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In the last two decades ambient levels of air pollution have declined sub-
stantially. At the same time the Clean Air Act mandates that the National Am-
bient Air Quality Standards (NAAQS) must be routinely assessed to protect
populations based on the latest science. Therefore, researchers should con-
tinue to address the following question: is exposure to levels of air pollution
below the NAAQS harmful to human health? Furthermore, the contentious
nature surrounding environmental regulations urges us to cast this question
within a causal inference framework. Several parametric and semiparamet-
ric regression approaches have been used to estimate the exposure-response
(ER) curve between long-term exposure to ambient air pollution concentra-
tions and health outcomes. However, most of the existing approaches are not
formulated within a formal framework for causal inference, adjust for the
same set of potential confounders across all levels of exposure and do not
account for model uncertainty regarding covariate selection and the shape of
the ER.

In this paper we introduce a Bayesian framework for the estimation of a
causal ER curve called LERCA (Local Exposure Response Confounding Ad-
justment), which: (a) allows for different confounders and different strength
of confounding at the different exposure levels, and (b) propagates model
uncertainty regarding confounders’ selection and the shape of the ER. Im-
portantly, LERCA provides a principled way of assessing the observed co-
variates’ confounding importance at different exposure levels, providing re-
searchers with important information regarding the set of variables to mea-
sure and adjust for in regression models. Using simulation studies, we show
that state-of-the-art approaches perform poorly in estimating the ER curve in
the presence of local confounding.

LERCA is used to evaluate the relationship between long-term exposure
to ambient PM2.5, a key regulated pollutant, and cardiovascular hospitaliza-
tions for 5,362 zip codes in the continental U.S. and located near a pollution
monitoring site, while adjusting for a potentially varying set of confounders
across the exposure range. Our data set includes rich health, weather, demo-
graphic and pollution information for the years of 2011–2013. The estimated
exposure-response curve is increasingly indicating that higher ambient con-
centrations lead to higher cardiovascular hospitalization rates, and ambient
PM2.5 was estimated to lead to an increase in cardiovascular hospitalization
rates when focusing at the low-exposure range. Our results indicate that there
is no threshold for the effect of PM2.5 on cardiovascular hospitalizations.

1. Introduction. The Clean Air Act, one of the most comprehensive and expensive air
quality regulations in the world, mandates that the National Ambient Air Quality Standards
(NAAQS) are routinely reviewed. If evidence of the adverse health effects of exposure to
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ambient air pollution at levels below the NAAQS is established based on the peer reviewed
literature, then the NAAQS must be lowered, even at the cost of hundreds of million of dol-
lars. For that reason, researchers routinely address the following question: is exposure to
levels of air pollution, even below the NAAQS, harmful to human health? With the next re-
view of the NAAQS for fine particulate matter (PM2.5) scheduled to be completed by the end
of the year 2020, the determination of whether exposure levels of PM2.5 below the NAAQS is
harmful to human health is subject to unprecedented level of scrutiny. More recently, because
of the highly contentious nature surrounding air pollution regulations and the lowering of the
NAAQS particularly, there is an increasing pressure to cast this question within a causal infer-
ence framework (Zigler and Dominici (2014)). The method in this paper is motivated by the
need to address this critically important question by flexibly estimating an exposure response
curve while reliably eliminating confounding bias, especially at low levels of exposure.

The literature on the harmful effects of air pollution is very extensive (see, e.g., Dominici
et al. (2002), Eftim et al. (2008), Zanobetti and Schwartz (2007), Zeger et al. (2008), Crouse
et al. (2015, 2016), Di et al. (2017a, 2017b), Berger et al. (2017), Lim et al. (2018), Makar
et al. (2018)). However, significant methodological gaps remain in the context of estimating
health effects at very low levels. Environmental research studying the health effects of expo-
sure to low levels of ambient air pollution has either examined the relationship in the subset
of the sample residing in areas with ambient concentrations below a prespecified threshold
(Lee et al. (2016), Shi et al. (2016)), Di et al. (2017a, 2017b), Schwartz, Bind and Koutrakis
(2017), Makar et al. (2018), Wang et al. (2018), Schwartz, Fong and Zanobetti (2018), or has
employed regression approaches for ER estimation across the observed range of pollution
concentrations (Daniels et al. (2000), Dominici et al. (2002), Schwartz, Laden and Zanobetti
(2002), Bell, Peng and Dominici (2006), Hart et al. (2015), Thurston et al. (2016), Jerrett et al.
(2017), Weichenthal et al. (2017), Lim et al. (2018)). In either case, confounding adjustment
in air pollution studies is most often performed using either a prespecified set of covariates
or a set of covariates which is decided upon using an ad hoc variable selection procedure.
Such procedure is often based on the statistical significance of covariates’ coefficients in an
outcome regression or the change in the pollution concentration’s coefficient in an outcome
model including and excluding sets of covariates (Devries, Kriebel and Sama (2016), Pinault
et al. (2016), Garcia et al. (2016), Weichenthal et al. (2017)).

