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To analyze data from multisubject experiments in neuroimaging studies,
we develop a modeling framework for joint community detection in a group
of related networks that can be considered as a sample from a population of
networks. The proposed random effects stochastic block model facilitates the
study of group differences and subject-specific variations in the community
structure. The model proposes a putative mean community structure, which
is representative of the group or the population under consideration but is not
the community structure of any individual component network. Instead, the
community memberships of nodes vary in each component network with a
transition matrix, thus modeling the variation in community structure across a
group of subjects. To estimate the quantities of interest, we propose two meth-
ods: a variational EM algorithm and a model-free “two-step” method called
Co-OSNTF which is based on nonnegative matrix factorization. We also de-
velop a resampling-based hypothesis test for differences between community
structure in two populations both at the whole network level and node level.
The methodology is applied to the COBRE dataset, a publicly available fMRI
dataset from multisubject experiments involving schizophrenia patients. Our
methods reveal an overall putative community structure representative of the
group as well as subject-specific variations within each of the two groups,
healthy controls and schizophrenia patients. The model has good predictive
ability for predicting community structure in subjects from the same pop-
ulation but outside the training sample. Using our network level hypothesis
tests, we are able to ascertain statistically significant difference in community
structure between the two groups, while our node level tests help determine
the nodes that are driving the difference.

1. Introduction: Networks and neuroimaging data analysis. Network analysis has
received a plethora of multidisciplinary interest in the last few decades due to its various
scientific and industrial applications in a variety of fields including genetics, neuroscience,
ecology, economics and social sciences. A rapidly growing application area of network sci-
ence is in the analysis of neuroimaging data, where it is used to analyze anatomical and
functional connectivity among the brain regions (see Bullmore and Sporns (2009), Hutchison
et al. (2013), Rubinov and Sporns (2010), Sporns (2014), Fornito, Zalesky and Breakspear
(2013, 2015), Stam (2014), for reviews). In network neuroscience a typical approach is to
construct functional brain networks based on measures of interregional associations obtained
from various sources of measurements, including the functional magnetic resonance imaging
(fMRI) with blood oxygen level dependent (BOLD) signals (Bassett et al. (2011), Simpson,
Bowman and Laurienti (2013)). Modern neuroimaging experiments typically involve mul-
tiple subjects and/or multiple trials across the subjects. Various properties of the functional
network (e.g., modularity, connectivity, degree, rich club organization, clustering coefficient,
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average path length, small-world property) are then investigated and contrasted among the
subjects or groups of subjects (Bullmore and Sporns (2009), Van Den Heuvel and Pol (2010)).
The intersubject and intergroup variations in many such network metrics have been related
to cognitive ability and diseases in the literature (Bassett et al. (2011), Braun et al. (2015),
Stevens et al. (2012), Hutchison et al. (2013), Jones et al. (2012), Wang et al. (2013), Braun
et al. (2015), Yu et al. (2012), Lynall et al. (2010), Alexander-Bloch et al. (2012)).

A community or module of vertices in a network is defined as a group of vertices which
are more connected among themselves than they are to the rest of the network. Many real
world networks, including the functional brain networks, are known to exhibit community
structure, whereby the vertices in the network can be roughly divided into such communities
or modules. Several authors have uncovered intrinsic module structures in the functional or-
ganization of brain regions through network based analysis of spontaneous neuronal activity
in resting state fMRI (He et al. (2009), Meunier, Lambiotte and Bullmore (2010), Power et al.
(2011), Yu et al. (2011), Moussa et al. (2012)). The identified modules are consistent with
several functionally connected subsystems generating spontaneous activities, for example,
motor functions, auditory, visual, attention and default mode.

However, due to physiological differences among the subjects, responses to changing en-
vironmental conditions and variations in imaging instruments, the measured networks and,
consequently, the network community structures vary from subject to subject within a group
of subjects or even from trial to trial within a subject (Stevens et al. (2012), Simpson et al.
(2013), Moussa et al. (2012), Weber et al. (2013)). Often in neuroimaging studies, researchers
are interested in studying brain functional connectivity patterns in two groups of subjects; one
is a group of patients diagnosed with a certain condition, and the other group is healthy con-
trols. In such studies jointly analyzing these multisubject networks and comparing between
the two groups of networks is of interest (Zalesky, Fornito and Bullmore (2010), Ginestet,
Fournel and Simmons (2014), Chen et al. (2015), Stam (2014), Fornito, Zalesky and Breaks-
pear (2015)). In a typical experimental setup the subjects in the two groups serve as random
samples from these two populations. Hence, to facilitate comparison of populations beyond
those in terms of single-value network summary measures (e.g., modularity), it is important
to build statistical models for a random sample of networks from a population of networks.

Unfortunately, most of the literature on networks deal with a single instance of a network.
This is primarily due to the fact that network data collection usually involves observing a
network at one time point or tracking its evolution over time. However, modern application
of networks in neuroscience brings a unique challenge and opportunity in terms of multiple
instances of interactions among the same set of nodes through measurements on multiple
subjects. The central question then is how to quantify the uncertainty in community structure
due to subject specific variations within a group of subjects, so that two groups (populations)
of subjects can be statistically compared.

Simultaneously, the problem of statistically testing for differences in community structure
has received considerable attention recently in the neuroimaging literature (Alexander-Bloch
et al. (2012), GadElkarim et al. (2012), Fujita et al. (2014), Glerean et al. (2016), Kujala et al.
(2016)). These papers argue that differences between populations might not be well captured
using a single network property measure like modularity, but it might be more meaningful to
look at some measure of how different the module structures in the populations are. A per-
mutation test using the average of Normalized Mutual Information (NMI) between pairs of
network community assignments was proposed in Alexander-Bloch et al. (2012). GadElkarim
et al. (2012) used a nodewise community consistency measure between two community par-
titions, called “Scaled Inclusivity (SI)” and defined in Steen et al. (2011), to assess how con-
sistent a node’s module is in a subject network with a mean module assignment for the whole
group (obtained from community detection in the mean connectivity matrix). GadElkarim
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et al. (2012) then proposed statistical hypothesis tests based on the SI vectors for the two
groups. Glerean et al. (2016) first obtained a consensus partition across the group using a
“clustering of clusters” technique similar in function to module allegiance method in Braun
et al. (2015) and then determined SI of nodes across subjects with this consensus. The more
general problem of hypothesis testing involving networks in functional neuroimaging has
also been addressed in the literature (Ginestet, Fournel and Simmons (2014), Ginestet et al.
(2017), Narayan and Allen (2016), Chen et al. (2015)).

We approach these problems by developing methodology in the spirit of random effects
models, which will help us separate systematic variations between two populations of net-
works from variations due to subject specific “noise.” In particular, we propose a random
effects stochastic block model (RESBM) parameterized by a putative mean community as-
signment matrix, a transition probability matrix and appropriate block parameters. We de-
velop two estimation strategies to estimate the parameters and other quantities of interest, a
variational EM algorithm and a model-free two-step approach based on nonnegative matrix
factorization (NMF). Finally, we develop resampling based two-sample hypothesis tests to
compare two populations of networks in terms of their network level and node level commu-
nity structures.

The rest of the article is organized as follows. In Section 2 we describe the application to
schizophrenia data. In Section 3 we describe the random effects stochastic block model, the
estimation strategies and the two-sample hypothesis tests. Section 4 studies the estimation
and inference methods in simulated networks under several scenarios and several metrics.
In Section 5 we present our results on the schizophrenia data. Section 6 provides a brief
discussion.

2. Application to a resting state fMRI study on schizophrenia: COBRE dataset. We
apply the methods developed in this article to a publicly available dataset from resting state
fMRI experiments performed on subjects diagnosed with schizophrenia along with healthy
controls. Network analysis is a key tool employed in analysis of functional connectivity in
fMRI based experiments on schizophrenia (Lynall et al. (2010), Liu et al. (2008), Bassett
et al. (2012), Yu et al. (2012), van den Heuvel et al. (2010, 2013), Alexander-Bloch et al.
(2010, 2012)). Analysis of modular organization (community structure) of brain networks is
of particular importance in understanding schizophrenia, since it has been hypothesized that
schizophrenia is associated with neurodevelopment and evolution of brain which, in turn, is
influenced by modular organization (see Yu et al. (2012) and references therein).

The dataset we analyze is the COBRE dataset publicly available to download from Inter-
national Neuroimaging Data-sharing Initiative (INDI, 1000 Functional Connectomes project,
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html), that consists of anatomical mag-
netic resonance and resting state functional magnetic resonance scans from 72 patients di-
agnosed with schizophrenia and 75 healthy controls with ages ranging from 18 to 65 years.
A detailed description of experimental conditions and equipment is available in the afore-
mentioned webpage.

We used an automated preprocessing pipeline (Statistical Parametric Mapping’s (SPM)
default preprocessing pipeline for volume-based analyses (Penny et al. (2011))) implemented
in Matlab toolbox CONN (Whitfield-Gabrieli and Nieto-Castanon (2012)) with parameters
similar to earlier studies in Lynall et al. (2010) and Bassett et al. (2012). In particular, the steps
included, deleting first three volumes, correcting for head motion by functional realignment
and unwarping, functional slice timing correction, functional and structural image coregis-
tration, structural segmentation and normalization, functional normalization to the standard
Montreal Neurological Institute (MNI) space, functional outlier detection and spatial smooth-
ing with a Gaussian kernel with 6 mm full width at half maximum (FWHM). Temporal fil-
tering was performed with a high-pass filter with cutoff at 0.008 Hz. The regions of interest

http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
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FIG. 1. Exploratory analysis 1: Average values of global network summary measures with varying thresholds
(A) network density, (B) global clustering coefficient, (C) global efficiency, (D) modularity and (E) number of
communities. A boxplot of average strength of absolute correlation (without thresholding) is displayed in (F).

(ROIs) were determined from a whole brain image percellation into anatomically defined re-
gions described in the Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al.
(2002)). We exclude the cerebellum and vermis and concentrate on the remaining 90 corti-
cal and subcortical ROIs, similar to previous studies (He et al. (2009), Lynall et al. (2010),
Bassett et al. (2012)). Mean ROI time series was obtained for each of the ROIs by averaging
the time series in the voxels within the ROI.

2.1. Exploratory analysis. To compute functional connectivity among the ROIs, we first
decompose the mean time series in each ROI to a 4 scale maximal overlap discrete wavelet
transform (Percival and Walden (2006)) and, then, take the second scale which roughly cor-
responds to the frequency range 0.060–0.125 Hz. A ROI to ROI correlation matrix is subse-
quently constructed from the pairwise correlations among this scale 2 wavelet transformed
time series. The second scale of the wavelet transformation is chosen to strike a balance
between minimizing the impact of physiological noise that might confound the higher fre-
quencies and not having enough samples to compute correlation matrix in lower frequency
ranges (Lynall et al. (2010), Bassett et al. (2012), Alexander-Bloch et al. (2012)). Binary
connection matrices were created for each subject through thresholding at 12 levels between
0.05 and 0.60 with increments of 0.05, resulting in graphs of different network connection
densities.

