normal random variable. The screening
modalities simulated in the cohort were generated as a multinomial incidence model as spec-
ified in equation (1). Conditioning on the modality is chosen, and time from baseline (time of
screening rate calculation) to prior test for each modality was generated following equation
(2) with covariates X1 = Z1 and X2 = Z2. Time between baseline to when a patient enrolled
in the health-care system was generated from a Gamma distribution with rate parameter set
to 1 and shape parameter selected for two scenarios. In Scenario I the shape parameter is
set to a constant of 10, representing a population with a majority of individuals enrolled for
long periods of time (mean enrollment period = 10). In Scenario II the shape parameter was
generated for each individual as a function of Z1 and Z2. While the mean enrollment time is
similar to Scenario I (mean enrollment period = seven years), the length of enrollment was
dependent on the covariates of interest. The observed time was then taken to be the minimum
of time to screening, time to enrollment or years of available data recorded, whichever occurs
the latest. This represented a scenario with informative censoring, and the approach excluded
patients with shorter enrollment times could lead to biased results. Additionally, we consider
a scenario (Scenario III) where data were generated the same way as in Scenario II, except
that the model was fit with Z1 and Z∗

2 , where Z∗
2 was generated as Z2 plus a random normal

variable with mean 0 and standard deviation of 0.5. This represents a setting where all models
were misspecified as the error-prone version of the covariate was used in fitting the models.
Supplementary Table 1 (Zheng et al. (2020)) shows the parameters used for various models.
In Scenario I the up-to-date screening status could not be determined by 34% of the patients,
and in Scenarios II and III the rate is 45%.

We compared the proposed estimation procedures (A: Estimated) to alternative analytical
strategies for dealing with potential missing data in estimating the rate of up-to-date screening
in the population as well as in estimating parameters in a regression analysis of up-to-date
screening. The first comparison method used the full population of individuals, irrespective
of membership duration/time under observation, and only used documented tests/procedures
for ascertaining screening up to date (B: Observed). With this approach individuals without
any documented test/procedure within the time frame recommended by the guideline are
considered not up to date. The second comparison approach, which might be an extreme
alternate strategy, calculated up-to-date probabilities only among individuals who have been
observed for a sufficient length of time so that all prior tests fall within the screening interval
of interest (C: Long Enrollees). In the case of CRC screening, ideally, patients need to have at
least 10 years of data availability so that their prior tests within the maximum recommended
screening interval, such as for colonoscopy, are captured. Therefore, in the simulation we also
calculated up-to-date rates by restricting analyses to data from individuals whose enrollment
times were longer than the minimum of 10 years prior to current evaluation time.

As shown in Table 2, in Scenarios I and II, all point estimates of regression parameters
for the up-to-date screening model and screening rates were very close to the true parame-
ters under both scenarios for our proposed approach. The asymptotic-based standard error
estimators approximated the empirical standard errors well, with empirical coverage levels
of the 95% confidence intervals close to the nominal level for most of the parameters. A
slightly conservative estimate of the standard error was observed for the up-to-date screening
rate for sigmoidoscopy. For Scenario III the coverages were similar for the screening rate
estimators; however, the inference procedure was not valid for the regression parameters.
Table 3 provides comparisons among different analytical approaches. Under both Scenar-
ios I and II, Approach A, our proposed model-based approach, yielded essentially unbiased
estimates and the lowest mean squared error (MSE). Approach B, which ignored potential
unobserved screening events due to short observable time intervals, led to substantial bias



1038 Y. ZHENG ET AL.

TABLE 2
Finite sample performance of proposed method: Estimates (Est.), Empirical Standard Deviation (SDemp),

Analytical Standard Error (SEana) and 95% coverage probability (CP) for screening rates (PnUTD (nUTD: not
up to date), Pcolonoscopy, Psigmoidoscopy, PFIT/FOBT), regression parameters (γ0, γ1, γ2) in the failure of

up-to-date screening model based on 500 simulation studies of a cohort (n = 5000)

True Est. SDemp SEana CP

Scenario I
PnUTD 0.375 0.377 0.007 0.008 0.965
Pcolonoscopy 0.299 0.299 0.007 0.007 0.963
Psigmoidoscopy 0.046 0.045 0.003 0.005 0.980
PFIT/BOBT 0.279 0.279 0.006 0.007 0.967
γ0 −0.548 −0.542 0.037 0.039 0.951
γ1 −0.328 −0.335 0.080 0.082 0.956
γ2 −0.984 −0.995 0.040 0.042 0.951