Generally, regression and semiparametric modeling approaches for ER estimation, such
as generalized linear models or generalized additive models (Hastie and Tibshirani (1986),
Daniels et al. (2004), Shaddick et al. (2008), Shi et al. (2016), Dominici et al. (2002)), make
the following assumptions: (1) the set of potential confounders that are included into the
regression model among a potentially large set of available covariates is specified a priori;
(2) uncertainty arising from the variable selection techniques is not accounted for; (3) the
same potential confounders with constant confounding strength are considered when esti-
mating the health effects across all exposure levels (we refer to this as global confounding
adjustment); and (4) the shape of the ER function is modelled as a spline, a polynomial or
linear with a threshold.

Even though ER estimation in air pollution research has mostly remained outside the po-
tential outcome framework, there has been substantial work in ER estimation within the
causal inference literature. Hirano and Imbens (2004) introduced the generalized propensity
score (GPS) in order to adjust for confounding when estimating the effects of a continuous
exposure. Flores, Flores-Lagunes and Gonzalez (2012) estimated a causal ER function em-
ploying a weighted locally linear regression with weights defined based on the GPS. Kennedy
et al. (2017) introduced a doubly robust approach for estimating the causal ER function using
flexible machine learning tools.

These approaches are very promising and manifest the growing interest in principled
causal inference methods for continuous exposures. However, none of the existing approaches



852 G. PAPADOGEORGOU AND F. DOMINICI

explicitly accommodates that, in ER estimation and in contrast to binary treatments, con-
founding might differ across levels of the exposure. In fact, even though some of the ap-
proaches could be altered to allow for different set of confounders or different confounding
strength across exposure levels, current implementations of causal methodology for ER esti-
mation has assumed global confounding of preselected covariates. Furthermore, it is unclear
how these approaches perform in the case of confounding that varies across exposure levels.
To address this, confounding adjustment and confounder selection need to be meaningfully
extended in the case of a continuous exposure to provide useful scientific guidance with re-
gard to covariates’ confounding importance at different exposure levels.

In our exploratory analyses (Section 2), we report that the relationship between ambient
PM2.5 concentrations and the rate of hospitalization for cardiovascular diseases might be
confounded by a different set of covariates at the low vs. at the high-exposure levels or by
covariates with different confounding strength. We refer to this phenomenon as local con-
founding. We argue that, especially in the context of estimating causal effects at low levels,
local confounding adjustment is deemed necessary.

To target local confounding, if exposure levels with different confounding were known,
one could adopt a separate model at each level and adjust for all measured variables us-
ing one of the approaches described above. However, even if the number of covariates and
local sample size rendered such approach computationally feasible, including unnecessary
confounders in the regression model could lead to inefficient estimation of causal effects, es-
pecially at very low levels of exposure where data are sparse. Data driven methods to select
a minimal necessary set of covariates to be included into an outcome model for estimation of
causal effects of binary treatments have been proposed (de Luna, Waernbaum and Richardson
(2011), Wang, Parmigiani and Dominici (2012), Wilson and Reich (2014)), but, to our knowl-
edge, they have not been extended to the context of ER estimation with local confounding
adjustment.

The goal of this paper is to overcome the challenges described above by introducing a
Bayesian framework for the estimation of a causal ER curve called LERCA (Local Exposure
Response Confounding Adjustment). We cast our approach within a causal inference frame-
work by introducing the concept of experiment configuration s̄ = (s0, s1, . . . , sK+1), where
[sk−1, sk) denotes a specific range of exposure values. We use the term experiment to mimic
the hypothetical assignment of a unit to exposure value within [sk−1, sk). Within each exper-
iment, that is, locally in the exposure range [sk−1, sk), we assume that: (1) the ER is linear;
(2) the potential confounders of the ER relationship are unknown but observed; and (3) the
strength of the local confounding is also unknown. Across experiments we require that the ER
is continuous at the points s̄. Importantly, the internal points of the experiment configuration,
s1, s2, . . . , sK , are themselves unknown and have to be estimated from the data.

Our work contributes to various components in the literature. First, we contribute to the
estimation of causal effects of continuous treatments by extending our understanding of con-
founding in these settings. Second, our work has connections to the literature on Bayesian
free-knot splines (Denison, Mallick and Smith (1998), DiMatteo, Genovese and Kass (2001)).
The location of the knots (internal points of the experiment configuration) is informed by both
the ER fit and the necessity for local confounding adjustment. Lastly, our work contributes
to the highly controversial and politically charged issue of estimating the causal effects of
population exposure to low levels of ambient air pollution.

Even though our motivation and focus are the effects of air pollution, the statistical chal-
lenges related to ER estimation at low-exposure levels are common across many fields, such
as toxicology (Scholze et al. (2001)) and clinical trials (Babb, Rogatko and Zacks (1998)).
In fact, the methodology presented in this paper can be used to evaluate regulatory settings
of potential harmful substances and can be routinely used to assess health effects of low
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level exposures. Such applications include the effects of lead (Chiodo, Jacobson and Ja-
cobson (2004), Jusko et al. (2008)), environmental contaminants (Van Der Oost, Beyer and
Vermeulen (2003)), radiation (National Research Council (2006), Fazel et al. (2009)) and
pesticides (Mackenzie Ross et al. (2010), Androutsopoulos et al. (2013)).

