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Recurrent events are commonly encountered in longitudinal studies. The
observation of recurrent events is often stopped by a dependent terminal event
in practice. For this data scenario, we propose two sensible adaptations of the
generalized accelerated recurrence time (GART) model (J. Amer. Statist. As-
soc. 111 (2016) 145–156) to provide useful alternative analyses that can offer
physical interpretations while rendering extra flexibility beyond the existing
work based on the accelerated failure time model. Our modeling strategies
align with the rationale underlying the use of the survivors’ rate function or
the adjusted rate function to account for the presence of the dependent termi-
nal event. For the proposed models, we identify and develop estimation and
inference procedures which can be readily implemented based on existing
software. We establish the asymptotic properties of the new estimator. Sim-
ulation studies demonstrate good finite-sample performance of the proposed
methods. An application to a dataset from the Cystic Fibrosis Foundation
Patient Registry (CFFPR) illustrates the practical utility of the new methods.

1. Introduction. Recurrent events are commonly encountered in longitudinal follow-up
studies of chronic diseases. Examples of recurrent events include repeated infections, hospi-
talizations or cancer tumor recurrences. The analysis of recurrent events data has been exten-
sively studied in literature. Well-known methods include assessing or modeling the intensity
function of recurrent events (Andersen and Gill (1982), Pepe and Cai (1993), for example),
the gap time between recurrent events (Huang and Liu (2007), Lin, Sun and Ying (1999),
Prentice, Williams and Peterson (1981), e.g.) and the mean/rate function of recurrent events
(Cook and Lawless (1997), Lin et al. (2000), for example).

More recently, Huang and Peng (2009) introduced a new concept, called time to expected
frequency, as a new quantitative device to flexibly characterize the progression of the recur-
rent events. As further explained in Section 2, time to expected frequency can be roughly
viewed as the inverse function of the mean function; consequently, it can be tackled without
requiring assumptions on the dependency structure of recurrent events. Desirably, time to ex-
pected frequency also offers a natural physical interpretation that can deliver an alternative
view regarding the timing of recurrent events. Regression modeling of time to expected fre-
quency was studied by Huang and Peng (2009) and Sun et al. (2016). These efforts have led
to a general regression model for recurrent events data, referred to as the generalized acceler-
ated recurrence time (GART) model. The GART model encompasses the accelerated failure
time (AFT) model for recurrent events data (Lin, Wei and Ying (1998)) as a special case and
reduces to a quantile regression model in the nonrecurrent event setting.

In practice, the observation of recurrent events is often terminated by some disease-related
event (e.g., death) before the end of follow-up. For example, recurrent nonmucoid pseu-
domonas aeruginosa (PA) infections are commonly seen in cystic fibrosis (CF) patients. This
PA phenotype, however, is usually terminated upon the occurrence of a mucoid PA infection.
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The development of a mucoid PA infection is believed to be closely related to the recurrences
of nonmucoid PA infections (Heltshe et al. (2018)). Thus, a mucoid PA infection constitutes
a dependent terminal event for the recurrent process of nonmucoid infections.

The presence of a dependent terminal event can complicate the inference on the recurrent
event process corresponding to the setting without the dependent terminal event. One reason
is that such “net” quantities of interest, such as the marginal rate or mean function, are not
nonparametrically identifiable (Ghosh and Lin (2003)). Tackling such quantities generally re-
quires additional modeling of the terminal event and its association with the recurrent events.
Various types of joint models of the recurrent events and the dependent terminal event have
been studied in literature (Ghosh and Lin (2003), Huang and Wang (2004), Liu, Wolfe and
Huang (2004), Ye, Kalbfleisch and Schaubel (2007), among others).

Alternatively, one may assess the progression of recurrent events in conjunction with the
terminal event. That is, rather than targeting the recurrent event process for the hypothetical
setting where the terminal event does not exist, the analysis may be oriented to “crude” quan-
tities which account for both the recurrent events and the terminal event. Examples of such
quantities include the adjusted rate function (Luo, Wang and Huang (2010)), which depicts
the rate of recurrent events before the occurrence of the terminal event, and the survivors’
rate function, which represents the rate of recurrent events conditioning on the terminal event
hasn’t occurred (Cook and Lawless (1997)). The interpretations of such “crude” quantities
do not assume the existence of the latent recurrent event process after the occurrence of the
terminal event (which may be controversial in some practical situations). In particular, the in-
terpretations of the survivors’ rate function and the adjusted rate function bear a similar flavor
to those of cause-specific hazard function and cumulative incidence function which are pop-
ularly used for competing risks data analyses. In addition, these quantities can be estimated
without imposing additional modeling of the terminal event.

Many authors (Ghosh and Lin (2002), Liu, Wolfe and Huang (2004), Schaubel and Cai
(2005), Zeng and Cai (2010), among others) have investigated either nonparametric or semi-
parametric estimation of the “crude” quantities for recurrent event data. For example, for
the adjusted rate function, Ghosh and Lin (2002) studied a multiplicative effect model and
proposed counting-process based estimation procedures which handle random censoring by
either inverse weighting the probability of censoring or inverse weighting the survival prob-
abilities of the terminal event time. Miloslavsky et al. (2004) further derived a modified es-
timation equation which can provide better estimation efficiency. Focusing on the survivors’
rate function, Liu, Wolfe and Huang (2004) investigated a multiplicative effect model jointly
with a proportional hazards model for the terminal event time, where a shared frailty was
incorporated to account for the dependency between the recurrent events and the terminal
event. An additive effect model was also studied by Zeng and Cai (2010), along with a linear
transformation model assumed for the terminal event time.

Despite the increasing attention to the presence of a dependent terminal event in the recur-
rent events setting, none of the existing work has dealt with this complication under the GART
modeling framework, which is a generalization of the traditional AFT modeling and offers
additional flexibility to explore potential heterogeneous effects of covariates. In this work we
aim to fill in this gap by discussing how to extend the GART model to properly accommo-
date the dependent terminal event and how to develop estimation and inference procedures
accordingly. More specifically, we study two extensions of the GART model, where we adapt
the concept of time to expected frequency, respectively, aligning with the strategy of using
the survivors’ rate function or the adjusted rate function to account for the presence of the
dependent terminal event. It is interesting to uncover that the extension of the GART model
based on the survivors’ rate function can be estimated by the method of Sun et al. (2016) with
the dependent terminal event treated as a random censoring event. This phenomenon is anal-
ogous to the known result that for dependently censored univariate survival data, performing
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the standard Cox regression with dependent censoring treated as independent censoring is the
same as conducting the cause-specific proportional hazards regression (Kalbfleisch and Pren-
tice (2002)). This finding justifies the application of the method of Sun et al. (2016) in the
presence of a dependent terminal event as long as the interpretation is appropriately adapted.
For the GART extension based on the adjusted rate function, we propose an unbiased estimat-
ing equation by employing the technique of inverse weight of censoring probability (IPCW)
(Robins and Rotnitzky (1992)). The estimation and inference procedures for both extensions
of the GART model can be readily implemented based on existing software.

The two GART extensions proposed in this work represent different perspectives for prob-
ing the influence of covariates on the “crude” recurrent event process that accounts for the
presence of the dependent terminal event. This pertains to the different implications of sur-
vivors’ rate function and adjusted rate function as illustrated in Luo, Wang and Huang (2010).
The survivors’ rate function depicts the event occurrences in the subgroup not experiencing
the terminal event (i.e., “survivors”) which may hold a different pattern from the raw event
pattern observed from the whole population that is captured by the adjusted rate function.
This is observed in the Cystic Fibrosis example discussed in Section 4.2. As an analogy with
“crude” competing risks quantities, the cumulative adjusted rate function is a natural exten-
sion of the cumulative incidence function to the recurrent event setting, while the survivors’
rate function targets “survivors” and, thus, shares the same rationale as the cause-specific
hazard function. In practice, it is important to bear in mind these distinctions when decid-
ing which GART extension fits better to the scientific problem at hand or when explaining
discrepancies in results from applying the two proposed GART extensions.