Scenario II
PnUTD 0.375 0.376 0.008 0.009 0.950
Pcolonoscopy 0.299 0.299 0.008 0.009 0.942
Psigmoidoscopy 0.046 0.045 0.003 0.005 0.986
PFIT/FOBT 0.279 0.279 0.006 0.007 0.964
γ0 −0.548 −0.545 0.044 0.047 0.948
γ1 −0.328 −0.334 0.087 0.092 0.954
γ2 −0.984 −0.989 0.053 0.054 0.952

Scenario III
PnUTD 0.375 0.375 0.008 0.039 0.939
Pcolonoscopy 0.299 0.300 0.008 0.014 0.945
Psigmoidoscopy 0.046 0.045 0.003 0.006 0.988
PFIT/FOBT 0.279 0.279 0.006 0.031 0.959
γ0 −0.548 −0.527 0.043 0.163 0.910
γ1 −0.328 −0.313 0.088 0.143 0.948
γ2 −0.984 −0.751 0.044 0.134 0.004

(underestimated screening rates and attenuated covariate effects) and high MSE in both esti-
mation of up-to-date rates and the regression parameters of up-to-date screening. Approach
C, restricting to long-term enrollees, led to unbiased estimates but higher MSE compared to
Approach A under the first scenario when censoring by enrollment time was noninformative.
However, bias was substantial in the second scenario when enrollment length was associated
with the covariate of interest. These results suggest that, in a population where the major-
ity of patients tend to stay enrolled within the health system for long periods of time and
the enrollment length is independent of factors related to the choice of screening modality
and compliance, one may consider simple methods of restricting to the long enrollees. On
the other hand, in a population with many patients whose enrollment lengths may be re-
lated to screening decisions, restricting to long-term enrollees not only leads to significant
loss of power but also introduces biases, since such a group might not represent the under-
lying screening population. Finally, under Scenario III with misspecified models, we found
that our proposed estimators were quite robust compared with Approaches B and C: they
still provided essentially unbiased estimates for the four screening rates, despite the biased
estimate for the effect of Z2 on the screening up-to-date status.

5. Example. We consider estimating up-to-date screening rates at three health-care sys-
tems within PROSPR: Kaiser Permanente (KP) Washington and KP Northern and Southern
California (Tiro et al. (2014)). These integrated health-care systems provide health insurance
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TABLE 3
Simulation results comparing proposed methods with alternative approaches: Bias (%) and 100× mean squared

errors (MSE × 100) for screening rates (PnUTD, Pcolonoscopy, Psigmoidoscopy, PFIT/FOBT), regression
parameters (γ0, γ1, γ2) in the failure of up-to-date screening model by of three estimating approaches: (A)

proposed method (Estimated); (B) based on the observed fraction (observed); and (C) take only these enrolled
for over 10-years

A: Estimated B: Observed C: Long Enrollees

Parameter Bias% MSE × 100 Bias% MSE × 100 Bias% MSE × 100

Scenario I
PnUTD 0.332 0.001 4.539 0.029 0.371 0.006
Pcolonoscopy 0.008 0.000 −4.891 0.022 0.08 0.005
Psigmoidoscopy −2.644 0.000 −4.799 0.001 −3.132 0.001
PFIT/FOBT −0.021 0.000 −0.059 0.000 −0.066 0.005
γ0 −1.050 0.014 −16.572 0.830 −1.169 0.151
γ1 2.146 0.034 25.444 0.633 4.155 0.798
γ2 1.067 0.029 6.794 0.462 1.746 0.216

Scenario II
PnUTD 0.165 0.003 18.807 0.499 −23.433 0.794
Pcolonoscopy 0.030 0.002 −22.114 0.439 −9.074 0.094
Psigmoidoscopy −1.411 0.000 −7.931 0.001 6.086 0.005
PFIT/FOBT −0.012 0.000 −0.257 0.000 40.204 1.284
γ0 −0.475 0.074 −70.970 15.067 −10.458 1.153
γ1 1.274 0.178 108.455 11.257 51.424 5.766
γ2 0.693 0.137 33.019 10.559 16.140 3.554