In Section 2 we introduce our motivating data set, discuss the difference between per-
sonal exposures and ambient concentrations in air pollution studies and illustrate that local
confounding is likely to be present in our study. In Section 3 we introduce the notation and
assumptions on which LERCA in Section 4 is based. In Section 5 we show through simula-
tions that both off-the-shelf and state-of-the-art approaches for ER estimation perform poorly
when local confounding is present, and we compare LERCA to alternatives in the presence of
global confounding. Finally, in Section 6 we use LERCA to estimate the causal ER function
relating ambient PM2.5 concentrations with log cardiovascular hospitalization rates in the
Medicare population of 5,362 zip codes. Limitations and potential extensions are discussed
in Section 7. Supplementary Material is available at Papadogeorgou and Dominici (2020).

2. Data description, ambient concentrations, local confounding. In this section we
illustrate that, in our study, there might exist a different set of confounders at the low and
the high levels of ambient pollution concentrations. LERCA is motivated to overcome this
particular challenge.

2.1. Data description. We start by briefly describing our data set which is a collection
of linked data from many sources. The unit of observation is the zip code i, with sample size
N = 5,362. For each zip code, we acquired information on several potential confounders,
denoted by Cij for j = 1,2, . . . , p and p = 27, capturing socioeconomic, demographic, cli-
mate and risk factor information. The full set of zip code level covariates are described in
Table A.1. We calculate the outcome Yi defined as log hospitalization rate for cardiovascular
diseases (codes ICD-9 390 to 459) among Medicare beneficiaries residing in zip code i in the
year 2013. Since Medicare beneficiaries are, in their plurality, individuals over the age of 65,
our focus is on the health effect of PM2.5 on the elderly. For each zip code i, we assign expo-
sure Xi defined as the average of daily levels of ambient PM2.5 concentrations for the years
2011 and 2012 recorded by EPA (U.S. Environmental Protection Agency) monitors within
a six mile radius of zip code i’s centroid. The values of Xi range from 2.7 to 18.3 μg/m3

(see Figure 1). We define Xi using the two years prior to the year whose outcome we ana-
lyze in order to respect the temporal ordering of treatment and outcome when drawing causal
conclusions. Longer time lags could be considered, but in such settings our analysis would
potentially be more susceptible to population mobility.

Since our definition of Xi requires the presence of an EPA monitor within six miles of a zip
code’s centroid, the zip codes included in our study are a subset of the full set of zip codes

FIG. 1. Average levels of PM2.5 for the years 2011–2012 for each zip code i included into the analysis.
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FIG. 2. DAG relating ambient PM2.5 concentrations to personal exposures and health outcomes. Covariate
sets C̃1, C̃2, C̃3 represent potentially different sets of confounders between the health outcome and ambient,
personal or indoor PM2.5 concentrations or exposures. Arrows represent potential (but not necessarily present)
relationships.

in the continental U.S. Supplement A includes a detailed description of data linkage (EPA
monitors, Medicare, others) and descriptive statistics across zip codes in the whole continen-
tal U.S. and only those included in our study. Excluded zip codes resemble, in general, those
included in our analysis but are, perhaps, in more rural areas with lower population density
and higher proportions of white population and unemployment.

2.2. Ambient concentrations versus personal exposures. In order to agree with existing
causal inference literature for continuous treatments, we often refer to measurements Xi as
zip code i’s exposure and a range of ambient pollution concentration as an exposure level.
However, a zip code’s measurement of ambient concentration Xi might be substantially dif-
ferent from the personal exposure of an individual residing in that zip code. Figure 2 shows
a hypothetical DAG relating ambient and indoor pollution concentrations with individuals’
personal exposures and health outcomes. Ambient pollution concentrations act on an individ-
ual’s outcome only through the individuals’ personal exposures.

In this paper we focus on estimating the causal effects of ambient PM2.5 on cardiovascular
health outcomes. That is, potentially, the most interesting question from a policy perspective,
since policy regulations (and the NAAQS) are set based on the knowledge for the effect of
ambient concentrations. The implications of using ambient concentrations instead of personal
exposures to study the effect of pollution concentrations are discussed in Section 7.

2.3. Potential presence of local confounding in our study. In the case of binary treat-
ments, whether a covariate acts as a confounder is often evaluated by checking whether there
exists significant imbalance in the covariate distribution of the treated and control groups.
For continuous exposures there is no direct counterpart to covariate balance since units are
not separated into two groups. Instead, exploratory analyses for the presence of confounding
are often based on covariates’ strength in predicting the exposure through regression models
(Imai and van Dyk (2004)). Then, a covariate’s p-value in a model for the exposure is used to
investigate whether it might be a confounding variable.

We use a related approach to illustrate the potential presence of local confounding in our
data. We considered two subsets of zip codes: (1) zip codes with low ambient concentra-
tions (<8 μg/m3; 817 observations), and (2) zip codes with high ambient concentrations
(>11.5 μg/m3; 672 observations). Even though this definition of the low- and high-exposure
levels is arbitrary for the purpose of our illustration, this choice ensures a similar number of
observations and similar range of exposure values within the two levels. Within each expo-
sure level separately, we considered a linear regression of ambient pollution concentration
on each covariate and evaluated the covariate’s predictive strength through its p-value.
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FIG. 3. Covariate p-values in predicting the exposure, separately at the low (dark grey: <8 μg/m3) and high
(light grey: >11.5 μg/m3) exposure levels.