The rest of this article is organized as follows. In Section 2 we introduce the data and
notation for the recurrent events setting with a dependent terminal event, and briefly review
the GART model. In Section 3 we present the proposed extensions of the GART model and
the corresponding estimation procedures. We also establish the asymptotic properties of the
proposed estimators and develop sample-based inference procedures. Numerical studies are
reported in Section 4, including simulation studies that evaluate the finite-sample perfor-
mance of our methods and an application to a dataset from the Cystic Fibrosis Foundation
Patient Registry (CFFPR). Several remarks are provided in Section 5.

2. Background.

2.1. Notation and data scenario. We first introduce notation and describe the data sce-
nario of interest. Let T (j) denote the time to the j th recurrent event (j = 1,2, . . .), D denote
the time to a dependent terminal event and (L,R] denote a random observation window for
the recurrent events. Define R̃ = R ∧ D, δ = I (D ≤ R) and Z = (1, Z̃�)�, where Z̃ denotes
a p × 1 vector of covariates, ∧ is the minimum operator and I (·) is the indicator function.
The observed counting process of recurrent events is defined as N(t) = ∑∞

j=1 I (L < T (j) ≤
t ∧ R̃). The underlying recurrent event counting process, without accounting for the presence
of the terminal event, is given by N∗

0 (t) = ∑∞
j=1 I (T (j) ≤ t). The underlying recurrent event

counting process that accounts for the presence of the dependent terminal event is given by
N∗(t) = ∑∞

j=1 I (T (j) ≤ t ∧ D). Clearly, N∗(t) does not jump for t > D, meaning it does
not involve the information on the recurrent events that occur after the time D. We define
the at-risk process as Y(t) = I (L < t ≤ R̃), acknowledging that a subject who has experi-
enced the terminal event would not be considered as at risk for the recurrent event. We define
SC(t |Z) = Pr(L < t ≤ R|Z).

The observed data include n i.i.d. replicates of (L, R̃, δ,N,Z), namely, {(Li, R̃i, δi ,
Ni,Zi)}ni=1. We assume that L and R are conditionally independent of N∗

0 (·) and D given Z.
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2.2. A review of the GART model. Sun et al. (2016) proposed the generalized accelerated
recurrence time (GART) model for recurrent events data in the absence of the terminal event
(i.e., D = ∞). Define μZ(t) = E{N∗

0 (t)|Z} and τZ(u) = inf{t ≥ 0 : μZ(t) ≥ u}. The quantity
μZ(t) represents the mean function of recurrent events, and the quantity τZ(u) is the so-called
time to expected frequency u (Huang and Peng (2009)). Suppose μZ(t) is smooth and strictly
increasing. By the definition of τZ(u), the expected frequency (or mean function) of recurrent
events given covariates in Z at time τZ(u) would equal u. This suggests that τZ(u) can be
roughly viewed as the inverse function of the mean function. By its definition, τZ(u) has a
direct “physical” interpretation on the time-scale (Reid (1994)).

Under the GART model, covariate effects are formulated on the time to expected fre-
quency,

(1) τZ
(
G(u)

) = exp
{
ZT β0(u)

}
, u ∈ (0,U ],

where G(u) = ∫ u
0 g(s) ds, g(·) is a known positive and continuous function and U is a pos-

itive constant in the frequency scale. The nonintercept coefficients in β0(u) represent the
effects of the corresponding covariates on time to expected frequency G(u). The specifica-
tion of G(·) determines the scale in which covariate effects are formulated. In practice, we
recommend using G(u) = u for simple interpretation. Other specifications of G(·) may be
explored when the interpretation on a transformed frequency scale is desired or as an effort
to improve the overall fit of the assumed model to the observed data. When all the nonin-
tercept coefficients in β0(u) are constant over u and G(u) = u, it can be shown that model
(1) reduces to the accelerated failure time (AFT) model for recurrent events data (Lin, Wei
and Ying (1998)). If the event of interest is not recurrent (i.e., T (j) = ∞ for j ≥ 2), then
τZ(u) becomes the conditional quantile function of T (1) given Z, and, consequently, model
(1) reduces to a quantile regression model for T (1).

Sun et al. (2016) showed that the GART model has an equivalent formulation in terms of
the counting process,

(2) E
{
N

(
eZT β0(u))|Z} = E

{∫ u

0
Y

(
eZT β0(s)

)
g(s) ds

∣∣∣Z}
, u ∈ (0,U ].

This counting process formulation of the GART model greatly facilitates the estimation of
β0(u). Specifically, it suggests the following stochastic integral based estimating equation:

(3) n−1/2
n∑

i=1

Zi

{
Ni

(
exp

{
Z�

i β(u)
}) −

∫ u

0
Yi

(
exp

{
Z�

i β(s)
})

g(s) ds

}
= 0.

As elaborated in Sun et al. (2016), the estimating equation (3) can be stably and effectively
solved by a sequence of L1-minimization problems. Desirable asymptotic properties, such
as uniform consistency and weak convergence to a mean-zero Gaussian process, were estab-
lished for the estimator derived based on equation (3).

3. The proposed models and inference procedures.

3.1. An extension of the GART model based on survivors’ rate function. The survivors’
rate function, defined as λS

Z(t)
.= E{dN∗(t)|D ≥ t,Z}/dt , has been used as a variant of the

classic rate function for accounting for the presence of the terminal event (Cook and Lawless
(1997)). The interpretation of λS

Z(t) targets the subgroup with D ≥ t , and this shares the
same rationale as that adopted by cause-specific hazard which is confined to a specific failure
type in a competing risks setting. Let �S

Z(u)
.= ∫ u

0 λS
Z(t) dt , and we shall refer it to as the

cumulative survivors’ rate function.
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We propose an extension of the GART model in the presence of the terminal event by
viewing �S

Z(u), the integral of the survivors’ rate function, as the counterpart of the mean
function μZ(u) which is the integral of the classic rate function. Specifically, the GART
model (1) is transformed to

(4) τS
Z

(
G(u)

) = exp
{
ZT βS

0 (u)
}
, u ∈ (0,U ],

where τS
Z(u)

.= inf{t ≥ 0 : �S
Z(t) ≥ u} stands for the time to expected cumulative survivors’

rate u. Here, G(u) is defined in the same way as in the GART model (1).
Interestingly, we can show that model (4) has the same counting process formulation as in

(2); see Proposition A1 in Appendix A,

E
{
N

(
eZ�βS

0 (u))|Z} = E

{∫ u

0
Y

(
eZ�βS

0 (u))g(s) ds
∣∣∣Z}

, u ∈ (0,U ].(5)

An important implication from this finding is that we can directly apply the estimation of
Sun et al. (2016) procedure, theory and inference procedures which were originally designed
for the setting, without the dependent terminal event, to address the proposed model (4). The
critical distinction caused by the presence of a dependent terminal event is about the coeffi-
cient interpretation. When D is not independent of N∗

0 (t) given Z, a nonintercept coefficient
in βS

0 (u) represents a covariate effect on time to expected cumulative survivor’s rate G(u),
rather than a covariate effect on time to expected frequency G(u), which is the coefficient
interpretation under the GART model. When D is independent of N∗

0 (·) given Z, the cu-
mulative survivor’s rate �S

Z(u) equals the mean function μZ(u). In this special case, βS
0 (u)

has the same interpretation as the coefficients under the GART model. The connection dis-
cussed here is analogous to the relationship between the proportional cause-specific hazard
regression for dependently censored data and the standard proportional hazards regression
for randomly censored data which share the same estimation procedure but render different
coefficient interpretation (Kalbfleisch and Prentice (2002)).