2.1.1. Varying the thresholds. Figure 1(A)–(E) compare the average values of a number
of network global summary measures, namely, network density, global clustering coefficient,
global efficiency, modularity and number of communities in the two populations, the con-
trols and the patients over a range of threshold values. The modularity values and number of
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TABLE 1
Average modularity and average number of communities detected by modularity maximization (Spin-glass and

Louvain algorithms) in the two groups of subjects for different thresholds. The columns of p-value indicate
p-values obtained from Welch two sample t-test for difference in means. A ∗ and ∗∗ indicate statistically

significant at 5% and 1% FDR multiple comparison corrected levels

Threshold Modularity Communities

Controls Patients p-value Controls Patients p-value

0.05 0.0354 0.0339 0.0014∗∗ 3.20 3.08 0.0668
0.10 0.0689 0.0667 0.0013∗∗ 3.63 3.47 0.0875
0.15 0.1105 0.1067 0.0019∗∗ 3.98 3.87 0.2032
0.20 0.1615 0.1556 0.0028∗∗ 4.21 4.14 0.4581
0.25 0.2212 0.2141 0.0197∗ 4.72 4.52 0.0710
0.30 0.2814 0.2717 0.0483∗ 5.35 5.14 0.1681
0.35 0.3673 0.3520 0.0385∗ 7.00 6.18 0.0007∗
0.40 0.4681 0.4425 0.0262∗ 12.40 10.91 0.0291
0.45 0.5697 0.5368 0.0329∗ 23.95 21.08 0.0414
0.50 0.6576 0.6206 0.0282∗ 38.86 35.38 0.0903
0.55 0.7229 0.6798 0.0116∗ 54.09 49.21 0.0291
0.60 0.7609 0.7261 0.0373∗ 66.21 61.52 0.0250

communities were detected from modularity maximization using spin-glass (Reichardt and
Bornholdt (2006)) and Louvain algorithms (Blondel et al. (2008)) applied to the individual
subject networks. Generally, as we observe, the patient group on average had a higher network
density, higher global clustering coefficient, higher global efficiency and lower modularity as
compared to the control group across thresholds. Figure 1(F) presents a boxplot of the dis-
tribution of strength of absolute correlation across the subjects in control and patient groups,
respectively. This measure is sometimes reported in the literature as connection strength. The
higher efficiency and lower modularity imply the networks in patients are more integrated, as
opposed to controls where the networks are more modular and, hence, segregated (Rubinov
and Sporns (2010)). While this observation is in agreement with some previous studies on
schizophrenia, it is also in contrast to some findings (Yu et al. (2012)). We also see higher
clustering coefficient in the patients, but this observation could also be because of higher net-
work density. Since we thresholded all correlation matrices at the same value, the resulting
binary networks may have different densities. The optimal number of communities (as de-
tected by modularity optimization methods) appears to be the same for both groups until the
threshold of 0.35, after which the number of communities increases exponentially for both
groups and there is some difference in the number between the two groups (Figure 1(E)). Our
observation on reduced modularity yet similar number of communities is in agreement with
most previously reported studies in schizophrenia (Yu et al. (2012)).

For each of these thresholds, Table 1 presents the average of modularity values, the num-
ber of communities detected and p-values from Welch two sample t-test for difference in
means. We note that the modularity in patients is consistently lower than in controls across
all thresholds. The p-values indicate that modularity in patients is significantly lower at a 5%
False Discovery Rate (FDR, Benjamini and Hochberg (1995)) corrected significance level for
all thresholds, while it is lower at 1% statistical significance level at the first four thresholds.
However, the number of communities detected is not significantly different between the two
groups at the 5% FDR corrected significance level for any threshold value except 0.35.

In Figure 2 we assess the differences between the two populations in terms of distribution
of modularity and number of communities through boxplots and histogram plots, respec-
tively, at thresholds 0.1, 0.2 and 0.3. We note that at the threshold of 0.2, which we will
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FIG. 2. Exploratory analysis 2: (A)–(C) boxplots of distribution of maximum modularity across subjects for
three different thresholds—0.1, 0.2 and 0.3. (D)–(F) histogram plot of distribution of optimal number of commu-
nities across subjects for three different thresholds—0.1, 0.2 and 0.3.

primary focus on later in the main analysis, the boxplot of modularity for controls lies sub-
stantially above those of patients, giving an indication that the community structure might be
quite different at this threshold. On the other hand, at this threshold the distribution of the
number of communities appear almost identical with the most common number of commu-
nities being four in both cases.

2.1.2. Removing the effects of covariates. As a robustness check in our main analysis, we
will also perform the analysis on a “residualized” correlation matrix obtained by removing
the effect of some of the known covariates from the estimated correlations. For this purpose
we run a linear regression of the correlations pulled together across subjects with a number
of subject level covariates: age (continuous), gender (categorical with two levels, male and
female) and handedness (categorical with three levels, left, right and both). The overall effect
of the covariates were statistically significant (test for regression model: F statistic 68.38,
p-value < 0.0001); however, the very low adjusted R squared (0.00022) indicates the effect
of the covariates is rather low. Individually, all the covariates were found to be statistically
significant. To asses the effect of the covariates in our analysis, we take the residuals from
this regression and add the intercept term with it to create new residualized correlations. We
repeat the above exploratory analysis with these residualized correlations. We do not find any
significant differences in the global summary measures and, hence, omit those results. How-
ever, in Section 5.4 we run our methods on this residualized correlation matrix and compare
the results with those obtained from unresidualized correlation matrix.

3. Models and methods. Suppose we observe a sample of M graphs or networks
G = {G(1), . . . ,G(M)} with a common set of nodes V , of size n and from a population of
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networks. We assume the component graphs to be unweighted and undirected. Hence, to
each component graph in the sample G(m), we can associate an n × n square and symmetric
adjacency matrix A(m), such that A

(m)
ij is 1 if there is an edge between nodes i and j in G(m)

and 0 otherwise. For each component we can also define a normalized Laplacian matrix as
L(m) = D(m)−1/2A(m)D(m)−1/2, where D(m) is a diagonal matrix whose elements are the de-
grees of the nodes in the mth component defined as D

(m)
ii = ∑

j A
(m)
ij . Our primary goal in

this paper is to model the community structure of the population of networks from which the
sample is generated.

A problem closely related to our problem is that of community detection in multilayer
networks that has received considerable attention in the literature in the last decade (Kivelä
et al. (2014), Nicosia and Latora (2015), Boccaletti et al. (2014), Paul and Chen (2016a)). A
group of related interactions on the same set of nodes can also be represented as a multilayer
network, where each network layer or type of edge represents a component network of the
group. The multilayer networks observed in the nature are also known to exhibit community
structure (Mucha et al. (2010), Bazzi et al. (2016), Kivelä et al. (2014), Nicosia and La-
tora (2015), Boccaletti et al. (2014), Peixoto (2015)). The multilayer stochastic block model
(MLSBM) is a statistical model for such multilayer networks with community structure (Han,
Xu and Airoldi (2015), Valles-Catala et al. (2016), Paul and Chen (2016a), Stanley et al.
(2016), Peixoto (2015), Barbillon et al. (2017), Paul and Chen (2016b, 2020a)). Recently,
Bacco et al. (2017) proposed a more flexible multilayer mixed membership stochastic block
model that allows overlapping clusters. Most of the models described in the literature, with
the exception of the strata-MLSBM of Stanley et al. (2016), are constrained by the fact that
they assume the community structure to be the same across all layers. The estimation task is
usually then to estimate this consensus community structure by fusing information from all
layers.

However, in many situations, for example, in the multisubject neuroimaging studies, it may
be desirable to model the variation in community structure in different subjects along with
finding a consensus clustering. The existing models are not flexible enough to model such
data. In a partial remedy of the situation, Stanley et al. (2016) introduced the strata-MLSBM
where the community assignments vary across stratas but stay the same within the same
strata. Within a strata, they further constrain the block model probability matrix to be identical
across layers. A Bayesian nonparametric mixture model for jointly estimating community
structure and identifying groups of networks with similar community structure in a collection
of exchangeable networks was proposed in Reyes and Rodriguez (2016). A model similar in
spirit to our proposed model is the Bayesian hierarchical mixed membership stochastic block
model for an ensemble of networks proposed in Sweet, Thomas and Junker (2015); however,
the MCMC estimation method is more computationally expensive and difficult to apply for
larger networks and no hypothesis testing procedure was provided.

In this paper we propose a random effects stochastic block model (RESBM) to model
the community structure of a population of networks. The RESBM is a general and flexible
modeling framework which contains the MLSBM as a special case. The model assumes the
existence of a putative mean community structure which is a group level parameter represen-
tative of the group or the population, but is not necessarily the actual community structure
in any of the subjects in the sample. The true community assignment matrices for each of
the component networks are random variables generated from this putative mean community
assignment through the transition probability matrix. We formally define the model in the
next section.

3.1. Random effects stochastic block model. We define the n node k block RESBM as
follows. To each node i of a network, we associate a k dimensional community assignment
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vector xi which takes value 1 in exactly one place and 0’s everywhere else. The location
of 1 in the vector indicates the community to which the node belongs. We call a matrix
X ∈ [0,1]n×k a community assignment matrix of the nodes of a network, if each row of
the matrix is a community assignment vector for one of the n nodes in the network. Let
Z̄ ∈ [0,1]n×k be a putative mean community assignment matrix for a group or population of
M networks. This is a fixed group or population level parameter. For each member network
G(m) in the sample, each node i can randomly switch its community label from this putative
mean community label independent of other networks and other nodes.

Formally we use the multinomial unit vector and a transition probability matrix to describe
the random deviation from the putative mean structure. A unit vector, similar to the commu-
nity assignment vector, is a vector whose components are all zeros, except for one component
that is one. A k-dimensional random unit vector Y follows a multinomial distribution (some
authors also call it multinoulli distribution to draw parallel with Bernoulli distribution) with
parameters N = 1 and p = (p1, . . . , pk),

∑k
i=1 pi = 1, if for unit vector u = (u1, . . . , uk),

P(Y = u) = pi if ui = 1 and uj = 0 for j �= i.