Figure 3 shows the p-value of the covariates in the p regression models and for the two ex-
posure levels. We see that some variables, such as population density (Population/SQM)
and the percentage of the population with less than a high school education (% Below HS),
are predictive of ambient concentrations in both low- and high-exposure levels. However,
other variables, such as the median household value (in logarithm—House Value), are
only predictive of ambient pollution concentrations at the high-exposure levels. The opposite
is true for the percentage of population that is white (% White). Such initial investigation
indicates that different variables might act as predictors of the ambient exposure at different
exposure levels.

In Supplement B, we show the estimated covariates’ coefficients whose p-values are shown
in Figure 3. Since the two exposure levels are relatively balanced in terms of number of ob-
servations and range of exposure values, the magnitude of the p-values in Figure 3 is directly
comparable to the magnitude of the estimated coefficients. This indicates that initial investiga-
tion of local confounding could be equivalently performed in terms of estimated coefficients
or p-values.

In Supplement B we also consider a similar exploratory analysis to investigate which co-
variates are predictors of the health outcome at the low- and high-exposure levels separately.
Combining the results presented there to the ones in Figure 3, there is evidence that the vari-
ables that confound the ER relationship might differ across levels of the exposure leading to
local confounding. For example, the zip code median household value (House Value) is
predictive of both ambient air pollution and cardiovascular hospitalization rates at the high-
exposure levels but is not predictive of ambient air pollution at low-exposure levels. Addi-
tionally, there is indication that the percentage of the population with less than a high school
degree (% Below HS) is a confounder at the low-exposure levels, whereas the same vari-
able is not predictive of the health outcome at the high-exposure levels.

3. Causal ER, the experiment configuration, and the local ignorability assumption.
We follow the potential outcome framework (Hirano and Imbens (2004), Rubin (1974),
Splawa-Neyman (1990)), and, under the stable unit value of treatment assumptions (SUTVA;
no interference, no hidden versions of the treatment (Rubin (1980))), we use Yi(x) to de-
note the potential outcome for observation i at exposure x ∈ X , where X ⊂ R is the inter-
val including all possible exposure values. Then, {Yi(x), x ∈ X } is unit i’s ER curve, and
{Y (x) = E[Yi(x)], x ∈X } is the population average ER curve.
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FIG. 4. ER curve with exposure range partitioned by s̄ in four experiments.

Assuming Y(x) is differentiable as a function of x, we define the instantaneous causal
effect as

�(x) = lim
h→0

Y (x + h) − Y (x)

h
.

A �(x) �= 0 implies that variation in the exposure in a neighborhood of x has a causal effect
on the expected outcome. We also define the population average causal effect of an exposure
shift from x to x + δ, as CEδ(x) = Y (x + δ) − Y(x) = ∫ x+δ

x �(t)dt . The observed outcome
Yi is equal to the potential outcome at the observed exposure Yi(Xi).

Under the weak ignorability assumption which states that the treatment is as if random-
ized conditional on observed covariates, X ⊥⊥ Y(x)|C, and every subject in the population
can experience any x ∈ X , Y(x) is identifiable using the observed data (Hirano and Imbens
(2004)). Then, a minimal confounding adjustment set C∗ ⊆ C is a set of covariates which
satisfies X ⊥⊥ Y(x)|C∗, but X �⊥⊥ Y(x)|C∗∗ for any C∗∗ strict subset of C∗ (de Luna, Waern-
baum and Richardson (2011), Vansteelandt, Bekaert and Claeskens (2012), Wang, Parmigiani
and Dominici (2012)).

In this paper we are interested in addressing the possibility that the minimal sufficient
adjustment set C∗ varies across exposure levels. We formalize this by introducing the exper-
iment configuration. Let K denote a fixed positive integer and min = infX and max = supX
denote the known and fixed minimum and maximum values of the exposure range X . Then,
s̄ = (s0 = min, s1, s2, . . . , sK, sK+1 = max) is the experiment configuration which defines a
partition of the exposure range in K + 1 experiments gk = [sk−1, sk). We use s to denote
the internal points s1, s2, . . . , sK . In Figure 4 a hypothetical exposure response function is
plotted where s̄ defines a total of four experiments (K = 3). Then, C∗

k is a minimal sufficient
adjustment set in experiment k if it satisfies

(3.1) X ⊥⊥ Y(x)|C∗
k for all x ∈ gk

and (3.1) does not hold for any strict subset of C∗
k . The sets C∗

k can be disjoint, identical or
overlapping if the same variable is necessary for confounding adjustment in more than one
experiment.