Following Sun et al. (2016), we can obtain an estimator of βS
0 (·), denoted by β̂

S
(·), as a

right continuous piecewise-constant function that jumps only at the grid points of SL(n) =
{0 = u0 < u1 < · · · < uL(n) = U}. We set exp{Z�

i β̂
S
(0)} = 0 for all i and then obtain β̂

S
(uk)

sequentially for k = 1,2, . . . ,L(n) by solving the estimating equation,

(6) n−1/2
n∑

i=1

Zi

{
Ni

(
eZ�

i β(uk)
) −

k−1∑
m=0

Yi

(
eZ�

i β̂
S
(um)) ×

∫ um+1

um

g(s) ds

}
= 0

for β(uk). Since estimating equation (6) is not continuous and an exact solution may not
exist, β̂(uk) is defined as a generalized solution to this estimating equation. Because estimat-
ing equation (6) is monotone, the set of its generalized solutions is a convex set of diameter
O(n−1) (Fygenson and Ritov (1994)). As discussed in Sun et al. (2016), the estimating func-
tion in (6) equals 0.5 times the gradient of the following L1-type convex function:

lk(h) =
n∑

i=1

∞∑
j=1

I
(
Li ≤ T

(j)
i ≤ R̃i

)∣∣logT
(j)
i − ZT

i h
∣∣

+
∣∣∣∣∣R∗ −

{
n∑

i=1

∞∑
j=1

I
(
Li ≤ T

(j)
i ≤ R̃i

)
(−Zi )

Th

}∣∣∣∣∣
+

∣∣∣∣∣R∗ −
{

n∑
i=1

2ZT
i h

k−1∑
m=0

Yi

(
exp

{
ZT

i β̂
S(um)

}) ∫ um+1

um

g(s) ds

}∣∣∣∣∣,
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where R∗ is a very large number and k = 1, . . . ,L(n). Finding a generalized solution to
equation (6) is then equivalent to locating the minimizer of the L1-type convex objective

function, lk(h). Therefore, we can obtain β̂
S
(uk) as the minimizer of lk(h).

We would like to point out that the core foundation of the proof’s of Sun et al. (2016)
for the asymptotic properties of their estimator is the counting process model formulation of
the GART model and the empirical process approximations thereof which are irrelevant to
whether or not R is independent of the underlying recurrent event process. With R̃

.= R ∧ D

serving as the counterpart of R, the counting process formulation of the proposed extension
of the GART model based on survivors’ rate function is the same as that of the GART model,
as shown in equation (5). This fact thus allows us to directly apply the asymptotic arguments

in Sun et al. (2016) to show that β̂
S
(u) is uniform consistent in u and weakly converges to

a mean-zero Gaussian process at the root-n rate under some regularity conditions. Similarly,
the inferences about βS

0 (·) can be carried out in the same manner as those presented in Sun
et al. (2016).

3.2. Extension of the GART model based on the adjusted rate function. The counting
process N∗(t) .= ∑∞

j=1 I (T (j) ≤ t ∧ D) naturally accounts for the presence of the terminal
event and provides the base for defining the adjusted rate function. That is, the adjusted
rate function can be defined as λA

Z(t)
.= E{dN∗(t)|Z}/dt . We call �A

Z(t)
.= ∫ t

0 λA
Z(s) ds the

cumulative adjusted rate function. It is easy to see that �A
Z(t) = E{N∗(t)|Z}; thus, �A

Z(t)

can be interpreted as the expected frequency of recurrent events before the occurrence of the
terminal event. In the nonrecurrent event setting, �A

Z(t) reduces to the so-called cumulative
incidence function (Kalbfleisch and Prentice (2002)). The cumulative incidence function and
�A

Z(t) share the same spirit in terms of how to account for the presence of a dependent
censoring event in the nonrecurrent event setting or of a terminal event in the recurrent event
setting. The interpretation of �A

Z(t) is generally applicable in recurrent events settings in the
presence of a dependent or independent terminal event.

Following the strategy of using the adjusted rate function to account for the presence of
the terminal event, we propose an extension of the GART model that takes the form

(7) τA
Z

(
G(u)

) = exp
{
Z�βA

0 (u)
}
, u ∈ [ν,U ],

where τA
Z (u) = inf{t ≥ 0 : �A

Z(t) ≥ u}, G(u) is defined in the same way as in the GART
model (1) and 0 < ν < U . The nonintercept coefficients in βA

0 (t) can be interpreted as co-
variate effects on time to cumulative adjusted rate G(u).

In Proposition A2 in the Appendix, we show that model (7) implies

(8)

E

{ ∞∑
j=1

1

SC(T (j)
∣∣∣Z)

I
(
L < T (j) ≤ eZ�βA

0 (u) ∧ R̃
)|Z}

=
∫ u

0
g(s) ds, u ∈ [ν,U ].

By this result we propose to estimate βA
0 (u) based on the the estimating equation,

(9) Sn(β, u) = 0,

where

(10)

Sn(β, u)

= n−1/2
n∑

i=1

Zi

{ ∞∑
j=1

1

ŜC(T
(j)
i |Zi )

I
(
Li < T

(j)
i ≤ eZ�

i β(u) ∧ R̃i

) −
∫ u

0
g(s) ds

}
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and ŜC(·|Z) is a reasonable estimator of SC(·|Z). For presentation simplicity, in the se-
quel we assume that L and R are independent of Z. In this case SC(t |Z) is free of Z and
equals Pr(R ≥ t) − Pr(L ≥ t). Since R is only subject to the independent censoring by
D and L is always observed, we shall estimate Pr(R ≥ t) by the left-continuous version
of the Kaplan–Meier estimator of Pr(R > t), denoted by ĜR(t) and estimate Pr(L ≥ t)

by its empirical counterpart, denoted by ĜL(t). A reasonable estimate for SC(t |Z) is then
given by ŜC(t)

.= ĜR(t) − ĜL(t). When L and R are believed to be covariate-dependent,
we can impose regression modeling of L and R given Z to provide a reasonable esti-
mate for SC(·|Z). For instance, we may assume Cox proportional hazards models for L

and R. Since L is always observed and R is only subject to independent censoring by
D, we can obtain the estimated baseline cumulative hazard functions, �̂L(t) and �̂R(t),
and the estimated Cox regression coefficients, β̂L and β̂R , using the standard partial like-
lihood estimation procedure. This then leads to a reasonable estimate for SC(t |Z), given by
ŜC(t |Z) = exp{−�̂R(t) exp(ZTβ̂R)}−exp{−�̂L(t) exp(ZTβ̂L)}. Similarly, we may estimate
SC(t |Z) based on other available regression models for randomly censored data, such as the
accelerate failure time model.