For each member network G(m), the community assignment matrix of the network Z(m) is
drawn in the following way. For each node i, the vector of community assignments is

(3.1) Z
(m)
i ∼ Multinomial(1, Z̄iT ), i = 1, . . . , n,m = 1, . . . ,M,

where Z
(m)
i and Z̄i are the ith row of Z(m) and Z̄, respectively. Here, T denotes the k × k

nonnegative transition probability matrix among the communities, with its diagonal elements
being {η1, . . . , ηk} and the off-diagonal elements in each row q summing to 1 − ηq . The

vectors Z
(m)
i are independent for all i and m. However, clearly the elements of the vector,

that is, Z
(m)
iq , q = 1, . . . , k, are dependent since Z

(m)
iq = 1 mandates that Z

(m)
iq ′ = 0 for any

q ′ �= q .
We can also write the expectation and variance of the random vectors Z

(m)
i s as follows:

E
[
Z

(m)
i

] = Z̄iT = Tq,

Var
[
Z

(m)
i

] = diag(Z̄iT ) − T T Z̄T
i Z̄iT = diag(Tq) − T T

q Tq,
(3.2)

where q is the putative mean community label of node i, Tq is the qth row of T and diag(X)

for any vector X represents the diagonal matrix whose diagonal is the vector X. Here and
throughout the paper, T in superscript denotes the matrix transpose. Consequently, Z

(m)
i is

a multinomial random unit vector with Tq as the vector of parameters (probabilities). This
implies that, for each member network, a node i that belongs to the mean community q gets
assigned to the same community as its mean community assignment with probability ηq and
a different community with probability 1 − ηq . While we do not put any restriction on the
transition probability matrix, we note that the model is most interesting when ηq is large as
compared to the remaining elements in the qth row. The model then can be interpreted in
the context of multisubject networks as follows. While most nodes retain their putative group
mean community memberships for the individual subject networks, a few randomly selected
nodes change their memberships to another community according to probabilities from the
transition probability matrix.

Given the community assignment matrices {Z(1), . . . ,Z(M)}, the edges in the M member
networks are independently generated following a Bernoulli distribution:

(3.3) A
(m)
ij |Z(m) ∼ Bernoulli

(
P

(m)
ij

)
, i, j = 1, . . . , n,m = 1, . . . ,M.
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FIG. 3. Schematic diagram of the RESBM.

The Bernoulli probabilities can be modeled as a k class stochastic block model (SBM) or a k

class degree-corrected stochastic block model with appropriate identifiability constraints. We
focus only on the SBM in this paper. We have

A
(m)
ij |(Z(m)

iq = 1,Z
(m)
jl = 1

) ∼ Bernoulli
(
π

(m)
ql

)
, q, l = 1, . . . , k,m = 1, . . . ,M.

The model is schematically represented in Figure 3. However, the model is not identifiable
without further constraints. Similar to the discussion in Matias and Miele (2017), in the con-
text of dynamic networks the community labels might get switched between two member
networks and still give the same model, leading to incorrect inference. Hence, we need cer-
tain constraints on the matrices {π(1), . . . , π(M)} such that the communities are identifiable
at all member networks. We use the constraint that the diagonal elements of the matrices
are identical in each member network, that is, the vector {π(m)

11 , . . . , π
(m)
kk } is the same for all

m = 1, . . . ,M (Matias and Miele (2017)).

3.1.1. Interpretation in fMRI studies. Often in fMRI neuroimaging studies, there is in-
terest in detecting a group community structure that is representative of the whole population,
either a group of healthy control subjects or a group of patients with a certain condition, and
then contrast such group community assignments between groups of interest. However, it is
also widely recognized that all subjects in a group will not have the same community struc-
ture due to individual differences (Alexander-Bloch et al. (2012), Betzel et al. (2019)). The
parameter Z̄ denotes such an overall group community assignment. This is a “hard” com-
munity assignment where we designate a single community structure to be representative of
the group. However, the consistency of this structure across subjects is estimated through the
transition probability matrix T . Then Z̄T is the expected community assignment for a ran-
domly selected subject from the group. This can be thought of as “mixed” or “overlapping”
membership or “soft communities”, with each row (Z̄T )i providing probabilities with which
the ROI i belongs to different communities. This is also our prediction for a new subject who
is not part of the sample. Hence the parameter T controls how much variation is inherent in
the group, that is, how much do we expect a randomly chosen subject to match the putative
group mean. In addition, the estimate for Var[Z(m)

i ] in equation (3.2) lets us derive confidence
intervals for each ROI in the network. Thus, from this model we can infer an overall commu-
nity assignment for the group of networks and obtain a quantification of the variability in this
group putative community structure through the transition probability matrix.

3.2. Estimation. Our estimation goals from this model include estimation of community
assignments in each member network Z(m), the putative mean community assignment ma-
trix Z̄ and the transition probability matrix T . In what follows we describe two methods to
perform these estimation goals.
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3.2.1. A variational expectation-maximization estimator. The first method we describe
is approximate maximum likelihood estimation (MLE) through variational expectation-
maximization (EM) algorithm, first introduced in the context of standard SBM in Daudin,
Picard and Robin (2008), later extended to multilayer SBMs in Han, Xu and Airoldi (2015),
Paul and Chen (2016a) and Barbillon et al. (2017) and to dynamic SBM in Matias and Miele
(2017). The asymptotic consistency and limiting distribution of the parameter estimates for
the case of standard SBM are investigated in Celisse, Daudin and Pierre (2012) and Bickel
et al. (2013), respectively.

Below we derive the update rules for variational EM algorithm approximation to the MLE
of the RESBM parameters. For this purpose we view the RESBM from a mixture model
perspective and pose the parameters Z̄is as random variables generated from a multinomial
distribution with parameters α = {α1, . . . , αk}. We denote the unobserved variables Z̄ and
Z(m)s together as X and the model parameters T , π and α together as θ . Further, we denote
the observed log-likelihood of the model as l(A, θ). The complete data log-likelihood, which
is the joint likelihood of the observed data and the unobserved model community assignment
variables, is given by

logP(A,X, θ)

=
n∑

i=1

k∑
q=1

Z̄iq logαq +
M∑

m=1

n∑
i=1

∑
1≤q,l≤k

Z̄iqZ
(m)
il logTql

+
M∑

m=1

∑
1≤i<j≤n

∑
1≤q,l≤k

Z
(m)
iq Z

(m)
jl

{
A

(m)
ij log

(
π

(m)
ql

) − (
1 − A

(m)
ij

)
log

(
1 − π

(m)
ql

)}
.

We define the variational distribution R(X) to have the following form of the product of
multinomial densities:

R(X) =
n∏

i=1

k∏
q=1

τ̄
Z̄iq

iq ×
n∏

i=1

M∏
m=1

∏
1≤q,l≤k

(
ε
(m)
iql

)Z(m)
il Z̄iq ,

where τ̄ and ε are the variational parameters. We delegate the remaining details of the deriva-
tion to the Supplementary Material (Paul and Chen (2020b)). The following fixed point equa-
tions are used to update the variational parameters iteratively in the Variational Expectation
(VE) step:

ε̂
(m)
iql ∝ exp

[
log(Tql) + ∑

j �=i

k∑
p=1

τ
(m)
jp log

(
b

(m)
ij lp

)]
,(3.4)

τ̄iq ∝ exp
[
logαq + ∑

m

∑
l

ε
(m)
iql log

(
Tql

ε
(m)
iql

)
+ ∑

m

∑
l

∑
j �=i

ε
(m)
iql τ

(m)
jl log

(
b

(m)
ijql

)]
,(3.5)

τ
(m)
il ∝

k∑
q=1

τ̄iqε
(m)
iql .(3.6)

For the M step we have the following closed form update steps:

Tql ∝ ∑
m

∑
i

τ̄iqε
(m)
iql , αq = 1

n

∑
i

τ̄iq ,(3.7)

π
(m)
ql =

∑
1≤i<j≤n τ

(m)
iq τ

(m)
jl A

(m)
ij∑

1≤i<j≤n τ
(m)
iq τ

(m)
jl

, q �= l,(3.8)
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π(m)
qq =

∑
m

∑
1≤i<j≤n τ

(m)
iq τ

(m)
jq A

(m)
ij∑

m

∑
1≤i<j≤n τ

(m)
iq τ

(m)
jq

.

The proportionalities in the above algorithm are turned into equalities through normaliza-
tion using the constraints on the parameters.

3.3. Two-step matrix factorization and maximum likelihood method. While the varia-
tional EM proposed in the previous section attempts to estimate the unknown quantities in
RESBM by approximately maximizing the model likelihood, there are two concerns with the
approach. It can be computationally expensive, and, being a likelihood based method, it can
be susceptible to misspecification of the model. Therefore, next we describe a two-step ma-
trix factorization based approach to nonparametrically estimate some of the model quantities,
namely, Z̄ and Z(m)s. We intuitively argue in the next section why this method is appropriate
for those tasks under the RESBM despite not being based on the model.

The two steps are as follows:

1. Solve an optimization problem involving a joint objective function similar to equation
(3.9) to obtain the community assignment matrices in the subjects Z(1), . . . ,Z(M) and the
putative mean community assignment matrix Z̄ simultaneously. This is a fully nonparametric
step not dependent on any model and, hence, is expected to be less influenced by model
misspecification.

2. The transition probability matrix T is obtained through conditional maximum likeli-
hood (ML) conditioned on Z̄ and Z(m)s following equation (3.14).

3.3.1. Coregularized orthogonal symmetric nonnegative matrix trifactorization algorithm.
We propose an algorithm for the first step of the two-step method based on orthogonal sym-
metric nonnegative matrix trifactorization (OSNTF) method, described for single networks
in Paul and Chen (2016c). The proposed algorithm combines the ideas in linked matrix fac-
torization (Tang, Lu and Dhillon (2009)) and coregularized spectral clustering (Kumar, Rai
and Daume (2011)). Similar to the coregularized spectral clustering, the proposed method
involves minimizing an objective function with two terms. The first term is the sum of Frobe-
nius norm objective functions for single network OSNTF (Paul and Chen (2016c)), and the
second term is a smoothness penalty on the factor matrices obtained at each network to make
the subspaces spanned by the factor matrices closer to each other.