Scenario III
Pns 0.065 0.007 19.026 0.514 −23.228 0.782
Pcl 0.365 0.007 −22.166 0.443 −9.029 0.097
Psig −1.633 0.001 −7.961 0.002 6.785 0.007
PFIT 0.147 0.004 −0.141 0.004 40.132 1.282
γ0 −4.735 0.274 −73.361 16.286 2.714 0.937
γ1 −2.811 0.777 89.264 9.241 43.129 5.874
γ2 −23.082 5.332 −0.357 0.102 −14.349 2.756

coverage and care to over seven million members in Washington State, Northern California
and Southern California. The study population includes patients aged 50–89 years who were
enrolled from January 1, 2010, through December 31, 2013. Patients with a known history
of partial or total colectomy or invasive CRC were excluded. Patient demographics, health
status and health-care utilization data were obtained from the system’s electronic clinical and
administrative databases and submitted in standardized and structured formats to PROSPR’s
central data repository. Patient data for prior screening that occurred within the health-care
system was retrospectively available in electronic databases up to 2006 for KP Washington
and up to 1999 for KP California. For more details about PROSPR data and the research
centers and health-care systems participating in the CRC screening component of PROSPR,
see Tiro et al. (2014).

We used longitudinal data from the PROSPR data repository to calculate up-to-date screen-
ing rates. The screening rates were calculated at January 1st, 2010, among individuals who
enrolled in 2010, using screening history information prior to cohort entry. We consider a
patient up to date for screening if he/she had a colonoscopy within 11 years prior to cohort
entry, a sigmoidoscopy within six years or a FIT/FOBT within 1.25 years. The time windows
are more liberal than those recommended by USPSTF to account for the potential time lag in
scheduling and reporting, and such lag is often not considered clinically significant. Due to
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FIG. 2. Comparing up-to-date for screening rates calculated from observed record (observed), observed record
for individual enrolled four to five or ≥ 10 years, respectively, or, based on the proposed method (estimated), by
different age groups and research centers. Results are for KP California.

the lack of information on the indication of colonoscopy in our data, we did not distinguish
between surveillance and screening colonoscopies. Individuals require a screening interval
for colonoscopy between three to five years but received a colonoscopy between five to 10
years would still be counted as up to date for screening. This may lead to an overestimation of
the rate of up to date for screening. For each screening modality event time is defined as the
time from January 1st, 2010, back to a prior test within the specific time window, and such
time can be censored at the time an individual initially enrolled in the health system. In addi-
tion, we created a mixed category for individuals, who had both a sigmoidoscopy within the
past five years and an FOBT test within three years and were not up to date by colonoscopy,
to be consistent with the current screening recommendation. We stratified the analysis by
PROSPR research centers (KP Washington and KP California) and age groups of 50 years,
51–54, 55–59, 60–64, 65–69 and 70–75 years at the time of cohort entry. The stratification
allows for differential rates and covariate effects by age and health-care system.

Among individuals aged 50–75 years in the 2010 cohort, 117,661 were from KP Wash-
ington and 1,663,811 were from KP California. Median length of prior available data in the
repository was 48 months (IQR: 24–48 months) for KP Washington and 132 months (IQR:
102–132 months) for KP California. Predictors in models for type of screening modality,
compliance and time to screening tests included sex, body mass index (BMI), race/ethnicity,
Charlson comorbidity index and median household incomes from census data in the zip-code
of residence, all measured at the year of cohort entry. Screening rates were calculated using
the procedure described in Section 2 and data based on historical tests recorded prior to 2010.
For comparison, we also calculated observed rates within the subsets of patients who had four
to six years of enrollment in KP California and KP Washington and, separately in KP Cal-
ifornia, for those with 10 or more years of enrollment. Screening rates varied by different
approaches, age groups and research centers (Figure 2 and Figure 3). At KP California (2),
at a younger age of 51–54 years, 33% of patients were estimated as without an up-to-date
screening event (42% observed). Among patients who were up to date for screening, most
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FIG. 3. Comparing up-to-date for screening rates calculated from observed record (observed), observed record
for individual enrolled four to five or ≥ 10 years, respectively, or, based on the proposed method (estimated), by
different age groups and research centers. Results are for KP Washington.