Note that equation (9) is monotone but not continuous. Thus, an exact solution may not

exist. We then define an estimator of βA
0 (u), β̂

A
(u), as a generalized solution to equation

(9) which belongs to a convex set of size O(n−1) (Fygenson and Ritov (1994)). Following
the arguments in Peng and Fine (2009), we only need to solve equation (9) on a fine grid

SA
L(n) = {ν = u0 < u1 < · · · < uL(n) = U} and then let β̂

A
(·) be a right continuous piecewise-

constant function that jumps only at the grid points of SA
L(n). We can show that locating

β̂
A
(uk) (k = 1, . . . ,L(n)) is equivalent to finding the minimizer of

(11)

Un(h, u) = n−1/2
n∑

i=1

∞∑
j=1

1

ŜC(T
(j)
i )

I
(
Li < T

(j)
i ≤ R̃i

)∣∣logT
(j)
i − Z�

i h
∣∣

+
∣∣∣∣∣R∗ −

{
n∑

i=1

∞∑
j=1

1

ŜC(T
(j)
i )

I
(
Li < T

(j)
i ≤ R̃i

)
(−Zi )

�h

}∣∣∣∣∣
+

∣∣∣∣∣R∗ −
{

n∑
i=1

2Z�
i h

∫ u

0
g(s) ds

}∣∣∣∣∣,
where R∗ is a sufficiently large number. This is because ∂Un(h, u)/∂h equals two times
n1/2Sn(β, u) when R∗ is chosen large enough to bound |∑n

i=1 2Z�
i h

∫ uk

0 g(s) ds| and

|∑n
i=1

∑∞
j=1

1
ŜC(T

(j)
i |Z)

I (Li < T
(j)
i ≤ R̃i)(−Zi )

�h|. The minimization of Un(h, u) can be

easily solved by using standard statistical software, such as the l1fit() function in S-PLUS or
the rq() function in R package quantreg.

When the event of interest is not recurrent (i.e., T (j) = ∞ for j > 1) and L = 0, the data
considered in this work become the classic semicompeting risks data. In this special case,
�A

Z(t) boils down to the cumulative incidence function for T (1); hence, model (6) is the
same as the cumulative incidence quantile regression model which has been studied for left
truncated semi-competing risks data (Li and Peng (2011)) and competing risks data (Peng

and Fine (2009)). Moreover, the proposed estimator β̂
A
(u) applied to such competing risks

data coincides with the estimator’s of Li and Peng (2011) applied to the same data and the
estimator’s of Peng and Fine (2009) applied to the competing risks portion of the data from
ignoring the extra information on D.
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3.2.1. Asymptotic properties. We establish the uniform consistency and weak conver-

gence of the proposed estimator β̂
A
(·). We first state the regularity conditions:

(C1) (i) There exists vR > 0 such that Pr(R = vR) > 0 and Pr(R > vR) = 0;
(ii) Pr(L < R) = 1; (iii) inft∈(0,vR] SC(t) > 0.

(C2) (i) ‖Z‖ is bounded; (ii) N(R̃) is bounded.
(C3) (i) βA

0 (u) is Lipschitz continuous in u ∈ [ν,U ]; (ii) λA
Z(t) is bounded above uni-

formly in t and Z.
(C4) For some ρ0 > 0 and c0 > 0, infb∈B(ρ0) eigmin A(b) ≥ c0, where B(ρ) = {b ∈ R

p+1 :
infu∈[ν,U ] ‖b − βA

0 (u)‖ ≤ ρ} and A(b) = E{Z⊗2 exp(ZTb)

λA
Z(exp(ZTb))}. Here, ‖ · ‖ denotes the Euclidean norm, “eigmin” denotes the minimal eigen-

value of a matrix and u⊗2 = uu�.

Condition (C1) is assumed to ensure the inverse weights {SC(T
(j)
i )}−1 can be consistently

estimated. This condition is usually satisfied in follow-up studies with administrative censor-
ing (or by imposing artificial truncation to the observed recurrent events) and a positive prob-
ability mass at L = 0. Conditions (C2) and (C3) are realistic assumptions; similar conditions
are also adopted in Peng and Fine (2009) for the cumulative incidence quantile regression
model in the competing risks setting. Condition (C4) implies that Sn(β, u) is strictly mono-
tone in a neighborhood of βA

0 (u) for u ∈ (0,U ]. This entails the identifiability of βA
0 (u) and

the consistency of β̂
A
(u).

Under the regularity conditions (C1)–(C4), we have the following theorems:

THEOREM 1. Suppose model (7) holds. Under conditions C1–C4,

lim
n→∞ sup

u∈[ν,U ]
∥∥β̂A

(u) − βA
0 (u)

∥∥ →p 0.

THEOREM 2. Suppose model (7) holds. Under conditions C1–C4, n1/2{β̂A
(u)−βA

0 (u)}
converge weakly to a mean zero Gaussian process for u ∈ [ν,U ] with the covariance function

�
(
u′, u

) = A
{
βA

0
(
u′)}−1

E
{
ξ1

(
u′)ξ1(u)�

}
A

{
βA

0 (u)
}−1

,

where ξ1(u) is defined in equation (15) in Appendix B.

The proofs of Theorems 1–2 follow the similar arguments in Peng and Fine (2009). The
detailed proofs are provided in Appendix B.

3.2.2. Inference. To make inference on βA
0 (u), we can apply a bootstrapping procedure

such as the standard nonparametric bootstrapping with replacement or the resampling method
proposed in Jin, Ying and Wei (2001).

Alternatively, we can also perform sample-based inference following the lines of Peng
and Fine (2009). The sample-based inference does not involve resampling and repeating the
proposed estimation procedure and, therefore, can save considerable computational time par-
ticularly when the sample size is large. More specifically, let �̂(u, v) denote a consistent
plug-in estimator of �(u, v)

.= E{ξ1(u)ξ1(v)}, which stands for the asymptotic covariance
matrix of Sn(β

A
0 (u), u), where ξ1(u) is defined in equation (15) in Appendix B. An example

of �̂(u, v) may be given by

�̂(u,u) = 1

n

n∑
i=1

(
ξ̂1,i(u) − ξ̂2,i (u)

)⊗2
,
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where ξ̂1,i (u) = Zi{∑∞
j=1

1
ŜC(T

(j)
i )

I (Li < T
(j)
i ≤ eZ�

i β̂
A
(u) ∧ R̃i) − ∫ u

0 g(s) ds}, ξ̂2,i(u) =
1
n

∑n
k=1 Zk{∑∞

j=1

ξ̂
ŜC ,i

(T
(j)
k )

Ŝ2
C(T

(j)
k )

× I (Lk < T
(j)
k ≤ eZ�

k β̂
A
(u) ∧ R̃k)} and ξ̂

Ŝc,i
(T

(j)
k ) = ĜR(T

(j)
k ) ×

I (T
(j)
k ≥ R̃i, δi = 0)/{∑n

m=1 I (R̃m ≥ R̃i)/n} − {I (Li ≥ t) − 1
n

∑n
m=1 I (Lm ≥ T

(j)
k )}. First,

find a symmetric and nonsigular (p + 1) × (p + 1) matrix En(u) = {en,1(u), . . . , en,p+1(u)}
such that �̂(u,u) = {En(u)}2. Next, calculate Dn(u) = (S−1

n (en,1(u), u) − β̂(u), . . . ,

S−1
n (en,p+1(u), u) − β̂(u)), where S−1

n (e, u) is defined as the solution to Sn(b, u) = e.

Finally, we can estimate the asymptotic covariance matrix of n1/2{β̂A
(u) − βA

0 (u)} and

n1/2{β̂A
(u′) − βA

0 (u′)} by nDn(u
′)En(u

′)−1�̂(u′, u)

En(u)−1Dn(u)T . With u = u′, the asymptotic variance matrix of n1/2{β̂A
(u) − βA

0 (u)} can
then be estimated by n{Dn(u)}⊗2.

In addition, following the lines of Peng and Fine (2009), we can perform second-stage
inference to test whether or not a coefficient function in βA

0 (u) is constant over u. Rejecting
the constancy hypothesis for a nonintercept coefficient would indicate the lack-of-fit of a
AFT-type model that imposes constant effects for all covariates.