The global optimizer of the OSNTF objective function was shown in Paul and Chen
(2016c) to consistently recover the community structure from networks generated from
stochastic block model and degree-corrected block model. Hence, we expect the first part
of the objective function attempts to recover the community structures of the subjects
Z(1), . . . ,Z(M) from the individual subject network adjacency matrices. However, the sec-
ond part, which is the smoothness penalty, attempts to find Z̄, the group mean community
structure such that the individual community structures are “shrunk” to this community struc-
ture. This penalty allows for both information sharing across subjects and a regularization to
a group mean. Intuitively then, this method has similar goals as the RESBM and, therefore, is
a reasonable nonparametric approach to estimate the group and subject specific community
structures. Finally, we note that this method is also in the same spirit as other nonnegative
matrix factorization based multiview learning methods proposed in the literature (Liu et al.
(2013), Mankad and Michailidis (2013)). However, the orthogonality constraints on the fac-
tor matrices, despite being restrictive, makes the factors sparse which is more appropriate for
the task of community detection.
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We denote a matrix U ≥ 0 and call it a nonnegative matrix, if all its elements are non-
negative, and U > 0, if all its elements are strictly positive. The method, which we call coreg-
ularized orthogonal symmetric nonnegative matrix trifactorization (Co-OSNTF), solves the
following optimization problem on the collection of Laplacian matrices:

[
Û (1), . . . , Û (m), Û∗] = arg min

U(m),S(m)≥0,

U(m)T U(m)=I,∀m,

U∗≥0,U∗T U∗=I

M∑
m=1

{∥∥L(m) − U(m)S(m)U(m)T
∥∥2
F

(3.9)
+ λm

(
k − ∥∥U(m)T U∗∥∥2

F

)}
,

where U(1), . . . ,U(m),U∗ are n × k nonnegative matrices with orthonormal columns and
λm ≥ 0 are user-chosen tuning parameters (scalars). Note that this is a constraint optimiza-
tion problem on Stiefel manifold with additional nonnegativity constraints. To solve this op-
timization problem, we employ the method of Lagrange multipliers for the orthogonality
constraints and then derive multiplicative update rules. The Lagrangian objective function
with the orthogonality constraints incorporated is

ξ � tr

(
M∑

m=1

{−2U(m)T L(m)U(m)S(m) + U(m)S(m)U(m)T U(m)S(m)U(m)T

(3.10)

− 2λmU(m)T U∗U∗T U(m) + 
U(m)U
(m)T U(m)} + 
U∗U∗T U∗

)
,

where 
U∗ ≥ 0 and 
U(m) ≥ 0 are k × k nonnegative symmetric matrices of Lagrange mul-
tiplier parameters. Here and throughout the paper, tr(·) denotes the matrix trace. The goal
is now to minimize this new objective function under the constraints that U(m) ≥ 0,U∗ ≥
0, S(m) ≥ 0.

To derive an algorithm for the optimization problem, we follow the derivation techniques
for multiplicative updates described in Lee and Seung (2001), Ding et al. (2006) and Mirzal
(2014). Briefly, the technique is as follows. The KKT conditions for the objective in (3.10)
are

U(m) ≥ 0, U∗ ≥ 0, S(m) ≥ 0,

∇ξ |U(m) ≥ 0, ∇ξ |U∗ ≥ 0, ∇ξ |S(m) ≥ 0,

U(m) � ∇ξ |U(m) = 0, U∗ � ∇ξ |U∗ = 0, S(m) � ∇ξ |S(m) = 0,

where ∇ξ |U(m),∇ξ |U∗,∇ξ |S(m) are gradients of the objective function (3.10) with respect to
U(m),U∗ and S(m) and � represents the Hadamard (elementwise) product. The equations
in the last line of the KKT conditions are known as the complimentary slackness condi-
tions which can be used to derive the multiplicative update rules (MUR). If the gradient
∇ξ with respect to a parameter can be written in the form ∇ξ = [∇ξ ]+ − [∇ξ ]−, where
[∇ξ ]+, [∇ξ ]− ≥ 0, then the multiplicative update rule would be

X ← X �
(

([∇ξ ]−)ik

([∇ξ ]+)ik

)η

,

where (·)η represents raising each element of the matrix to the power η, and 0 < η ≤ 1 is the
learning rate. The inner division in the rightmost term is also elementwise. We take η = 1/2
as learning rate and prove the convergence of the resulting update rules to a stationary point
of the objective function.
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The details of the derivation are once again delegated to the Supplementary Material (Paul
and Chen (2020b)). The algorithm consists of iteratively updating U(m)s, S(m)s and U∗ ac-
cording to the following update rules:

S(m) ← S(m) �
(

(U(m)T L(m)U(m))ik

(U(m)T U(m)S(m)U(m)T U(m))ik

)1/2
,(3.11)

U(m) ← U(m) �
(

(L(m)U(m)S(m) + λmU∗U∗T U(m))ik

(U(m)U(m)T L(m)U(m)S(m) + λmU(m)U(m)T U∗U∗T U(m))ik

)1/2
,(3.12)

U∗ ← U∗ �
(

(
∑

m λmU(m)U(m)T U∗)ik
(
∑

m λmU∗U∗T U(m)U(m)T U∗)ik

)1/2
.(3.13)

Note that λms are user-specified parameters that should be chosen to address the user’s pref-
erence in the trade-off between optimizing within a member network of the sample and in-
creasing subspace cohesion as well as to reflect the relative importance of different members.
The value of λ can also be chosen using cross-validation method to minimize some notion
of prediction error. For our numerical experiments and real data analysis in this paper, we
choose λms to be 0.01 for all m. This choice of λms works well in our synthetic experiments.
In real data analysis in Section 5.7, we display a plot of out-of-sample prediction error as a
function of λ, and we find 0.01 to be very close to the optimum. A similar observation was
made for joint nonnegative factorization in Liu et al. (2013) for a number of different datasets.

In the Supplementary Material we prove convergence results and comment on some im-
plementation issues. In particular, we prove two results that together imply that the update
rules can reach a stationary point of the objective function ξ , provided the solution lies on
the positive orthant of the feasible region (all elements of all matrices in the solution contain
strictly positive entries), and we start with an initial solution which is in the positive orthant.

An alternative method to estimate the parameters in first step is the (centroid) coregularized
spectral clustering method. The method was proposed in Kumar, Rai and Daume (2011);
its theoretical properties under the MLSBM were studied in Paul and Chen (2020a). We
propose to use this alternative method in conjunction with the conditional MLE described
below and call the resulting method Co-Spectral. In our experiments we use the regularization
parameters for Co-Spectral as 0.05 for all subject networks.

3.3.2. The conditional maximum likelihood step. The first step of the two-step method
obtains Û (1), . . . , Û (m), Û∗ which are matrices in the Grassmann manifold. In the second
step we first obtain community assignments from each of the Û (m)s and Û∗, and then the
transition probability matrix is obtained from the estimated matrices through a conditional
maximum likelihood (ML) estimator. For Co-OSNTF community assignment is performed
by assigning each row to the community corresponding to the largest element in a row, while
for coregularized spectral clustering this is accomplished through the k-means clustering of
the rows of the matrices. Let Ẑ(1), . . . , Ẑ(M) be the memberwise community assignment ma-
trices and Ẑ∗ be the mean community assignment matrix obtained in this way. Then, the
conditional ML estimate of T is given by

(3.14) T̂ql = nql∑
l nql

,

where nql = 1
M

∑
m

∑
i I {Ẑ∗

iq = 1, Ẑ
(m)
il = 1}, with I (·) being the indicator function. We note

that the same estimator for T can be obtained by equating the first moments as well.
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3.4. Two-sample hypothesis testing: Whole network-level and node-level tests. We next
develop procedures for performing a two-sample hypothesis test between network com-
munity structures of two populations of subjects. Let the two populations to be compared
be denoted as A and B (in neuroimaging experiments these correspond to a group of
healthy controls and a group of patients) and the sample size from each group be M1
and M2, respectively. Further, let the estimated model parameters for the two groups be
Z̄(A), T(A), {Z(1)

(A), . . . ,Z
(M1)
(A) } and Z̄(B), T(B), {Z(1)

(B), . . . ,Z
(M2)
(B) }. There are two notions of

“group mean” of community structure giving rise to two natural ways of testing the differ-
ence between the two populations in modular organization. The first notion of “group mean”
is Z̄, the putative mean community assignment matrix of the group of networks. Accordingly,
the notion of group mean at the node level is Z̄i for node i. However, note that Z̄ is not the
expectation of the community assignment matrices Z(m)s in the group. Instead, the expecta-
tion is Z̄T . This implies that, for any node, its expected community assignment vector in any
network within the group is Z̄iT . Hence, the second notion of “group mean” is represented
by Z̄T at the network level and Z̄iT s at the node level.

The first network level test statistic we propose is the distance between R(Z̄(A)) and
R(Z̄(B)), the subspaces spanned by the columns of Z̄(A) and Z̄(B), respectively. Note that
the columns of both matrices, Z̄(A) and Z̄(B), span subspaces in the Grassmann manifold
G(k, n) (Edelman, Arias and Smith (1999)). A common notion of distance between sub-
spaces in the Grassmann manifold is in terms of norms of the matrix of sines of canonical
angles between the subspaces (Stewart and Sun (1990), Edelman, Arias and Smith (1999),
Dong et al. (2014)). Formally, we define the “Sine test” statistic as the Grassmann subspace
distance between the putative mean community assignment subspaces,

S = ∥∥sin
(
�

(
R(Z̄(A)),R(Z̄(B))

))∥∥2
F = 1

2

∥∥Z̄(A)QAZ̄T
(A) − Z̄(B)QBZ̄T

(B)

∥∥2
F ,

where �(R(Z̄(A)),R(Z̄(B))) is the matrix canonical angles between subspaces spanned by
the columns of Z̄(A) and Z̄(B), QA = (Z̄T

(A)Z̄(A))
−1 and QB = (Z̄T

(B)Z̄(B))
−1 are diagonal

“scaling” matrices whose elements are the sizes of the communities.
The second test statistic corresponds to the second notion of “group mean,” as described

earlier. Following similar intuition as the Sine test, the network level “multinomial unit vector
(MUV)” statistic is

MUV = ∥∥Z̄(A)T(A)T
T
(A)Z̄

T
(A) − Z̄(B)T(B)T

T
(B)Z̄

T
(B)

∥∥2
F .

Note in this case we have dropped the diagonal scaling matrices that we had for Sine test.
Large values of the test statistic will then indicate that the mean module structures in the two
groups are markedly different. For each node i, define the node level MUV test statistic

MUV(i) = (Z̄(A)iTA − Z̄(B)iTB)T (Z̄(A)iTA − Z̄(B)iTB).

Intuitively, Z̄T is a better measure of the group mean since it is the expectation of the
subject’s community assignment matrices. Consequently, we expect MUV test to be a better
test than Sine test, since it takes into account the variation in community structure present
in the population. Indeed, we observe the same in our simulations (omitted in the interest of
space) and, henceforth, only use the MUV test.

In all the above cases it is difficult to derive asymptotic distribution of the test statistics.
Hence, we construct p-value for the test through a permutation test based on resampling
from the observed networks. We combine the network samples together and sample without
replacement from the combined sample of M1 + M2 networks to create two samples of sizes
M1 and M2, respectively. We fit the RESBM to both samples using variational EM and two-
step methods and compute the Sine test and MUV test statistics in each case. We repeat
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the procedure many times to construct the empirical distribution of the test statistic under
the null hypothesis. Comparing the observed value of the test statistics with the constructed
empirical distribution yields the p-values. For the node level tests we can perform the same
procedures. However, when we make inference using the p-values, we need to account for
multiple comparisons through a Family Wise Error Rate (FWER) or False Discovery Rate
(FDR) correction (Benjamini and Hochberg (1995)).