4. ER estimation in the presence of local confounding. Motivated by the evidence
of local confounding between ambient PM2.5 concentrations and cardiovascular hospitaliza-
tions discussed in Section 2, we introduce LERCA: Local Exposure Response Confounding
Adjustment. In order to build intuition, we do so for a fixed experiment configuration in Sec-
tion 4.1. LERCA with unknown s is presented in Section 4.2. The choice of K is discussed
in Section 4.4.
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4.1. Known experiment configuration. Assume, for now, a known experiment configura-
tion s̄. Then, locally, that is, for x ∈ gk = [sk−1, sk), we assume the following pair of exposure
and outcome models:

(4.1)

p(x|C = c, x ∈ gk) = φ

(
x; δX

k0 +
p∑

j=1

αX
kj δ

X
kj cj , σ

2
k,X

)
,

p(y|X = x,C = c, x ∈ gk) = φ

(
y; δY

k0 + βk(x − sk−1) +
p∑

j=1

αY
kj δ

Y
kj cj , σ

2
k,Y

)
,

where φ(·;μ,σ 2) denotes the normal density with mean μ and variance σ 2 and αX
kj ∈ {0,1}

indicates that covariate Cj is included into the exposure model of the kth experiment,
(αX

kj = 1), or not, (αX
kj = 0). The parameter αY

kj has the same interpretation but for the out-
come model. The parameter βk denotes the instantaneous change in the expected outcome
associated with a local variation in exposure for x ∈ gk and adjusted for the Cj ’ss that have
αY

kj = 1. Even though all parameters depend on which covariates are included in the corre-
sponding model, we do not explicitly state this dependence for notational simplicity. Model
(4.1) allows for a different set of variables and variables’ coefficients at the different experi-
ments.

If a minimal confounding adjustment set for experiment k is included in the outcome
model and the mean functional form is correctly specified, βk is an unbiased estimator
of the instantaneous effect �(x), for x ∈ gk . Similarly, an unbiased estimator of Y(x) is
EC{E[Yi |X = x,C]} which can be estimated by taking the average over the units in our
sample of the conditional expectation E[Yi |X = x,Ci].

In Section 4.1.3 we discuss how the prior distribution on the inclusion indicators is chosen
to target confounding adjustment. In Section 4.1.4 we discuss prior specification for outcome
model coefficients that ensures borrowing of information across experiments and ER continu-
ity across the exposure range. But first we address two questions that naturally arise from the
specification of model (4.1). First, we clarify the connection between LERCA and a model
that specifies the ER relationship using linear splines in Section 4.1.1. Then, in Section 4.1.2
we discuss how LERCA compares to a model that is fit separately within each experiment
gk .

4.1.1. Connection to linear splines. In the outcome specification of model (4.1), the term
βk(x − sk−1) in the mean functional could be substituted by βkx, and −βksk−1 could be ab-
sorbed in the intercept. However, specifying the model as to include βk(x − sk−1) demon-
strates the connection between model (4.1) and a model where the ER relationship is specified
using linear splines with knots s. Furthermore, such specification significantly simplifies prior
elicitation to ensure ER continuity (see Section 4.1.4) and posterior sampling satisfying the
continuity condition (see Supplementary Material E).

Even though the outcome model in (4.1) resembles a linear splines model, there is a key
distinction between the two models. In model (4.1) different experiments gk are allowed to
have a different slope for the exposure (βk), a different set of outcome predictors (covariates
with αY

kj = 1) or the same set of predictors but with different coefficient (δY
kj ). Therefore,

points s in (4.1) represent a change in the slope or a change in the outcome model covariate
adjustment. On the other hand, a model that uses splines for the exposure-response relation-
ship only allows βk to vary with k. In this sense a splines model is a subcase of model (4.1)
that for αY

kj and δY
kj constant across k.

The assumption of local linearity (linear effect of the exposure on the outcome within each
experiment) can lead to global nonlinearity and can be relaxed using higher-order splines.
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However, for our study of the health effects of ambient air pollution at low concentrations
previous research indicates that the relationship between air pollution and cardiovascular
outcomes is linear (Thurston et al. (2016), Lim et al. (2018)) or supralinear (Crouse et al.
(2015), Pinault et al. (2017)), situations to which our model can adjust.

4.1.2. Connection to a separate model across experiments. A natural question that arises
from the LERCA model specification in (4.1) is how LERCA compares to fitting a separate
outcome model within each experiment gk . Doing so would still allow for different con-
founders and different confounding strength at different exposure levels.

However, a separate model within each experiment would not borrow any information
across exposure levels and could estimate an ER that is not continuous at the points s. In
contrast, LERCA borrows information across exposure levels by ensuring that the estimated
ER is continuous everywhere (see Section 4.1.4). If higher order polynomials are used within
each experiment, LERCA, similarly to splines, could be altered to accommodate higher-order
smoothness across the exposure range.

4.1.3. Prior distribution on inclusion indicators for confounding adjustment. We build
upon the work by Wang, Parmigiani and Dominici (2012), Wang et al. (2015) to assign an in-
formative prior on covariates’ local inclusion indicators (αX

kj , α
Y
kj ). This prior choice ensures

that model averaging assigns high-posterior weights to outcome models, including a minimal
confounding adjustment set separately for each exposure range, and specifies

P(αY
kj = 1|αX

kj = 1)

P (αY
kj = 0|αX

kj = 1)
= ω where ω > 1, i.i.d. ∀j, k.(4.2)

By specifying (4.2), a variable Cj is assigned high prior probability to be included into the
outcome model if it is also included in the exposure model (x ∈ gk & αX

kj = 1). Wang, Parmi-
giani and Dominici (2012) and Antonelli, Zigler and Dominici (2017) show that, for binary
treatments, this informative prior leads to outcome models that include the minimal set of true
confounders with higher posterior weights than model selection approaches that are based
solely on the outcome model. In our context, this experiment-specific prior specification en-
sures that, locally, covariates in the minimal set C∗

k are included in the outcome model of
experiment k with high posterior probability.