4. Numerical studies.

4.1. Monte-Carlo simulations. We conduct Monte-Carlo simulations to evaluate the pro-
posed method for the extended GART model (7) based on the adjusted rate function. We
generate covariates Z1 and Z2, respectively, from Bernoulli(0.5) and Uniform(−5,5) distri-
butions. Define ηj = I (T (j) ≤ D). We generate ηj (j = 1,2, . . .) as Bernoulli random vari-
ables that satisfy Pr(η1 = 1) = p and Pr(ηj+1 = 1|ηj = 1) = p, Pr(ηj+1 = 1|ηj = 0) = 0.
The value of p determines the number of recurrent events before the terminal event; set-
ting a larger p tends to generate more recurrent events before the terminal event. Define

Tj,D = exp{T ∗(j)

3γ
Z1 + min(0.2, T ∗(j)

15γ
)Z2}T ∗(j)/γ , where {T ∗(j), j = 1,2, . . . } are produced

from a standard homogeneous Poisson process and γ follows the Gamma(2,2) distribution.
For j ≥ 1 with ηj = 1, we let T (j) = Tj,D ; for j corresponding to the first ηj = 0, we let
D = Tj,D . Under this set-up we can show that

τA
Z (u) = exp

{
log

(
1

1 − p

[
2

{1 − u(1 − p)/p}1/2 − 2
])

+ 1

3 − 3p

[
2

{1 − u(1 − p)/p}1/2 − 2
]
Z1

+ min
(

0.2,
1

15 − 15p

[
2√

1 − u(1 − p)/p
− 2

])
Z2

}
.

This indicates that model (7) holds with g(u) = u. The effect of Z1 on τA
Z (u) is increasing

with u, and the effect of Z2 rises first and then becomes constant as u increases. Finally,
we generate L as w1 · Unif(0,1), where w1 follows Bernoulli(0.8), and generate R as w2 ·
Unif(L,30) + (1 − w2) · 30, where w2 follows Bernoulli(0.8).

In our simulations we consider p = 0.8,0.85,0.9,0.95. In each setting we generate 1000

datasets with sample size 200. The estimator β̂
A
(u) is calculated on an equally spaced u-grid

with 150 grid points. For p = 0.8,0.85,0.9,0.95, the range of the u-grid is set as (0,1.5],
(0,2.0], (0,2.5] and (0,3.0], respectively. When carrying out bootstrapping-based inference,
we adopt standard nonparametric bootstrapping with replacement and set the size of resam-
pling as 100. We further consider a more extreme case with p = 0.5. Simulation results pre-
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FIG. 1. The proposed coefficient estimates for model (7) (solid lines), along with the true coefficients βA
0 (u)

(dotted lines) and the coefficient estimates obtained from applying the method of Sun et al. (2016) (dashed lines)
when sample size n = 200.

sented in Section S1 of the Supplementary Material (Wei et al. (2020)) suggest reasonably
good performance of the proposed method.

In Figure 1 we present the estimated coefficients for model (7) based on the method pro-
posed in Section 3.2. We also plot the coefficient estimates obtained from naively applying

the method of Sun et al. (2016). It is clearly shown that the proposed estimator β̂
A
(u) is

virtually unbiased. Naively using the method of Sun et al. (2016) produces biased estimates
for the covariate effects on τA

Z (u), particularly when u is large. This is because the estimates
of Sun et al. (2016) are consistent about the covariate effects on τS

Z(u) which is generally
different from τA

Z (u). It is also noted as p increases, the departure of the empirical averages
of the estimates of Sun et al. (2016) from the true βA

0 (u)’s decrease. This is reasonable be-
cause, when p is closer to 1, the terminal event is more unlikely to occur before the end of
the observation (i.e., R). Consequently, we expect τA

Z (u) and τS
Z(u) would be more similar;

hence, the method targeting τA
Z (u) and the method of Sun et al. (2016) which targets τS

Z(u)

would produce more agreeable results.
In Figure 2 we compare the estimated standard errors (SE) based on the sample-based

inference procedure and those based on bootstrapping with the empirical standard deviations
(SD) of the coefficient estimates. It is shown that both sample-based SEs and bootstrapping-
based SEs are close to the empirical SDs in each setting, except for those at very small u’s.
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FIG. 2. Estimated standard errors based on sample-based inference procedure (solid lines), estimated standard
errors based on bootstrapping (dashed lines) and empirical standard deviations (dotted lines) with sample size
n = 200.

The bootstrapping-based SEs are slightly closer to the empirical SDs as compared to sample-
based SEs.

We also evaluate the empirical coverage probabilities of the 95% confidence intervals (CI)
constructed based on the sample-based and bootstrapping-based inference procedures. Fig-
ure 3 shows that the empirical coverage probabilities for the coefficients for Z1 and Z2 are
fairly close to the nominal value 95%. The bootstrapping-based confidence intervals perform
slightly better than the sample-based confidence intervals. For the intercept, the confidence
intervals seem to be undercovered, particularly for small u’s. In simulations with sample size
400, which are reported in Section S1 of the Supplementary Material (Wei et al. (2020)), we
observe a clear improvement in the empirical coverage probabilities for the intercept.

In addition, additional simulation results reported in Section S1 of the Supplementary
Material (Wei et al. (2020)) show that the proposed method is not sensitivity to the choice of
G(·).

4.2. An application to a dataset from the Cystic Fibrosis Foundation Patient Registry.
Cystic Fibrosis (CF) is one of the most common, life-shortening genetic disorders with an
incidence of 1:3500 in newborns in the United States (Russell, Hertz and McMillan (2012)).
The leading cause of the premature death is obstructive lung disease with recurrent respira-
tory infections, inflammations and structural airway damage. Pseudomonas aeruginosa (PA),
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FIG. 3. Empirical coverage probabilities of the 95% confidence intervals constructed based on the sample-based
inference procedure (solid lines) and bootstrapping procedure (dashed lines) with sample size n = 200.

a ubiquitous environmental bacterium, is one of the major pathogens in CF lungs which is as-
sociated with poor clinical outcomes and greater mortality (Davies (2002)). Respiratory tract
cultures are routinely obtained for identifying PA and characterizing its phenotypes (mucoid
or nonmucoid). The early PA infection is usually nonmucoid and antibiotic sensitive. But re-
current nonmucoid PA infections lead to chronic PA infections, then to mucoid PA phenotype
(Mathee et al. (1999)). The development of mucoid PA yet can be more complicated than this
widely held paradigm (Heltshe et al. (2018)). Mucoid PA is more resistant to antibiotics and
more difficult to eradicate (Lyczak, Cannon and Pier (2002)). As a result, rarely patients can
go back to the nonmucoid PA infection stage once acquiring a mucoid PA infection. Un-
der these considerations a mucoid PA infection constitutes a dependent terminal event to the
recurrent process of nonmucoid PA infections (in addition to death).

We apply the proposed method to a subdataset from the 2008 Cystic Fibrosis Foundation
Patient Registry (CFFPR) data, which includes 1974 children who were born in or after 2000
with CF and had more than five years’ follow-up. The objective of our analysis is to assess
how several potential risk factors influence the recurrence of nonmucoid PA infections prior
to the mucoid PA infection while alive. To this end, we set the time origin as birth. We
define the recurrent event time T (j) as the age at the j th nonmucoid infection and time to
the terminal event D as the age at the first mucoid PA infection or death, whichever occurred
first. Age at the first CFFPR visit and age at the last follow-up visit correspond to the L and
R, respectively.
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TABLE 1
Summary statistics of the potential risk factors in the CFFPR dataset (n = 1974)

Potential risk factors n (%)

Sex Female 1024 (51.9%)
Male 950 (48.1%)

F508del Heterogeneous 1274 (64.5%)
Homogeneous/other 700 (35.5%)

Meconium ileus Yes 534 (72.9%)
No 1440 (27.1%)

Pancreatic insufficiency Insufficient 1810 (91.7%)
status Sufficient 164 (8.3%)

In our dataset a total of 3459 nonmucoid PA infections before mucoid PA infections were
documented, and 472 subjects experienced mucoid PA infections during the follow-up. There
are 14 subjects who died before the first mucoid PA infection. Within each subject the num-
ber of nonmucoid PA infections before the first mucoid PA infection range from zero to 19,
with mean and median equal to 1.75 and one, respectively. We consider risk factors includ-
ing sex (coded as Sex = 1 if female and 0 otherwise), patient’s CFTR genotype (coded as
F508/Other = 1 if F508del heterogeneous and 0 otherwise), meconium ileus (MI) status
(coded as MI = 1 if having the diagnosis of MI and 0 otherwise and pancreatic insufficiency
status (coded as Pancreat = 1 if pancreatic insufficient and 0 otherwise). Table 1 provides a
summary of these potential risk factors.