4. Performance on simulated networks. In this section we numerically compare the
performance of the proposed methods along with some already available or baseline methods
in samples of networks simulated from the RESBM. We compare the performance under three
metrics: the average performance in community detection across the members of the network
sample Z(1), . . .Z(m), the performance in estimating the putative mean community structure
Z̄ and the accuracy in estimating the transition probability matrix T . The normalized mutual
information (NMI), an information theoretic measure of similarity between two community
structures, is used to assess the accuracy of the estimated community assignments against the
true assignments. The NMI between two community assignment vectors measures the degree
to which one community assignment vector can be obtained from the knowledge of the other
vector. It takes values between 0 and 1, where 0 indicates a random assignment (no overlap
of information) and 1 indicates a perfect match, and the higher the value, the better the match.
The accuracy of the estimated transition probability matrix is measured in terms of difference
in Frobenius norm.

We generate the sample of networks from the RESBM in the following way. We first
generate the group putative community labels Z̄is from a multinomial distribution with k

classes and equal probability for each class. To generate the community assignments of the
member networks, the community labels of a fraction κ of nodes are then randomly changed
to one of the communities other than its original community. Hence, the transition probability
matrix T will have 1 − κ as the diagonal elements, while the k − 1 off-diagonal elements in
each row sum to κ . We call the fraction κ “variation factor” since it is an indicator of how
much variation there is in the community structure among the members of the sample.

For each of the members, the edges between the nodes are then drawn from a stochas-
tic block model in the following fashion. We first generate the vector of k diagonal el-
ements, which is common for all members (required for the model to be identifiable) as
λ ∼ U(a, b), where U(a, b) denotes the continuous uniform distribution with parameters a

and b. Next, in each member the lower half of the k2 − k off-diagonal elements are generated
from U(a/ρ, b/ρ) while the upper half are identical to the lower half. The parameter ρ con-
trols the signal to noise ratio (SNR), and in all our experiments we keep the value close to 2 in
all members. The average density of the networks is controlled by another parameter called
degree multiplier. Roughly speaking, increasing the degree multiplier by 1 corresponds to an
increase of 2% of maximum degree in the degree density per network. As an example, if we
have 500 nodes in a network, then a degree multiplier of 3 corresponds to average degree
density per network being 500 × 0.06 = 30.

4.1. Methods compared. In our simulations we compare the performance of three algo-
rithms from the two proposed methods along with a number of baseline and other available
methods. In particular, the following methods are compared: (a) VarEM: The variational EM
algorithm for computing approximate MLE in RESBM; (b) Co-Spectral: The two-step coreg-
ularized spectral clustering with conditional MLE; (c) Co-OSNTF: The two-step coregular-
ized orthogonal nonnegative matrix trifactorization with conditional MLE; (d) Ind. Spectral:
Spectral clustering in each member network performed independently (Rohe, Chatterjee and
Yu (2011)). This method is used only for the comparison on performance in individual net-
works; (e) Mean Spectral: Spectral clustering of the mean adjacency matrix (Han, Xu and
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FIG. 4. Performance of various methods across three metrics: (a) Average clustering performance across all
member networks (in NMI), (b) performance in detecting the mean community structure (in NMI) and (c) accuracy
in estimating the transition probability matrix (in Frobenius norm) with increasing variation factor from 0.05 to
0.40. The number of nodes is 500, the number of communities is three, the number of member networks is five and
the average degree per networks is 40.

Airoldi (2015), Paul and Chen (2020a)); (f) SpectralK: The spectral kernel method for mean
community detection (Paul and Chen (2020a)) which is similar to the module allegiance
matrix technique in Braun et al. (2015); and (g) MLSBM: The variational EM algorithm in
MLSBM (Han, Xu and Airoldi (2015), Paul and Chen (2016a), Barbillon et al. (2017)). This
method is used only for comparison in terms of putative mean community assignments.

In our comparisons we also include an estimate for the T matrix obtained by using Ind.
Spectral in the individual networks and SpectralK for the mean community assignments.
Some comments on the initialization and practical implementation of the methods are made
in the Supplementary Material (Paul and Chen (2020b)).

4.2. Increasing variation across members of the sample. Our first simulation setup fixes
n at 500, M at 5, k at 3 and the average degree in each network at 40 (which is about 8%
degree density), while it varies the variation factor across the networks from 0.05 to 0.40, in
steps of 0.05. Figure 4 shows the results of this simulation across the three aforementioned
metrics of comparison.

We note that in terms of community detection in member networks, the performance of all
methods, except Ind. Spectral, steadily falls as the variation factor increases (see Figure 4(a)).
This is because with increasing variation factor, the networks are increasingly dissimilar and,
hence, information sharing across networks does not improve performance as much as it does
for low variation factor. The VarEM consistently outperforms all other methods in this met-
ric, while the performance of Co-Spectral and Co-OSNTF trails closely. The Ind. Spectral
does not share information across networks and, hence, is agnostic to variation factor. Con-
sequently, although it gives inferior performance initially, its performance almost catches up
with Co-Spectral and Co-OSNTF with increasing variation factor. Assuming the same com-
munity structure in all networks and using the community assignments obtained from Mean
Spectral for all member networks gives considerably worse performance, especially when the
variation factor is large, since the networks become very dissimilar.

For the putative mean community assignments all methods, except MLSBM, behave sim-
ilarly (see Figure 4(b)). The two-step methods (Co-Spectral and Co-OSNTF) and SpectralK
slightly outperform VarEM in this case. While the performance of all methods falls with in-
creasing variation factor, the fall is slightly steeper for Mean Spectral as compared to the
two-step methods. Finally, the estimate of T is most accurate with VarEM and stays almost
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FIG. 5. Performance of various methods across three metrics: (a) Average clustering performance across all
member networks (in NMI), (b) performance in detecting the mean community structure (in NMI) and (c) accuracy
in estimating the transition probability matrix (in Frobenius norm) with increasing number of member networks
from five to 25. The number of nodes is 300, the number of communities is 3, the average degree per networks is
25 and the variation factor is 0.20.

flat with increasing variation factor. The performance of Co-Spectral is poor, initially, at low
variation factor but quickly improves as the variation factor increases. The performance of
Co-OSNTF is slightly worse than that of VarEM and also stays flat with increasing variation
factor. The estimate of T from the combination of Ind. Spectral and SpectralK (labeled as
SpectralK in Figure 4(c)) performs poorly compared to the other three methods throughout.

4.3. Increasing size of sample. This simulation is to assess the effect of increasing the
sample size, that is, the number of member networks in the sample on the performance of
the methods. We fix n at 300, k at 3, the average degree per network at 25 (about 8% degree
density) and the variation factor at 0.20, while we vary the number of networks from five to
25. The three plots in Figure 5 display the results on the three metrics of comparison. The
VarEM outperforms all competing methods in terms of average performance in the individual
networks (Figure 5(a)) and the accuracy of estimating the T matrix (Figure 5(c)). However, it
underperforms in estimating the mean community assignments as compared to Mean Spec-
tral, SpectralK, Co-Spectral and Co-OSNTF (Figure 5(b)). Among the two-step algorithms
the newly proposed Co-OSNTF performs better than Co-Spectral algorithm in estimating
both the mean community assignment and T matrix while remaining competitive with Co-
Spectral in memberwise performance. The SpectralK algorithm is competitive to Co-Spectral
in detecting the mean community structure. However, its memberwise counterpart, the Ind.
Spectral, performs poorly in detecting the memberwise community structures. Consequently,
the estimates of T , derived from a combination of Ind. Spectral and SpectralK, are also less
accurate compared to other methods.

In the Supplementary Material (Paul and Chen (2020b)), we present another simulation
where we vary the density of the member networks while fixing the variation factor, number
of nodes, number of communities and number of member networks.

4.4. Performance of hypothesis testing procedures on synthetic networks. We next nu-
merically compare the MUV tests using the estimates from the various methods developed in
this article in a hypothesis testing problem on synthetic networks generated from the RESBM.
We generate two samples of sizes 20 and 25 from a RESBM with 100 nodes, three commu-
nities and a T matrix whose diagonal elements are 0.8 and the off diagonal elements are 0.2.
Hence, there is a 20% chance that a node will not retain its Z̄ community in Z(m). The puta-
tive mean community assignment matrices for the two populations Z̄A and Z̄B are changed
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TABLE 2
Network level tests: p-values of various test statistics on two synthetic network samples of sizes 20 and 25 drawn

from a 100-node, three-community RESBM. The columns represent results for different fraction of nodes that
were changed to obtain the second Z̄ from the first. 10,000 resamples were used to compute the p-values, a *

indicates significant at 1% level

Test 0 0.05 0.10 0.15 0.20 0.25 0.30

MUV test (VarEM) 0.6797 0.0013∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗
MUV test (Co-Spectral) 0.3437 0.0087∗ 0.0021∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗
MUV test(Co-OSNTF) 0.1316 0.0051∗ 0.0012∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗
MUV test (SpectralK) 0.2341 0.0037∗ 0.0061∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗

from being identical to being different in approximately 30% of nodes at intervals of 5%.
A good test should not detect any difference either at network level or node level, when the
samples come from the same population RESBM, but detect differences as the populations
from which the samples are drawn differ. The distribution of all the test statistics under the
null hypothesis was computed by resampling from the combined sample 10,000 times. The
computation time was about 300 CPU core-hours (using HP X5650 2.66 GHz cores in a
computing cluster) for each of the seven cases. Due to large number of function calls to the
VarEM method, this test is computationally expensive; however, evaluation in the resampled
datasets can be performed in parallel. The results from the network level tests are presented
in Table 2 and those from the node level tests are presented in Table 3.

First we note from Table 2 that all the MUV tests can detect statistically significant differ-
ence at the 1% level when the Z̄ matrices differ by 5% nodes. When the Z̄ matrices differ by
10% or more nodes, all MUV tests give extremely small p-values. Given that each compo-
nent network community structure is expected to differ from its group mean in about 20% of
the nodes, the tests seem to be quite powerful. We also note that all tests correctly give large
p-values when there is no difference between the Z̄ matrices.

Table 3 presents the performance of the tests to detect node level differences. We correct
for multiple comparison using a threshold of 0.05 FDR and present results for thresholds
of 0.05 FWER and 0.10 FDR in the Supplementary Material (Paul and Chen (2020b)). All
MUV tests correctly fail to detect any node-level differences when no nodes were changed.
However, the procedures start and continue to make errors as the number of nodes changed
increases from zero to 12 but then quickly reduce to almost no error as the number of nodes
changed increases from 23 to 32. Among the MUV tests, both the VarEM based test and the
Co-OSNTF based test perform particularly well. Moreover, the Co-OSNTF test detects all

TABLE 3
Performance of node level tests (total errors and false positives) on testing between two samples of synthetic

networks of sizes 20 and 25 drawn from a 100-node, three-community RESBM at 0.05 FDR threshold. “Number
of nodes changed” is the actual number of nodes whose putative mean community assignment varied between

the two groups. The best performance in terms of least total errors in each column is indicated in bold

False positives Total errors

Number of nodes changed 0 6 7 12 23 24 32 0 6 7 12 23 24 32

MUV test (VarEM) 0 0 2 1 1 5 2 0 4 5 4 3 5 2
MUV test (Co-Spectral) 0 0 0 1 0 1 1 0 6 7 10 0 1 1
MUV test(Co-OSNTF) 0 0 0 1 0 0 0 0 5 7 7 0 0 0
MUV test (SpectralK) 0 0 0 1 0 2 1 0 5 6 11 1 2 1
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the node-level differences correctly when the number of nodes is 23 or more. However, the
VarEM test suffers from increased false positives as the number of nodes changed becomes
high, despite FWER and FDR controls. We note that switching from 0.05 FDR to 0.10 FDR
does not increase the number of false positives much but improves performance, especially
when the number of nodes truly changed is low (see Supplementary Material (Paul and Chen
(2020b))). Based on the observations from the performance of the competing methods and
test statistics on the synthetic networks, we recommend the MUV test with VarEM and Co-
OSNTF as the two best performing tests.