4.1.4. Ensuring ER continuity. In most applications it is expected that the causal ER
relationship Y(x) is continuous in x. Therefore, estimates of Y (x), in our case EC{E[Y |X =
x,C]}, should also be continuous. If the covariates Cj are centered and, under model (4.1),
continuity of the estimated ER function is satisfied if

lim
x→s+

k

EC
{
E[Y |X = x,C]} = lim

x→s−
k

EC
{
E[Y |X = x,C]}

⇐⇒ δY
k0 = δY

(k−1)0 + βk−1(sk − sk−1).

(4.3)

This is ensured by assuming a point-mass recursive prior on δY
k0, k ≥ 2. Then, conditional on

s, the outcome model intercept of experiment k ≥ 2 is a deterministic function of the outcome
model intercept of the first experiment δY

10, and the slopes β1, β2, . . . , βk−1. These parameters
are assigned independent noninformative normal prior distributions.
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4.1.5. Prior distributions of the remaining coefficients. Prior distributions on the remain-
ing regression coefficients (exposure model coefficients, outcome model covariates’ coeffi-
cients) and variance terms are chosen such that they lead to known forms of the full condi-
tional posterior distributions to simplify sampling. We use independent noninformative in-
verse gamma prior distributions on σ 2

k,X, σ 2
k,Y . Noninformative normal prior is chosen for the

exposure model intercepts δX
k0. Conditional on the inclusion indicators, the prior on the re-

gression coefficient δY
kj is a point mass at 0, or a noninformative normal distribution when αY

kj

is equal to 0 or 1, accordingly. Similarly, for the exposure model covariates’ coefficients, δX
kj .

Default hyperparameter values are set to 0.001 for the inverse gamma distribution, (0,100)

for the mean and standard deviation of the normal distribution. Details on the prior specifica-
tions can be found in Supplement D.

4.2. Unknown experiment configuration. For a fixed experiment configuration s̄, each
experiment is treated separately in terms of confounder selection and strength of the con-
founding adjustment. However, the configuration itself is a key component of the fitted expo-
sure response curve, and fixing it a priori could lead to bias and uncertainty underestimation.
Instead, we assume that, a priori, the internal points of the experiment configuration s are dis-
tributed as the even-numbered order statistics of 2K + 1 samples from a uniform distribution
on the interval (s0, sK+1). This prior choice of s discourages specifications of s that include
values that are too close to each other (Green (1995)). The prior is augmented by indicators
that consecutive points sk, sk+1 cannot be closer than some distance dk . Conditional on s, we
follow the model specification and prior distributions described in Section 4.1.

4.3. MCMC scheme and convergence diagnostics. Markov chain Monte Carlo (MCMC)
methods are used to acquire samples from the posterior distribution of model parameters. A
detailed description of the MCMC scheme including computational challenges and contri-
butions can be found in the Supplementary Material E. There, we also discuss MCMC con-
vergence diagnostics based on the potential scale reduction factor (PSR; Gelman and Rubin
(1992)) for quantities that do not directly depend on the experiment configuration.

4.4. Number of points in the experiment configuration. As presented previously, LERCA
requires the specification of the internal number of points K in the experiment configuration.
Since the number of parameters grows with K , possible values for K could be bounded by
considering the maximum number of coefficients we are willing to entertain.

Cross-validation methods to choose values of tuning parameters are often infeasible in the
Bayesian framework due to time and computational resources constraints. In a comprehensive
review, Gelman, Hwang and Vehtari (2014) discusses methods of estimating the expected out
of sample prediction error for Bayesian methods. The widely-applicable information criterion
(WAIC; Watanabe (2010)) provides an estimate of the out-of-sample prediction error based
on one MCMC run. It is defined as WAIC = −2(lppd − pWAIC), where lppd and pWAIC
denote the log pointwise posterior predictive density and the penalty:

lppd =
n∑

i=1

logEpostp(xi, yi |θ),

pWAIC =
n∑

i=1

varpost
(
logp(xi, yi |θ)

)
.

Here, θ denotes the full vector of parameters, and Epost, varpost denote the posterior mean
and variance.

In order to choose K for LERCA, LERCA is fit once for different values of K , and K is
chosen as the value that minimizes the estimate of the WAIC.
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5. Simulation studies. The main goal of our simulation study is to illustrate that local
confounding is an important issue that both commonly-used and flexible approaches for ER
estimation fail to adjust for, and they return biased results. The results from our simulation
study indicate that methodology that directly accommodates local confounding is necessary
in order to correctly estimate the causal effect of a continuous exposure.

Additionally, in Section 5.4 we discuss results from a simulation study under a generative
model without local confounding. In this case traditional approaches and global confounding
adjustment suffice for ER estimation, and the question is how comparably LERCA performs.

The approaches we considered are:

1. Generalized Additive Model (GAM): Regressing the outcome Y on flexible functions of
the exposure X and all potential confounders (four degrees of freedom for each predictor).