We first fit our dataset, the extended GART model based on the adjusted rate function,
model (7), with g(u) = 1. In Figure 4 we plot the estimated regression coefficients with
95% pointwise confidence intervals (CI). The intercept coefficient estimates represent the
estimated log time to cumulative adjusted rate (or, alternatively, expected frequency of non-
mucoid PA infection before mucoid PA infection and death) for the reference group, which
included CF boys with homozygous F508del mutations who had no MI and were pancreatic
sufficient. For example, the estimated intercept coefficient plot suggests that the expected
frequency of nonmucoid PA infection before mucoid PA infection while alive reaches 1, ap-
proximately, at the age of 4.4 years.

The nonintercept coefficient estimates represent the estimated effects of covariates on
τA

Z (u). Negative estimates indicate quicker progression to nonmucoid PA infection recur-
rence in the presence of mucoid PA infection and death. From Figure 4 it is observed that the
coefficients for Sex and F508 are mostly small, with the 95% CIs fully covering zero. This
suggests that gender and F508 genotype may have little effect on the acquisition and the re-
currence of nonmucoid PA infections. The coefficients for MI and Pancreat are all negative,
and, moreover, the upper bounds of the corresponding 95% CIs are mostly below zero. This
indicates that CF children with MI or pancreatic insufficiency tend to have more rapid recur-
rence of nonmucoid PA infections compared to those without MI or pancreatic insufficiency.
This finding is consistent with our expectation because MI and pancreatic insufficiency are
generally known to be associated with worse prognosis of CF outcomes.

We also plot the coefficient estimates for the extended GART model (4) based on the
survivors’ rate function. As justified in Section 3, we obtain the coefficient estimates from
implementing the method of Sun et al. (2016) while treating the mucoid PA infection as a part
of the random observation window (i.e., setting R as the age at the first mucoid PA infection
or death if either of these events occurred, otherwise the age at the last follow-up visit). The
coefficient estimates for intercept Sex, F508 and Pancreat, based on model (4), are quite
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FIG. 4. CFFPR data example: coefficient estimates (solid lines) and 95% pointwise CIs (dotted lines) for the
extended GART model (6) based on the adjusted rate function, and the coefficient estimates for the extended GART
model (4) based on the survivors’ rate function (dashed lines).

similar to those based on model (6), while they have different interpretations in terms of time
to cumulative survivors’ rate (rather than time to cumulative adjusted rate). For example,
the intercept coefficient estimates based on model (4) represent the estimated log time to
cumulative rate of nonmucoid PA infection given being mucoid PA infection-free and alive
(i.e., “survivor”) for the reference group. Figure 4 suggests that the cumulative survivors’
rate of nonmucoid PA infection may reach one, approximately, at the age of 4.1 years, which
is quite close to 4.4 years, the estimated time to expected frequency of 1 nonmucoid PA
infection before mucoid PA infection (i.e., the cumulative adjusted rate for nonmucoid PA
infection being one).

In Figure 4 the coefficient estimates for MI suggest that given mucoid PA and death haven’t
occurred, the timing of nonmucoid PA infection may be similar between CF children with MI
and those without MI, while the MI phenotype seems to have a significant negative impact on
time to cumulative adjusted rate of nonmucoid PA infections. Appropriately understanding
the different implications of τS

Z(u) and τA
Z (u) can lead to a sensible explanation for the dis-

crepant results on the effects of MI. One key is to note that, by the definitions of τA
Z (u) and

τS
Z(u), a shorter time to the terminal event (D) is expected to reduce τA

Z (u) but not necessar-
ily results in a smaller τS

Z(u). This is because τS
Z(u) is oriented to depict the occurrences of

nonmucoid PA infections among “survivors” with D > t (i.e., subjects who haven’t died or
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developed a mucoid PA infection by time t) which may hold a different event occurrence pat-
tern from the whole population. As reported in literature (e.g. Oliveira et al. (2002), Sawyer
et al. (1994)), the MI phenotype is generally associated with poorer clinical and survival
outcomes in CF patients. This is confirmed by a simple log-rank test, which suggests worse
mucoid PA infection free survival (i.e., Pr(D > t)) for the MI group compared to the non-MI
group (p = 0.036), as well as by fitting a censored quantile regression model for D over the
covariate MI; please see Section S2 of the Supplementary Material (Wei et al. (2020)). Given
this result, the estimated effects of MI on τA

Z (u) likely amplify the net effects of MI on non-
mucoid PA infections by taking into account the negative effect of MI on D. On the other
hand, we may expect that the “survivors” in the MI group tend to be “stronger” or “less frag-
ile” than the “survivors” in the non-MI group. Consequently, the comparison of survivors’
timing of recurrent nonmucoid PA infections between the MI group and the non-MI group
would be shifted in favor toward the MI group. These suggest that the effects of MI on D

have opposite confounding impact on τA
Z (u) and τS

Z (u), thereby leading to different effects
of MI on τS

Z(u) and τA
Z as shown in Figure 4

We also apply second-stage inference to test the constancy of covariate effects under the
extended GART model based on the adjusted rate function. The results suggest that constant
effects may be adequate for all covariates, except for MI. The constancy test for MI’s coeffi-
cient yields a p value of 0.027. This result is consistent with the gradually increasing trend
observed for the coefficient of MI in Figure 4. This finding also suggests that the proposed
GART modeling may provide a better fit to the CFFPR dataset than a AFT-type model that
confines all covariate effects to be constant.

Overall, the presented analyses of the CFFPR dataset provide alternative views of risk fac-
tors for recurrent nonmucoid PA infections under the GART framework. The possible depen-
dent termination by mucoid PA infection and death are appropriately handled and interpreted
based on the proposed models and estimation methods.

5. Remarks. In this paper we investigate two extensions of the generalized accelerated
recurrence time (GART) model for recurrent events data with a dependent terminal event.
We adapt the GART modeling based on survivors’ rate function and adjusted rate function
which are established crude quantities for accommodating the presence of the terminal event
in recurrent events settings.

It is worth pointing out that extending the concept of time to expected frequency to the
concept of time to expected cumulative survivors’ rate shares the same spirit as adopting
cause-specific hazard in place of marginal hazard in the competing risks setting. In this work
we have shown that the extended GART model, defined upon time to expected cumulative
survivors’ rate, can be estimated using the same procedure for the original GART model (Sun
et al. (2016)). This finding is analogous to the important result for competing risks analysis
(Prentice et al. (1978), Kalbfleisch and Prentice (2002)) that allows researchers to directly use
the standard Cox regression procedure to analyze competing risks data as long as regression
coefficients are properly interpreted as covariate effects on cause-specific hazards. Our results
in Section 3.1 provide the key methodological justification and practical guidance for directly
applying the GART method in the recurrent events setting with a dependent terminal event.
In this case the interpretation of coefficient estimates should be tuned toward covariate effects
on time to expected cumulative survivors’ rate.
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APPENDIX A: JUSTIFICATION OF THE COUNTING PROCESS FORMULATIONS
OF MODEL (4) AND MODEL (6)

The following are some regularity conditions:

(B0) (L,R) and T (j) are independent given Z;
(B1) (L,R) and D are independent given Z;
(B2) βS

0 (u) is continuously differentiable;

(B3) SC(ezTβS
0 (u)|z) > 0 and Pr(ezTβS

0 (u) < D|z) > 0 for z ∈ Z and u ∈ (0,U ], where Z
denotes the compact support of Z;

(B3′) SC(t |z) > 0 for 0 < t < ezTβA
0 (U) ∧ ν

R̃
for z ∈ Z , where ν

R̃
denotes the upper bound

of R̃’s support.