5. Application of the methods to COBRE data. From the exploratory analysis in Sec-
tion 2, it is clear that the control group has higher modularity values, as compared to the
patient group, irrespective of our choice of threshold (and statistically significant at most
of the thresholds). The average number of communities detected in each of the groups is
not significantly different at any of the thresholds (Table 1). Both observations in terms of
modularity and number of communities are consistent with previously reported results in the
context of childhood-onset schizophrenia (Alexander-Bloch et al. (2012)).

We primarily focus our analysis on the threshold of 0.2 and, later in Section 5.8, we repeat
some of our analyses for two other thresholds 0.3 and 0.4 as robustness checks. Note that the
methods developed in this paper require the number of communities to be supplied as input.
We obtain the number of communities in each case from the average number of communities
detected in Table 1. For the threshold of 0.2, we observe that the average number of com-
munities in both groups is about four. The histogram of number of communities in Figure 2
also shows four as the most common number of communities for subjects in both control
and patient groups. Hence, we fit RESBMs with four communities to the networks from the
control group and patient group subjects using both the VarEM and the two-step methods.

Although Alexander-Bloch et al. (2012) have shown that group differences in both mod-
ularity value and modular organization become more pronounced at higher values of the
threshold, we use a relatively smaller value of threshold since, at higher values, the optimum
number of communities is quite high which are difficult to interpret and visualize. For exam-
ple, for thresholds between 0.5–0.6, the network divides into 30–60 communities (Table 1).
In a network of 90 nodes, they are a really high number of communities, and the network
is essentially disintegrated in very local submodules. Consequently, large differences are ex-
pected between the community structures of any two subjects, no matter which populations
they are from and, therefore, a consistent picture of the modular disruption in schizophrenia
cannot be obtained.

5.1. Group differences in community structure. The group putative community structure
obtained for each group from each of the three methods is illustrated on a brain surface
template in Figure 6. In addition, Figure 7 displays a visualization of the locations of the
ROI groups, in a three dimensional eight-view layout of the brain. All visualizations have
been produced using the BrainNet Viewer software (http://www.nitrc.org/projects/bnv/) (Xia,
Wang and He (2013)). In Figures 6 and 7, the ROIs are colored according to their commu-
nity membership detected in the respective group putative community structures Z̄. In each
of the three methods, the community labels between controls and patients are matched by
maximizing overlap through an algorithm that solves the Linear Sum Association Problem
(LSAP) (Papadimitriou (2003), Kuhn (1955)). This is necessary because community labels
are recovered by any method only up to the ambiguity of label permutations, and, hence, two
community partitions need to be aligned in terms of labels before they can be compared. We
first note that community structure for the control group from Co-Spectral and Co-OSNTF
almost agree with each other. The four modules obtained roughly correspond to the mod-
ules detected consistently across different subjects in resting state in Moussa et al. (2012)

http://www.nitrc.org/projects/bnv/
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FIG. 6. Group putative community structure of resting state network based on AAL ROIs in (a), (b), (c) healthy
controls, and (d), (e), (f) patients with schizophrenia. Nodes are colored according to their group putative com-
munity obtained from the following methods: Co-Spectral for the first column (a), (d), Co-OSNTF for the second
column (b), (e) and VarEM for the third column (c), (f).

using a voxel level network approach on a very large scale dataset. Specifically, in the control
group our modules blue (module 1), red (module 2), yellow (module 3) and green (module 4)
have large overlaps with the default mode module, basal ganglia module, visual module and
sensory/motor module, respectively, of Moussa et al. (2012). We refer the reader to Moussa
et al. (2012) for a comprehensive list of modules detected in other works in the literature
using both a network approach and an Independent Component Analysis (ICA) approach in
resting state, to which these modules are equivalent or related to. The modules detected by the
VarEM algorithm differs from the ones detected by Co-Spectral and Co-OSNTF; however,
there is a large overlap. Later in Sections 5.4 and 5.5 on prediction and validation, we note

FIG. 7. A visualization of the group putative community structure in healthy controls and patients. The ROIs are
colored according to the community memberships detected using Co-OSNTF method.
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TABLE 4
Nodes of Interest: Nodes which are significant at 0.1 FDR correction

Node Uncorrected FDR corrected FWER

(A) Co-Spectral: Network level p-value: 0.0105
Pallidum.L (PAL.L) 0.0004 0.0360 0.0360
Amygdala.R (AMYG.R) 0.0020 0.0774 0.1780
Pallidum.R (PAL.R) 0.0035 0.0774 0.3080
Putamen.L (PUT.L) 0.0039 0.0774 0.3393
Thalamus.L (THA.L) 0.0043 0.0774 0.3698

(B) Co-OSNTF: Network level p-value: 0.0042
Caudate.R (CAU.R) 0.0013 0.0742 0.1170
Temporal.Pole.Sup.L (TPOsup.L) 0.0017 0.0742 0.1513
Hippocampus.R (HIP.R) 0.0031 0.0742 0.2728
Pallidum.L (PAL.L) 0.0033 0.0742 0.2871

the performance of the VarEM algorithm is poor, compared to Co-OSNTF and Co-Spectral,
for predicting community structure of held out subjects in this data. Therefore, we primarily
focus on the Co-OSNTF method in interpreting the results.

For both Co-Spectral and Co-OSNTF the red group in controls gets disrupted in patients,
and nodes belonging to the module get distributed to the yellow, green and blue modules in
patients indicating disruption of the functional cohesion of these nodes. The blue module in
controls also gets divided into two modules in patients, while the yellow and green groups
remain relatively intact. Disruption of module structures has been reported in the literature on
schizophrenia before; however, our methods provide visual identification of the disruption.
In the subsequent analysis we investigate the disruption at the ROI level.

To statistically test the disruption in community structure, we compute the p-values for
the MUV test with 10,000 permutation resamples. In both Co-Spectral and Co-OSNTF, the
MUV test rejects the null hypothesis of no difference in the community structure between the
controls and patients with p-values of 0.0105 and 0.0042, respectively (Table 4). The node
level MUV test with Co-Spectral and Co-OSNTF found a number of ROIs to be statistically
significantly altered at 0.1 FDR corrected p-values, which we call nodes of interest in Table 4.
All the ROIs in cases of Co-Spectral and Co-OSNTF, except Temporal.Pole.Sup.L from Co-
OSNTF, belong to the red module, as can be seen from Figure 6.

Our findings add to the growing evidence that module structure in brain functional net-
works gets disrupted in schizophrenia. Not only are we able to highlight the nature of the
disruption at the global scale but also more locally infer the ROIs where the differences are
the most.

5.2. Consistency of community structure across subjects. It is also important to under-
stand the variability of the different modules in the group putative community structure across
the different subjects within the group. In our model it can be assessed through the estimated
transition probability matrices as well as a module consistency matrix that measures the frac-
tion of subjects for which two nodes or ROIs are in the same community. The module con-
sistency matrix is similar to the module allegiance matrix in Braun et al. (2015) and Scaled
Inclusivity measure in Steen et al. (2011) and Moussa et al. (2012). Figure 8 displays the
two measures for the results from VarEM (Figure 8(a)–(d)) and Co-OSNTF (Figure 8(e)–(h))
methods. In Figure 8(a), (b), (e) and (f) the ROIs are sorted according to their community
label in increasing order (i.e., module 1 (blue module) in the bottom left corner and module
4 (green module) in the top right corner). In Figure 8(c), (d), (g) and (h), the 4 × 4 module
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FIG. 8. Stability of the group putative community assignments for VarEM (upper row (a)–(d)) and Co-OSTNF
(lower row (e)–(h)): (a), (b), (e) and (f) are the matrices with elements as fraction of subjects for which two nodes
(ROIs) are in the same community sorted according to the putative community structure for healthy controls
and patients, respectively; (c), (d), (g) and (h) are the estimated transition matrices among modules for healthy
controls and patients, respectively.

transition matrix is plotted with the putative modules arranged from 1 to 4 along the row and
column (i.e., module 1 (blue module) in the top left corner and module 4 (green module)
in the bottom right corner). From Figure 8(a)–(d) the module structure appears to be more
consistent in controls than in patients for VarEM. The patients show greater variability in the
functional connectivity between any two regions, leading them to be classified into differ-
ent modules more often than controls. This is possibly because of the variation in severity
of the underlying conditions in the patient group. In particular, it can be seen from both the
metrics in Figure 8 that the yellow module (module 3) is highly consistent in controls, as
has been observed in many previous resting state studies (see Moussa et al. (2012) and refer-
ences therein); however, in patients it is much less consistent. We do not see much difference
in consistency of module structure between controls and patients using Co-OSNTF method
(Figure 8(e)–(f)).

To better understand the community structure for the entire group, we visualize the struc-
ture obtained from Co-OSNTF algorithm in Figure 9 with the help of two measures: module
consistency and mean connectivity. While the community structure is the same (the group pu-
tative community structure for controls and patients), the edges in Figure 9(a) represent the
fraction of subjects for which two nodes are in the same community. The edges in Figure 9(b)
represent the average connectivity between two nodes across all subjects. In both cases the
edges are thresholded at a certain level (i.e., the edge appears if the quantity it represents ex-
ceeds a certain value) and are weighted, with thicker edges representing larger values. Similar
to the observation in Moussa et al. (2012), we also have the visual module (yellow colored),
containing both the primary and secondary visual cortices, as the most consistent module.
We also observe that this module is relatively consistent in patients as well, confirming the
observation from previous studies (Yu et al. (2012)). The red module in the control group,
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FIG. 9. Group putative community structure of resting state network from Co-OSNTF visualized through axial
(top row) and sagittal (bottom row) brain views. In (a) the edges represent fraction of subjects for which two nodes
are in the same community with a threshold of 0.40, while in (b) the edges represent the average connectivity
(correlation) between two nodes across all subjects with a threshold of 0.50. In each case nodes are colored
according to their group putative community in (L) Controls and (R) Patients.

which roughly corresponds to the default mode network in Moussa et al. (2012), is split into
two parts with some nodes being part of another module. From Figure 9(a) it is clear that
the blue group in controls is split in two groups in patients (blue and red) which are almost
disjoint in terms of module consistency thresholded at 0.40. The nodes in the red group in
controls have lost the tendency to be grouped together in the patients, and, instead, they are
more consistently grouped with different modules. The nodes that belonged to the yellow and
green groups in controls appear to be unchanged in their comodule relation with the rest of
the network.