2. Spline Model (SPLINE): Additive spline estimator described in Bia et al. (2014). The
generalized propensity score (gps) is modelled as a linear regression on all covariates. The
ER function is estimated using additive spline bases of the exposure and gps.

3. The Hirano and Imbens estimator (Hirano and Imbens (2004)) (HI-GPS): ER estima-
tion is obtained by fitting an outcome regression model, including quadratic terms for both the
exposure and the gps, and the exposure-gps interaction. The gps is estimated as in SPLINE.

4. Inverse Probability Weighting estimator (IPW): The generalized propensity score is
used to weigh observations in an outcome regression model that includes linear and quadratic
terms of exposure. The gps is estimated as in SPLINE.

5. The doubly-robust approach of Kennedy et al. (2017) (KENNEDY): The gps and out-
come models are estimated using the Super Learner algorithm (van der Laan, Polley and
Hubbard (2007)) combining the sample mean, linear regression with and without two-way in-
teractions, generalized additive models, multivariate adaptive regression splines and random
forests. Based on the gps and outcome model estimates, the pseudo outcome is calculated
and is regressed on the exposure using kernel smoothing. This approach is chosen to repre-
sent state-of-the-art methods in ER estimation that are based on flexible, machine-learning
and nonparametric approaches.

5.1. Data generation with local confounding. We generate data with exposure values
which range from 0 to 10 and are uniformly distributed over the exposure range. Even though
a uniform distribution is not accurate for the exposure variable in our study (ambient air pol-
lution concentrations), we consider a uniformly distributed exposure to ensure that methods’
performance is solely affected by the presence of local confounding and not by the pres-
ence of limited sample size at some exposure levels. We consider a quadratic ER and true
experiment configuration s̄ = (0,2,4,7,10). Table 1 summarizes which of the eight poten-
tial confounders are predictive of the exposure and/or the outcome within each experiment
(correlations and regression coefficients are summarized in Table C.1). Note that in this data
generating mechanism the minimal set of confounders vary across the four experiments. We
simulate 400 data sets of 800 observations each. Details on the data generating mechanism
are in Supplement F.

5.2. Fitting the methods. The different methods are fit using the gam and causaldrf
R packages (Hastie (2017), Schafer (2015)), and the code available on Kennedy et al. (2017).
LERCA is fit for K ∈ {2,3,4} and for each data set the results shown correspond to the K

that minimized the WAIC.
Using each method, we estimate the population average ER curve Y(x) over an equally

spaced grid of points on the interval (0,10),and compare the root mean squared error (RMSE)
as a function of x. We also assess whether LERCA can recover the correct location of the
points s, identify the true confounders within each experiment and choose the correct value
for K .



LOCAL EXPOSURE RESPONSE CONFOUNDING ADJUSTMENT 861

TABLE 1
Representation of which covariates are predictive of the exposure and/or the
outcome within each experiment (denoted by a �). Covariates with �in both

models within the same experiment are local confounders.

Experiment Model C1 C2 C3 C4 C5 C6 C7 C8

1 X|C � � �
Y |X,C � � �

2 X|C � � �
Y |X,C � � �

3 X|C � � �
Y |X,C � � �

4 X|C � � �
Y |X,C � � �

5.3. Simulation results. Figure 5 shows the estimated ER curves using the alternative
methods. In Figure 6 we summarize the LERCA results including the estimated ER, the
internal points of the experiment configuration and outcome model inclusion indicators of
covariates C1,C4 as a function of exposure x ∈ (0,10). We choose C1 and C4 because, in
this data generating mechanism, C1 is a confounder in experiment 1 (x < 2), and C4 is a
confounder in experiment 2 only (2 < x < 4). Grey lines correspond to results for individual
data sets, whereas black solid lines correspond to averages across simulated data sets.

In Figure 5 we see that the alternative methods return biased results, especially at very
low or very high levels of the exposure. These results indicate that neither commonly used
nor flexible approaches utilizing machine learning tools appropriately accommodate local
confounding adjustment for ER estimation. In terms of root MSE, LERCA was consistently
lower than the alternative methods at low-exposure levels, all approaches performed simi-
larly at middle-exposure levels and GAM slightly outperformed LERCA at high levels (Fig-
ure C.1). In the Supplementary Material C.2, we show that the relative performance of GAM
and LERCA is reversed when the confounding structure is also reversed. These results in-
dicate that local confounding is an issue across all exposure levels, and that, since the true
confounding structure is never known for a real data set, LERCA should be preferred if local
confounding is of concern.

As shown in Figure 6, even though the true ER is quadratic and LERCA is formulated
as piecewise linear, LERCA is able to identify the correct shape of the exposure-response
function. We find that using WAIC to choose the value of K led to choosing the correct

FIG. 5. The true mean ER function (dashed line), estimated ER functions from each simulated data set (gray),
and the mean of the estimated ER functions (solid lines) using all alternative methods.
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FIG. 6. LERCA results. (Left) Mean ER estimates. (Center) Posterior distribution of the internal locations s.
(Right) Outcome model posterior inclusion probability of C1 and C4. Gray lines correspond to simulated data
sets separately, and black solid lines correspond to averages across data sets.

value of K = 3 40% of the times and K = 2 58% of the times, indicating that WAIC tends
to overpenalize large values of K . Regardless, the correct internal locations s = {2,4,7} are
located at the modes of the posterior distribution (second panel in Figure 6). By examining
the posterior inclusion probabilities of C1,C4, we observe that instrumental variables (e.g.,
C1 in experiments 2 and 3) are often included in the outcome model. However, LERCA
includes the minimal confounding set within each experiment with very high probability. On
average (across the points in the exposure range and across all the simulated data sets), the
minimal confounding set was included in the adjustment set 99% of the times (ranging from
89–100% across simulated data sets), indicating that the variables necessary for confounding
adjustment are almost always included in the adjustment set. Lastly, the pointwise 95% and
50% credible intervals cover the true mean ER values 84% and 39% of the times, accordingly.
The observed under-coverage is largely due to the underestimation of K .