PROPOSITION A1. Under conditions (B0)–(B3), model (4) and model (5) are equivalent.

PROOF. Given the random observation window assumptions in (B0) and (B1), taking the
derivative of E{N(eZ�βS

0 (u))|Z} with respect to u, we get

(12)

E
{
dN

(
eZ�βS

0 (u))|Z}
= E

{ ∞∑
j=1

I
(
eZ�βS

0 (u) ≤ T (j) < eZ�βS
0 (u+du), eZ�βS

0 (u) ≤ D,

L < eZ�βS
0 (u) ≤ R

)∣∣∣Z}
· eZ�βS

0 (u)Z�dβS
0 (u)

= E

{ ∞∑
j=1

I
(
eZ�βS

0 (u) ≤ T (j) < eZ�βS
0 (u+du), eZ�βS

0 (u) ≤ D
∣∣∣Z}

× Pr
{
L < eZ�βS

0 (u) ≤ R
)|Z} · eZ�βS

0 (u)Z�dβS
0 (u)

= E
{
dN∗(

eZ�βS
0 (u))|eZ�βS

0 (u) ≤ D,Z
}

Pr
{
eZ�βS

0 (u) ≤ D|Z}
× SC

(
eZ�βS

0 (u)|Z)
= SC

(
eZ�βS

0 (u)|Z)
Pr

{
eZ�βS

0 (u) ≤ D|Z}
d�S

Z
(
eZ�βS

0 (u))
and

(13)

E
{
Y

(
eZ�βS

0 (u))g(u)du
}

= E
{
I
(
L < eZ�βS

0 (u) ≤ R
)
I
(
eZ�βS

0 (u) ≤ D
)|Z}

g(u)du

= E
{
I
(
L < eZ�βS

0 (u) ≤ R
)|Z}

E
{
I
(
eZ�βS

0 (u) < D
)|Z}

g(u)du

= SC

(
eZ�βS

0 (u)|Z)
Pr

{
eZ�βS

0 (u) < D|Z}
g(u)du.

By the definition of τS
Z(·), model (4) implies �S

Z(eZTβS
0 (u)) = G(u), and, hence,

d�S
Z(eZTβS

0 (u)) = g(u)du. By equations (12) and (13), we then have E{dN(eZTβS
0 (u)|Z} =

E{Y(eZTβS
0 (u))g(u) du} which implies model (5).

Similarly, suppose model (5) holds. We then have E{dN(eZTβS
0 (u)|Z} = E{Y(eZTβS

0 (u)) ×
g(u)du}. It follows from equations (12) and (13) that d�S

Z(eZTβS
0 (u)) = g(u)du. Thus, we

get �S
Z(eZTβS

0 (u)) = G(u) which is equivalent to (4) by the definition of τS
Z(·). This shows

that model (5) implies model (4). �
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PROPOSITION A2. Under conditions (B0), (B1) and (B3′), model (7) implies (8).

PROOF. Define T ∗(j) = I (T (j) ≤ D) × T (j) + I (T (j) > D) × ∞. By condition (B3′),
SC(T (j)|Z) > 0 when L < T (j) ≤ eZ�βA

0 (u). Given the random observation window assump-
tions, (B0) and (B1), and by the definition of T ∗(j), we get

(14)

E

{ ∞∑
j=1

1

SC(T (j)|Z)
I
(
L < T (j) ≤ eZ�βA

0 (u) ∧ R̃
)∣∣∣Z}

= E

{ ∞∑
j=1

1

SC(T ∗(j)|Z)
I
(
L < T ∗(j) ≤ eZ�βA

0 (u) ∧ R
)∣∣∣Z}

= E

[ ∞∑
j=1

E

{
1

SC(T ∗(j)|Z)
I
(
L < T ∗(j) ≤ R

)
I
(
T ∗(j) ≤ eZ�βA

0 (u))∣∣∣T ∗(j),Z
}∣∣∣Z]

= E

[ ∞∑
j=1

1

SC(T ∗(j)|Z)
SC

(
T ∗(j)|Z)

I
(
T ∗(j) ≤ eZ�βA

0 (u))∣∣∣Z]

= E
(
N∗(

eZ�βA
0 (u))|Z)

= μA
Z

(
eZ�βA

0 (u)).
By the definition of τA

Z (·), model (6) implies μA
Z(eZ�βA

0 (u)) = G(u). Then, (14) implies that
(8) holds. �

APPENDIX B: PROOFS OF THEOREM 1 AND THEOREM 2

Define GR(t) = Pr(R ≥ t), GL(t) = Pr(L ≥ t), NR
i (t) = I (R̃i ≤ t, δi = 0), YR

i (t) =
I (R̃i ≥ t), Y

(j)
i (t) = I (T

(j)
i ≥ t), yR(t) = Pr(R̃ ≥ t), λR(t) = lim�→0 Pr(R̃ ∈ (t, t +�), δ =

0|R̃ ≥ t)/�, �R(t) = ∫ t
0 λR(s) ds, MR

i (t) = NR
i (t) − ∫ t

0 YR
i (s) d�R(s) and

ξSC,i(t) = GR(t)
∫ t

0 yR(s)−1 dMR
i (s) − {I (Li ≥ t) − Pr(L ≥ t)}, i = 1, . . . , n. Define

(15) ξ i (u) = ξ1,i (u) − ξ2,i(u),

for i = 1, . . . , n, where ξ1,i(u) = Zi{∑∞
j=1

1
SC(T

(j)
i |Z)

I (Li < T
(j)
i ≤ eZ�

i βA
0 (u) ∧ R̃i) −∫ u

0 g(s) ds} and ξ2,i(u) = E(L,R,D,Z,T̄ ){Z
∑∞

j=1 ξSC,i(T
(j))I (L < T (j) ≤ eZ�βA

0 (u) ∧ R̃)/

S2
C(T (j))}. Here, T̄ = (T (1), T (2), . . .), and E(L,R,D,Z,T̄ ) means expectation w.r.t. (L,R,D,

Z, T̄ ).

PROOF OF THEOREM 1. Define SG
n (b, u) = n−1/2 ∑n

i=1 Zi[∑∞
j=1

1
SC(T

(j)
i )

I (Li < T
(j)
i ≤

eZ�
i b ∧ R̃) − ∫ u

0 g(s) ds] and μ(b, u) = E[Z{μA
Z(eZTβA

0 (u)) − G(u)}]. Hereafter, we use supb
or supu to denote supremum taken over b ∈ R

p+1 or u ∈ [ν,U ], respectively.
First, under condition (C1), by the results on the Kaplan–Meier estimator (Pepe (1991))

and the results on empirical distributions (van der Vaart and Wellner (1997)), we have
supt<vR |ĜR(t) − GR(t)| = o(n−1/2+r ), a.s., and supt<vR |ĜL(t) − GL(t)| = o(n−1/2+r ),
a.s. for any r > 0. These imply that supt<vR |ŜC(t) − SC(t)| = o(n−1/2+r ), a.s. for every
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r > 0. Coupled with conditions (C2), it implies that

sup
b,u

∥∥n−1/2Sn(b, u) − n−1/2SG
n (b, u)

∥∥
= n−1

n∑
i=1

Zi

{
1

ŜC(T
(j)
i )

− 1

SC(T
(j)
i )

}
I
(
Li < T

(j)
i ≤ eZ�

i b ∧ R̃
)

= o
(
n−1/2+r), a.s.