5.3. Estimates of expected communities of the ROIs. We plot the estimated mean com-
munity assignments (mixed membership or soft assignments), that is, estimates for Z̄iT for
each ROI i for the control and patient groups in Figure 10. These mean estimates give us
estimated probabilities that a given ROI will belong to one of the four communities for a
randomly selected subject from the control group or the patient group. We note that, for both
VarEM and Co-OSNTF, the community labels are separately aligned between controls and
patients, and the module numbers are the same as the previous section. Therefore, each row of
the four matrices in Figure 10 represents the estimated community “profile” for a ROI, with
the colors being proportional to the estimated probabilities that the ROI belongs to a com-
munity. This enables us to visually detect the ROIs for which there are differences between
the estimated community probabilities. For example, among the ROIs shown in Table 4(B)
which have significantly altered expected community assignments using the node level MUV
test, we note HIP.R has a very high probability of being in module 2 (red module) in controls
and low probability of being in other modules, while it has a medium high probability of be-
ing in module 3 in patients and low probability of being in other modules. Similarly, CAU.R
and PAL.L have high probability of being in module 2 (red module), low probability of being
in module 4 and low to medium probability of being in modules 1 and 3 in controls. How-
ever, in patients their probability profiles are different. CAU.R has high probability of being
in module 1, low-medium probability of being in the other three modules, while PAL.L has
high probability of being in module 4, low probability of being in module 2 and low-medium
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FIG. 10. Community estimate for AAL ROIs in controls and patients: (a) and (b) using the VarEM method,
(c) and (d) using the Co-OSNTF method. The colors are proportional to the estimated probabilities that a ROI
belongs to one of the four communities. The color scale goes from light yellow (lowest) to dark red (highest).

probability of being in modules 1 and 3. The remaining ROI with a significant difference
according to our node-level test is TPOsup.L, which gets a very high probability of being
in module 4, low-medium probability of being in module 1 and low probability of being in
modules 2 and 3 in the control group. In patients it restructures to get high probability of
being in module 2, low-medium probability of being in modules 1 and 3 and low probability
of being in module 4. We can also see how the probability profiles of ROIs with high proba-
bility in module 2 (red module in previous section) in the control group has got disrupted and
changed in patient group. While the node level test did not detect them to be significant at
the prescribed FDR level, we note the probability profiles of several ROIs, including HIP.L,
PHG.R, AMYG.R, CAU.L, PUT.L, PUT.R, THA.L, THA.R, have changed between control
and patient groups. We note that some of those ROIs have appeared in Table 4(A) as part
of the ROIs detected by the Co-Spectral method. This is an evidence that Co-OSNTF and
Co-Spectral detect somewhat consistent set of ROIs as regions where the module structure is
disrupted in schizophrenia, even though the ROIs that are found to be statistically significant
are not exactly the same. Taken together, Figure 10 gives a detailed picture and compelling
evidence of the disruption and reorganization of module structure in schizophrenia.

5.4. Prediction of community structure for new subjects and model fit. Next, we study
how the model fits the data and the predictive power of the model for new subjects. Assess-
ing and comparing the methods in terms of their predictive ability (and model fit) is very
important, especially since the methods lead to somewhat different results. In addition, good
predictive ability of the model and the methods for new subjects give us confidence about the
generalization of the results we have obtained in this study to the greater population.
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FIG. 11. (a) A plot of ROC curves for all subjects in control and patient groups and (b) a boxplot of distribution
of AUC values across subjects.

We first assess the in-sample model fit of the methods by plotting the Receiver Operating
Characteristics (ROC) curves for each of the subject networks in the control and patient
groups for VarEM and Co-OSNTF methods in Figure 11(a). The ROC is a plot between the
false positive rate and true positive rate for fitting a binary data, where a high area under the
curve (AUC) indicates a good model fit. A random guess will have a ROC curve close to the
diagonal line and an AUC of 0.5. From the ROC curves it appears that there are a number
of ROC curves of the VarEM method which are above the ROC curves of the Co-OSNTF
method in both controls and patients. However, we also note that the ROC curves of the
VarEM method have a greater variation. This can be seen more clearly from the boxplot of
the AUC values across the subject networks in Figure 11(b). For both controls and patients
the AUC values are generally higher using the VarEM method compared to the Co-OSNTF
method; however, the spread in the AUC values is larger for VarEM method. We note the
AUC values are in the range of 0.64 to 0.70, indicating a reasonably good model fit for both
the methods. However, the VarEM method fits the data better in both control and patient
networks.

While the ROC curves above give us indication of in-sample model fit, our primary tool
of assessing the accuracy of the model and the methods is out of sample predictive ability
of community structure. We perform a cross-validation by splitting both the control and the
patient samples into two parts: a test data that holds out 15 samples from each of the groups
and a training data consisting of the remaining subjects to which the model is fit. For both
control and patient groups, we predict the community structure in the test data using our
estimated community structure Z̄T from the training data. Then, in each of the subjects
of the test data we estimate the community structure separately (independently) using two
methods for single network community detection: (a) Spectral clustering with normalized
Laplacian matrix and row normalization (Lei and Rinaldo (2015), Qin and Rohe (2013))
and (b) the OSNTF method (Paul and Chen (2016c)). The estimated community labels in
each of the subjects are aligned with labels in the predicted community structure, by solving
the LSAP problem as before. We assess the predictive performance using two metrics. Let
the k dimensional community assignment vector for ROI i in test subject j be u

(j)
i . Then,

the average community assignment for ROI i across the J test subjects is ūi = 1
J

∑
j u

(j)
i .

Then, we compute a predictive accuracy by comparing this average community assignment
with the predicted community assignment (Z̄T )i : medianik(|ūik − (Z̄T )ik|). This is our first
metric for assessing predictive accuracy. In Figure 12 we display the boxplot of this predictive
accuracy over 10 such train-test random sample splits for VarEM and Co-OSNTF methods
for control and patient groups. We note that, for control group, Co-OSNTF method is more
accurate with about 7–9% median absolute difference between the predicted and observed
community assignments compared to VarEM with 9–12% median absolute difference. We
make a similar observation in the patient group as well.
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FIG. 12. Predictive performance: Error of community prediction over 10-fold cross-validation using Co-OSNTF
and VarEM methods in control and patient groups.

The second metric considers the overlap of the mean putative community structure Z̄ with
the observed community structures in the test subjects again obtained using the spectral and
OSNTF approaches. In Figure 13 we display the boxplot of the overlaps (correct classifica-
tion rate) for VarEM and Co-OSNTF methods for control and patient groups. The correct
classification rate for the Co-OSNTF method is better than that of the VarEM method. We
note that in both control and patient group, the correct classification rate is around 0.40–0.44
for Co-OSNTF method which is substantially better than the random guessing rate with four
communities of 0.25.

Finally, in Figure 14 we present two examples from each of the control and patient groups,
where the sample has been divided into a test set comprising of 15 subjects and a training
set comprised of the remaining subjects. For each of the examples (a)–(d), the leftmost figure
displays the estimated community membership (Z̄T )i for each ROI i using the Co-OSNTF
method. This estimated community membership is also our prediction for a new subject. The
middle and the rightmost figures then display ūi , the average community membership for
each ROI over the 15 test subjects obtained using the NMF and spectral methods for single
networks. We note that in each case there is strong indication that Z̄iT from the training
sample helps us predict the average community memberships ūi from the test samples.

Taken together, the low absolute error in predicting the ROI community assignments and
overlap of the actual community assignments with the putative mean assignment are testa-
ments to the predictive value of the model and the methods. In particular, the Co-OSNTF
method displays a superior predictive performance, and, therefore, we primarily present the
results from Co-OSNTF method as our findings from this study. This is slightly surprising
given the superior performance of the VarEM method in the simulations. However, since the
data in the simulations were generated from the RESBM, it is not too surprising that the
method which fits the model to the data performed better over a model-free approach. The
model is based on SBM and as such inherits the limitations of the SBM, namely, a failure to

FIG. 13. Predictive performance: Overlap (correct classification rate) with mean group putative community
structure over 10-fold cross-validation using Co-OSNTF and VarEM methods in control and patient groups.
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FIG. 14. Examples of predictive performance of Co-OSNTF method. In each case the data is split into a test
set comprising of 15 subjects and a training set with the remaining subjects. The Co-OSNTF method is run on
the training set to obtain estimated community assignments Z̄T for the ROIs (plotted in left panel in each case).
The average of the community assignments for the ROIs obtained separately for each subject using an NMF and
a spectral method are plotted side by side. The plots (a) and (b) are for control group, while (c) and (d) are for
patient group.

model degree heterogeneity. On the other hand, it has been shown in Paul and Chen (2016c)
that the OSNTF method is consistent for community detection under degree heterogeneity
(degree corrected stochastic block model) as well. The Co-OSNTF method likely inherits
this property from OSNTF and is, therefore, robust against some of the limitations that SBM
poses.

5.5. Validation and robustness checks. The predictive performance validates the use and
value of our model and methods. Next, we further perform a split sample validation of the
results where we split the sample into two roughly equal parts. Then, we estimate the param-
eters (Z̄, T ) on the two parts separately using VarEM and Co-OSNTF methods. We compare
the two sets of estimates. The Z̄ estimates are compared using the correct classification rate,
while the T estimates are compared using the median absolute difference between the corre-
sponding elements. As before, the community labels in the two splits are aligned by solving a
LSAP problem. We repeat this procedure 10 times, every time randomly splitting the sample
into two parts. Boxplots of the correct classification rate for comparing Z̄ estimates and the
median absolute difference for comparing T estimates are presented in Figure 15. We find
that there is an extremely large overlap with correct classification rate reaching 80–90% using
Co-OSNTF (Figure 15(a)) and the median absolute difference between elements of T matrix
being around 0.02–0.03 (Figure 15(b)). This validates that our estimates are consistent across
splits of the sample.

In our first robustness check we fit RESBM to networks obtained by thresholding the
residualized correlation matrices obtained by regressing out the effects of a number of co-
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FIG. 15. Split sample validation: The samples are divided into two parts randomly; Co-OSNTF and VarEM are
fitted to each part. The (a) Z̄ and (b) T estimates from the two splits are compared for control and patient groups.

variates, as outlined in Section 2.1.2. We obtain (Z̄, T ) estimates using Co-OSNTF method
and compare those with the estimates obtained without residualizing. We find the estimate
for Z̄ matches for about 95% of the ROIs (a mismatch of four out of 90 ROIs) for both con-
trols and patients. The median absolute difference for the estimate of T is 0.0063 and 0.0049
for controls and patients, respectively. This suggests the estimates obtained from residualized
correlation matrices are not much different from the one obtained without residualizing.