individuals were estimated to have received a FIT/FOBT alone (26% observed vs. 29% esti-
mated) or a colonoscopy (16% observed vs. 19% estimated). The remaining individuals were
estimated to have received screening either from sigmoidoscopy (12%) or by a combination
of tests (7%). In contrast, at KP Washington (3) 42% were estimated to not be up to date for
screening (60% observed). Among individuals up to date for screening at KP Washington,
most patients had received a colonoscopy (22% observed vs. 36% by estimation), followed
by a FIT/FOBT (9% observed vs. 11% estimated), a sigmoidoscopy (2% observed vs. 3%
estimated) or a mixed modality (7% observed vs. 9% estimated). For both KP California and
KP Washington adherence was higher in older age groups; however, there were still an esti-
mated 19% at KP California and 28% at KP Washington who were not up to date at 70–75
years of age. Across all age groups the estimated percentage of individuals without an up-
to-date screening test tended to be lower than the observed percentage among individuals
enrolled between four to five years. For KP California the estimated percentages were quite
comparable with the observed percentages among patients enrolled for over 10 years. The
results suggested that the proposed procedure was useful at recovering potential tests that
might have occurred prior to patients’ enrollment in the current care system and provided
better estimates of screening delivery in the population. Such improvement was especially
helpful in populations with shorter periods for recording prior tests.

We also evaluated associations between patient characteristics and their likelihood of fail-
ure to be up to date for screening and compared the impact of different approaches for dealing
with missing data in prior test information on such evaluations. We calculated age-specific
odds ratios (ORs) based on either only the recorded prior tests (A: Observed) or the expected
values for screening calculated from fitted models as in equation (5) (B: Estimated). Asso-
ciations varied to some degree across age groups, but trends were similar (data not shown),
and stronger significant associations were more often observed with models using estimated
screening status compared with observed screening status. To ease comparisons, we calcu-
lated the age-adjusted ORs from the age-specific models using meta-analytic methods. The
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TABLE 4
Odds ratio (95% Confidence Intervals) for failure of up-to-date screening results from KP California and KP

Washington averaging age groups. Estimates are based on multivariate models using estimated weights for being
without an up-to-date screening as the outcome

KP California KP Washington

Observed Estimated Observed Estimated

Gender: Male
Female1 1.11 (1.08, 1.14) 1.00 (0.98, 1.01) 1.00 (1.00, 1.00) 1.00 (0.99, 1.01)
Charleson: 0
1 1.00 (0.97, 1.04) 1.01 (0.99, 1.03) 0.90 (0.83, 0.99) 0.87 (0.77, 0.99)
2 0.90 (0.86, 0.94) 0.99 (0.97, 1.01) 0.84 (0.73, 0.98) 0.85 (0.74, 0.98)
≥3 0.99 (0.95, 1.05) 1.01 (0.98, 1.04) 1.00 (1.00, 1.01) 1.00 (0.94, 1.07)
Race: White
Black 1.08 (1.02, 1.16) 1.09 (0.96, 1.23) 0.99 (0.97, 1.01) 1.10 (1.01, 1.19)
Asia 1.10 (1.05, 1.15) 0.98 (0.92, 1.04) 1.01 (0.98, 1.03) 0.90 (0.82, 0.99)
Pacific 1.29 (1.18, 1.4) 1.08 (0.98, 1.19) 1.46 (1.04, 2.03) 1.42 (1.04, 1.95)
Mix 0.95 (0.87, 1.05) 1.00 (0.99, 1.00) 0.90 (0.81, 1.00) 0.98 (0.96, 1.00)
Hispanic 1.06 (0.99, 1.13) 0.99 (0.98, 1.01) 1.12 (1.01, 1.24) 1.09 (1.00, 1.18)
BMI: <18.5
[18.5–25) 0.91 (0.82, 1.01) 0.81 (0.67, 0.98) 0.83 (0.70, 0.99) 0.79 (0.63, 0.98)
[25,30) 0.97 (0.87, 1.08) 0.91 (0.83, 1.00) 0.92 (0.83, 1.01) 0.90 (0.80, 1.01)
[30,35) 1.06 (0.95, 1.18) 0.97 (0.91, 1.04) 1.01 (0.97, 1.05) 0.99 (0.92, 1.07)
≥ 35 1.20 (1.07, 1.33) 1.07 (0.95, 1.20) 1.00 (1.00, 1.01) 0.99 (0.98, 1.01)
Income: <53k
53–70k 0.88 (0.85, 0.90) 1.00 (0.99, 1.01) 1.03 (1.00, 1.05) 1.05 (1.00, 1.10)
≥70k 0.93 (0.90, 0.96) 0.99 (0.95, 1.03) 1.00 (0.99, 1.01) 1.00 (1.00, 1.01)