Next, we show that the function class F = {Zi{∑∞
j=1

1
SC(T

(j)
i )

I (Li < T
(j)
i ≤ eZ�

i b ∧ R̃) −∫ u
0 g(s) ds},b ∈ R

p+1, u ∈ [ν,U ]} is Donsker and, thus, Glivenko–Cantelli (van der Vaart
and Wellner (1997)). This is because the class of indicator functions is Donsker, both Zi

and 1/SC(T
(j)
i ) are uniformly bounded, and G(u) is monotone and uniformly bounded in

u ∈ [ν,U ]. It then follows from the Clivenko–Cantelli theorem that supb,u ‖n−1/2SG
n (b, u)−

μ(b, u)‖ = o(1), a.s. Therefore,

(16) sup
b,u

∥∥n−1/2Sn(b, u) − μ(b, u)
∥∥ = o(1), a.s.

Mimicking the arguments in the proof of Theorem 1 in Peng and Fine (2009), we can show
that infb/∈B(ρ0) ‖μ(b, u) − μ(βA

0 (u), u)‖ ≥ c0ρ0,

(17) μ
(
β̂

A
(u),u

) − μ
(
βA

0 (u), u
) = o(1), a.s.

These imply that {β̂A
(u) : u ∈ [0,U ]} ∈ B(ρ0) with probability 1 when n is large enough. By

a Taylor expansion

(18) sup
u

∥∥β̂A
(u) − βA

0 (u)
∥∥ = sup

u

∥∥A
(
β̌

A
(u)

)−1[
μ

(
β̂

A
(u),u

) − μ
(
βA

0 (u), u
)]∥∥,

where β̌
A
(u) is between β̂

A
(u) and βA

0 (u). Since β̌
A
(u) ∈ B(ρ0) for n large enough, it fol-

lows from (17), (18) and condition (C4) that

sup
u

∥∥β̂A
(u) − βA

0 (u)
∥∥ = op(1). �

LEMMA 1. For any positive sequence {dn}∞n=1 satisfying dn → 0,

lim
n→∞ sup

b,b′∈B(ρ0),‖b−b′‖≤dn

∥∥∥∥∥n−1/2
n∑

i=1

Zi

{ ∞∑
j=1

1

SC(T
(j)
i )

{
I
(
Li < T

(j)
i ≤ eZ�

i b ∧ R̃i

)

− I
(
Li < T

(j)
i ≤ eZ�

i b′ ∧ R̃i

)}} − n1/2{
μ(b, u) − μ

(
b′, u

)}∥∥∥∥∥ = 0, a.s.

PROOF. Following the lines of Peng and Fine (2009) for their Lemma 1, we can similarly
show

Var

(
Zi

{ ∞∑
j=1

1

SC(T
(j)
i )

{
I
(
Li < T

(j)
i ≤ eZ�

i b ∧ R̃i

)

− I
(
Li < T

(j)
i ≤ eZ�

i b′ ∧ R̃i

)}})
≤ G0

∥∥b − b′∥∥
holds given the uniform boundedness of λA

Z(t) and the boundedness of 1/SC(·), Z and B(ρ0)

implied by conditions (C1)–(C4). This then completes the proof of Lemma 1. �
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PROOF OF THEOREM 2. The proof follows the same idea as the proof of Theorem 2 in
Peng and Fine (2009). Below we sketch the main steps.

First, we show that

(19) Sn

{
βA

0 (u), u
} ≈ n−1/2

n∑
i=1

{
ξ1,i(u) − ξ2,i(u)

} = n−1/2
n∑

i=1

ξ i (u),

where ≈ denotes asymptotic equivalence uniformly in u ∈ [ν,U).
To prove (19), we derive, based on the result of Pepe (1991), that

sup
t∈[0,vR)

∥∥∥∥∥n1/2{
ŜC(t) − SC(t)

} − n−1/2
n∑

i=1

[
GR(t)

∫ t

0
yR(s)−1 dMR

i (s)

− {
I (Li ≥ t) − Pr(L ≥ t)

}]∥∥∥∥∥
= sup

t∈[0,vR)

∥∥∥∥∥n1/2{
ŜC(t) − SC(t)

} − n−1/2
n∑

i=1

ξSC,i(t)

∥∥∥∥∥ →a.s. 0.

In addition, we have supt∈[0,vR) ‖ŜC(t) − SC(t)‖ →a.s. 0. Based on these results, applying
standard asymptotic arguments and the Glivenko–Cantelli Theorem, we then obtain that

Sn

{
βA

0 (u), u
}

= SG
n

{
βA

0 (u), u
} + [

Sn

{
βA

0 (u), u
} − SG

n

{
βA

0 (u), u
}]

= n−1/2
n∑

i=1

ξ1,i(u) − n−1/2
n∑

i=1

Zi

{ ∞∑
j=1

ŜC(T
(j)
i ) − SC(T

(j)
i )

ŜC(T
(j)
i ) · SC(T

(j)
i )

× I
(
Li < T

(j)
i ≤ eZ�

i βA
0 (u) ∧ R̃i

)}

≈ n−1/2
n∑

i=1

ξ1,i(u) − n−1
n∑

i=1

Zi

{ ∞∑
j=1

n−1/2 ∑n
k=1 ξSC,k(T

(j)
i )

S2
C(T

(j)
i )

× I
(
Li < T

(j)
i ≤ eZ�

i βA
0 (u) ∧ R̃i

)}

= n−1/2
n∑

i=1

ξ1,i(u) − n−1/2
n∑

k=1

1

n

n∑
i=1

Zi

{ ∞∑
j=1

ξSC,k(T
(j)
i )

S2
C(T

(j)
i )

× I
(
Li < T

(j)
i ≤ eZ�

i βA
0 (u) ∧ R̃i

)}

≈ n−1/2
n∑

i=1

{
ξ1,i(u) − ξ2,i(u)

} = n−1/2
n∑

i=1

ξ i (u).

This proves the result in (19).

Next, by Lemma 1 and the uniform consistency of β̂
A
(u), we can show that

Sn

(
β̂

A
(u),u

) − Sn

(
βA

0 (u), u
) = {

A
(
βA

0 (u)
) + εn(u)

} · n1/2{
β̂

A
(u) − βA

0 (u)
}
,
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where supu ‖εn(u)‖ → 0, a.s. This, coupled with (19) and the definition of β̂
A
(u), implies

n1/2{
β̂

A

0 (u) − βA
0 (u)

} ≈ −n−1/2
n∑

i=1

A
{
βA

0 (u)
}−1

ξ i (u).

Following similar arguments for showing F is a Donsker class, we can show that {ξ(u), u ∈
[ν,U ]} is a Donsker class. By the Donsker theorem, n1/2{β̂0(u) − β0(u)} converges weakly
to a mean zero Gaussian process for u ∈ [ν,U ] with the covariance function

�
(
u′, u

) = A
{
βA

0
(
u′)}−1

E
{
ξ
(
u′)ξ(u)�

}
A

{
βA

0 (u)
}−1

. �
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SUPPLEMENTARY MATERIAL

Supplementary materials (DOI: 10.1214/20-AOAS1335SUPP; .pdf). We provide addi-
tional results for our simulation studies and analysis of the CFFPR dataset.
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