Our second robustness check involves sampling a subset of subjects in each group and
fitting the model on the subset as if the remaining data did not exist. We then compare the
(Z̄, T ) estimates from this reduced dataset with those obtained from the full dataset. In Fig-
ure 16 we progressively sample (50%, 60%, 70%, 80%, 90%) of the data and compare the
correct classification rate of Z̄ estimate and median absolute difference of T estimate with
the full data. In each case the boxplot represents the distribution of these values over 10 ran-
dom samples. We note that the estimates for both Z̄ and T from the reduced samples become
closer to those obtained from the full sample as the size of the reduced sample increases for
both controls and patients. Across different scenarios, Co-OSNTF method gives much bet-
ter proximity to full sample results compared to VarEM. For the Co-OSNTF method, the Z̄

estimate from the reduced sample has an overlap of 90% with 50% data, and it increases to
almost 95% with increasing sample. On the other hand, the estimate for T has a median ab-
solute error of 0.01 with 50% data and decreases even further to almost no error with 90% of
the data. These results can be thought of as another evidence toward validation of the results
and an important check for the robustness of our findings in the study.

The final robustness check involves availability of smaller time series data for estimating
the correlation matrices. Clearly, the accuracy with which the correlation matrices are mea-
sured is a function of the sample size of the time series and, hence, is expected to have an
impact in our analysis. In Figure 17 we start with roughly half the length of the time series

FIG. 16. Robustness check: Overlap of results on full sample with results from a smaller subsample (a) accuracy
of estimating Z̄ using correct classification rate and (b) accuracy of estimating T using median absolute error.
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FIG. 17. Robustness check: Overlap between results from shorter time series with those obtained from the full
time series.

and increase the length progressively. We assess the similarity of the estimates for Z̄ and T

obtained from the shorter time series with the full series in Figure 17(a) and (b), respectively.
It appears that the length of the time series, despite having some impact, does not drastically
change our estimates. The Z̄ estimates have strong overlap with the estimate from full sam-
ple, while the median absolute difference of the T estimates from that of the full sample is
small.

5.6. Discrimination analysis with new subjects. Next, we assess the utility of our model
and Co-OSNTF method in classifying an unlabeled subject to one of the two groups: controls
or patients. Classification of subjects in one of the groups is a fundamental interest in fMRI
due to obvious diagnostic and clinical implications. Recently, there has been an enhanced
interest in classifying subjects in schizophrenia, with many studies reporting high accuracy.
We show that the proposed methods can uncover information that are useful in discrimination.

We use two discrimination functions, one based on the MUV statistic described earlier and
the other one based on ratio of log-likelihoods. Suppose as before, ui denotes a k dimensional
community assignment vector for ROI i in a test subject obtained using either the spectral
method or the OSNTF method. Note from equation (3.1) that the likelihood for ROI i in a
test subject to belong to the population A is ui log(Z̄ATA). Therefore, the log-likelihood that
the test subject belongs to population A is

∑
i ui log(Z̄ATA) due to the conditional indepen-

dence assumption. Similarly, the log-likelihood that the subject belongs to population B is∑
i ui log(Z̄BTB). Therefore, the log-likelihood based discrimination rule is to classify a sub-

ject to either population A or B based on whether
∑

i ui log(Z̄ATA) >
∑

i ui log(Z̄BTB) or
not. The MUV discrimination function is a simple variant of the MUV test statistic defined
earlier,

MUV = ∥∥Z̄(A)T(A)T
T
(A)Z̄

T
(A) − UUT

∥∥2
F .

In Figure 18 we present accuracy of classifying subjects from a 15% holdout test set on
the basis of estimates obtained from training data over 15 repetitions. In the majority of cases
in both controls and patients, the accuracy of classification is above the random guessing line
of 0.5. We note that the classification accuracy is low compared to recent reports. However,
given this is a discrimination analysis and we do not train a classifier for the purpose of
supervised classification, it is not so surprising.

5.7. Computation time and choice of Co-OSNTF tuning parameter λ. Next, we comment
on the computing time each of our methods take on this data and the choice of the tuning pa-
rameter λ in the Co-OSNTF method. In Figure 19(a) and (b) we compare the computation
time of VarEM, Co-OSNTF and Co-Spectral with increasing number of subjects from each
of the control and patient groups. These computations have been carried out using a 4.2 GHz
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FIG. 18. Discrimination power of Co-OSNTF method. We use the (a) log-likelihood and the (b) MUV statistics
to classify a new subject to one of the two groups.

Intel Core i7, eight core, 32 GB memory system (however, no parallel computing is involved).
Generally, the computing time increases as the number of subjects increases in both cases. We
also note that both Co-Spectral and Co-OSNTF are faster compared to the VarEM method,
with both of them computing their solutions for the whole dataset under 10 seconds, while
VarEM requires around 60–80 seconds depending upon the number of subjects. While all the
methods for estimation are reasonably fast, the hypothesis testing, however, is computation-
ally intensive because of the requirement of running the methods on 10,000 resamples for an
accurate estimate of the p-values (this step however is executed in parallel).

While the Co-OSNTF tuning parameter is a user given parameter, it is possible to choose
the parameter using cross-validation by treating the prediction accuracy as a loss function.
We consider a wide range of λ values between [0.001,0.1], fit Co-OSNTF with the λ values
and compute the out-of-sample prediction error in each case. We display the cross-validation
prediction error for both controls and patients with log of λ (base 10) in Figure 19(c). It
appears that, for λ between 10−3 to 10−2, there is not much difference in the prediction ac-
curacy, and as λ increases the accuracy drastically decreases. We also note that the prediction
error is least at a point somewhere between −2.5 and −2. Therefore, our choice of 0.01 for
λ is very close to the optimum.

5.8. Choice of a different threshold. We close this section by repeating some of the anal-
yses with two different thresholds for the correlation matrices, 0.3 and 0.4. We fit the model
using the Co-OSNTF method with k = 4 communities in each case. The community colors

FIG. 19. (a) and (b) Computation time in controls and patients, (c) Cross-validation for the choice of λ.
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FIG. 20. Group putative community structure of resting state network based on AAL ROIs for thresholds of (A)
0.3 and (B) 0.4 in (a), (c) healthy controls, and (b), (d) patients with schizophrenia. Nodes are colored according
to their group putative community obtained from Co-OSNTF fitted with four communities.

and labels are kept consistent with previous analysis with threshold 0.2, for ease of compar-
ison. The group putative community structure and the estimated community assignment of
the ROIs are presented in Figures 20 and 21, respectively. We note that there is a very high
similarity of the results with the ones we have obtained for the threshold of 0.2. We note,
as before, a disruption in the community structure with nodes from red module in controls
being distributed in various modules in patients, the blue module in controls getting divided
into two modules in patients, and the yellow module remaining relatively unchanged between
controls and patients.

FIG. 21. Community estimate for AAL ROIs in controls and patients using the Co-OSNTF method with four
communities for thresholds (A) 0.3 and (B) 0.4.
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6. Discussions and limitations. We have proposed a random effects model to jointly
model the community structure in a sample from a population of networks. The proposed es-
timation and hypothesis testing methodology outperforms baseline and competing methods
in simulated network samples. Our methods uncover meaningful differences between func-
tional brain networks of healthy controls and schizophrenia patients. We hope the principled
approach developed here will be useful in modeling and contrasting network valued samples
in terms of their low-dimensional latent structures. We conclude by discussing a limitation of
our methods and analysis. Another limitation of the methods is discussed in the Supplemen-
tary Material (Paul and Chen (2020b)).

Dependence on selection of thresholds and length of time series. In Section 4 we have
performed comprehensive simulations on the performance of the proposed methods when
the networks are directly generated through a RESBM. However, in fMRI application prob-
lems the raw data is in the format of a multivariate time series, and one needs to estimate the
networks from the time series. While thresholding the correlation matrices at an appropri-
ate level is a widely used method, not much attention has been given on how a thresholded
estimator performs in estimating the networks. Clearly both the choice of the threshold and
the length of the available time series are important considerations for performance of our
methods. Therefore, we present a limited simulation where we generate multivariate time
series data first and then estimate the adjacency matrices. For this purpose we combine the
proposed RESBM with a model presented in Brownlees, Gudmundsson and Lugosi (2017),
called the Stochastic Block Partial Correlation Model (SBPCM). As in Section 4, we generate
a sample of M = 10 networks from the RESBM with n = 100 vertices and k = 3 commu-
nities. However, instead of directly applying our methods to the sample of networks, we
first obtain n dimensional multivariate time series of length t for each of the samples, ac-
cording to the SBPCM. In the terminology of Brownlees, Gudmundsson and Lugosi (2017),
we consider three levels of the parameter φ, which controls the relative weight of the graph
Laplacian matrix in creating the inverse covariance (concentration or precision) matrix. The
three levels are 25,50 and 75, respectively. We also consider three levels of the length of
the time series t which are 200,500 and 1000. The accuracy of estimating Z̄ and the av-
erage accuracy of estimating Z(m)s are presented in Figure 22. We note that there is no
uniform “optimum threshold,” and the accuracy is highest for different thresholds depend-
ing upon the φ parameter. The accuracies are highly sensitive to the choice of the threshold
as well; however, there is usually a range of thresholds for which the accuracies are reason-
able. In each case the accuracies are lower for a very low threshold when the network is
dense and full of possibly spurious correlations, gradually increase with increasing threshold
and, finally, start decreasing as the network becomes too sparse in high thresholds. There-
fore, the sparse networks obtained at very high thresholds are not necessarily the best ones.
We also note from Figure 22 that the thresholds at which the accuracies are higher gener-
ally increase with increasing φ. This makes intuitive sense, since the parameter φ effectively
controls how much network structure is passed on to the correlation matrix from which the
multivariate time series data is generated. Therefore, a higher φ means the network struc-
ture is strongly present; a high cutoff for the correlations produces the most informative
networks. Across all values of φ, we note that the performance is poor for the length of
the time series t = 200 and increases as t increases to 1000. This is, of course, also not
surprising and underscores the dependence of accuracy of our methods on the estimation
accuracy of the correlation matrices which in turn is dependent on the length of the time
series.



RANDOM EFFECTS STOCHASTIC BLOCK MODEL 1025

FIG. 22. Performance of various methods in terms of (A) average accuracy in estimating the community assign-
ments of the member networks Z(m)s and (B) accuracy of estimating the mean putative community assignment Z̄

from a sample of multivariate time series data of sizes 200,500,1000 generated using a model which combines
RESBM and SBPCM. The three rows of figures correspond to φ = 25,50,75, respectively.
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SUPPLEMENTARY MATERIAL

Supplement to “A random effects stochastic block model for joint community de-
tection in multiple networks with applications to neuroimaging” (DOI: 10.1214/20-
AOAS1339SUPP; .pdf). The supplementary file contains the details of derivation of the meth-
ods, their convergence and implementation details, some additional simulations mentioned in
Section 4, and a discussion of a limitation of the algorithms.
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