results are presented in Table 4. For both KP California and KP Washington, patients who
failed to be up to date for screening (compared to these who were up-to-date) tended to
have a higher comorbidity index (≥ 3) (compared to comorbidity index = 0), be of Hispanic
ethnicity or a Pacific Islander (compared to white) and were severely obese or underweight
(compared to having normal weight). Up-to-date screening did not vary substantially by gen-
der. It appeared that, while there could have been discrepancies in screening rates estimated
from different approaches due to missing data in screening history, the covariate effects of
regression models of up-to-date screening were more comparable in this specific study. Our
proposed methods provide a way to conduct appropriate sensitivity analysis.

6. Discussion. Accurate assessment of the quality of preventive care is important, as it
provides health-care systems with the confidence that measurements indeed reflect the quality
of care delivered and that measurements are not faulty due to data quality. The identification
of patient populations for which preventive care interventions should be delivered when cal-
culating measures of quality of care can be complicated due to limitations in the availability
of current and prior history information in EMR systems, which often do not communicate
across institutions when patients change health plans or when an institution implements or
switches to new EMR systems from a paper system. To date, the literature does not provide
clear guidance on how simple approaches that ignore such missing data may impact both the
estimation of the rates of care delivery and the investigation of factors that influence compli-
ance.

In this manuscript we considered a statistical approach for evaluating whether a person is
up to date with a specific preventive care procedure, using a scientific motivating example of
colorectal cancer screening. The approach also allows for a more valid evaluation of factors
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that may impact up-to-date status. By estimating the probability of an individual having re-
ceived each of the available screening modalities during the specific time window for each
specific test, our approach is potentially able to correct for the misclassification of screening
status for individuals with missing data and also reduce the attenuation in regression parame-
ters due to potential misclassification. Illustrated with CRC screening, our proposed approach
can be modified for broader applications in other preventive care settings.

As a full likelihood-based approach, the validity of the estimates relies on correctly speci-
fying the multinomial model for the choice of screening modality and the survival model for
time to a prior test for each screening modality. Failure to include key predictors or mismea-
sured covariates in these models may lead to biased estimates. Using a proportional hazards
model implies that the covariate effects are stable over time, but such a model might be vi-
olated if the screening policy changes over time and the change impacts patient subgroups
differently. We also made the assumption that factors impacting screening decisions are rel-
atively stable during the enrollment period, such that covariates collected at study entry can
be used to predict the screening behaviors prior to cohort entry.

Our numerical studies and the analysis of PROSPR data provide important insights on
the practical impact of different approaches for estimating screening rates. When individu-
als have only limited prior history information in EMR systems, the approaches that ignore
potential missing information may introduce substantial bias and loss of statistical power.
Calculation based on the subset of individuals with complete prior history often alleviates the
bias, as long as these individuals are representative of the underlying screening population.
This seemed to be the case for KP California, where a substantial fraction of the popula-
tion indeed has EMRs for over 10 years and such a subgroup could yield estimates similar
to these from the proposed method. When a majority of the patients only have partial prior
history available to the research cohort, such as the case for KP Washington PROSPR data
repository, a calculation based on individuals having only four to five years of data might
underestimate screening rates especially for colonoscopy as tests may occur five to 10 years
prior to the enrollment. In this situation our proposed methods can assist in overcoming these
potential shortcomings.

There are future directions one may consider along this line of research. We have, in our
modeling and in an example using real-world data, considered only patient-level charac-
teristics. Often, screening delivery is influenced by factors at multiple levels, ranging from
patients, health-care providers and clinics to specific health-care systems. Therefore, incorpo-
rating information about patient interactions with these various levels of care delivery could
improve the fit of the model and further enhance our understanding of the quality of screening
delivery in health-care systems over time.
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SUPPLEMENTARY MATERIAL

Supplement: “Parameters used in the simulation” (DOI: 10.1214/20-AOAS1342SUPP;
.pdf). Supplementary tables referenced in Section 4 are available with this paper at the jour-
nal’s website.
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