5.4. Simulation results in the absence of local confounding. The previous generative sce-
nario compared methods’ performance in the presence of local confounding. In Supplement
C.3, LERCA is compared to the alternative methods in the more traditional setting of global
confounding, that is, in the setting more favorable to the other methods. In this context,
LERCA with K = 3 (fixed) performed similarly in terms of root MSE compared to GAM
and Kennedy’s doubly-robust estimator but better than the remaining alternative methods.
These results indicate that LERCA offers a protection against bias arising from local con-
founding without sacrificing efficiency when local confounding is not present.

6. Estimating the effect of ambient PM2.5 concentrations on zip code cardiovascular
hospitalization rates. We estimate the relationship between the average ambient PM2.5
concentrations for the years 2011–2012 and log cardiovascular hospitalization rates in 2013,
using the data set introduced in Section 2 and allowing for local confounding adjustment.
Here, a unit i from Section 3 corresponds to the areal unit of a zip code.

6.1. Plausibility of the causal assumptions in our study. The interpretation of estimated
results as causal are bound by the plausibility of the causal assumptions within the study’s
setting. Here, we examine these assumptions in the evaluation of the causal relationship be-
tween ambient PM2.5 and cardiovascular hospitalization rates.

One assumption discussed in Section 3 is SUTVA which states that a zip code’s potential
outcomes are only a function of the zip code’s own PM2.5 levels. If Medicare beneficiaries
residing within a zip code travel outside of it, then other zip codes’ ambient PM2.5 concen-
trations can affect the personal exposures of zip code i’s beneficiaries and, as a consequence,
the zip code’s hospitalization rates, invalidating SUTVA. This phenomenon is referred to in
the literature as interference. Since PM2.5 concentrations in nearby zip codes are similar, and
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FIG. 7. Subgraph relating zip code i and j ’s covariates and ambient PM2.5 concentrations to i’s potential
outcomes. Arrow from Xj to Yi is weaker than that from Xi .

Medicare beneficiaries are expected, at some level, to spend most of their time within a rela-
tively close distance to their home, interference can be assumed to be limited (dashed arrow
in Figure 7). When interference is limited, Sävje, Aronow and Hudgens (2018) showed that
ignoring it returns estimates that are close to an average treatment effect.

The most commonly argued causal assumption is that of ignorability. In our setting, ignor-
ability implies that, conditional on measured covariates, a zip code’s “assignment” to a spe-
cific level of ambient PM2.5 does not depend on its potential outcomes (see (3.1)), and any zip
code can experience any ambient PM2.5 within the observed range. One natural question is
whether spatial correlation of ambient pollution concentrations invalidate ignorability, either
through confounding or positivity. The no unmeasured confounding assumption is expected
to hold if the set of measured covariates includes all confounders. In our study we might ex-
pect that the covariates of nearby zip codes (such as nearby weather conditions) affect a zip
code’s ambient PM2.5 concentrations (arrow from Cj to Xi in Figure 7). If, in addition, a zip
code’s outcome directly depends on the covariates of other zip codes (arrow from Cj to Yi ),
then Cj has to be included in the model for Yi . We assume that such direct dependence does
not exist in our study. For example, weather conditions near but not in zip code i only affect
zip code i’s hospitalization rates through their effect on ambient PM2.5 concentrations. Even
though ambient PM2.5 concentrations are spatially correlated, the positivity assumption re-
quires that zip codes can experience any PM2.5 concentration level marginally, and the spatial
correlation of PM2.5 does not further complicate the plausibility of the positivity assumption.

Lastly, the interpretation of our study results as causal is bound by the specification of
the model in (4.1). If the mean functionals are not correctly specified, estimates of βk can
be biased for the causal effect of PM2.5 within that exposure level. Even though model (4.1)
assumes independence of PM2.5 concentrations, the spatial dependence structure is not ex-
pected to affect estimation of the model’s regression coefficients or variable selection.

The results presented next can only be interpreted as causal under the assumptions dis-
cussed here. If any of the assumptions is violated, the study results should be interpreted as
associational.

6.2. Study results. We fit LERCA for K ∈ {2,3, . . . ,6}, and we report the results for
K = 3 which corresponds to the model with the lowest WAIC. Figure 8 shows the posterior
mean and the 95% credible intervals of the ER, the posterior distribution of the internal
points of the experiment configuration and the posterior mean and 95% credible interval of
βk within each experiment. Positive values of βk imply that an increase in ambient PM2.5
concentrations leads to an increase in hospitalization rates.

In Figure 8, we see that the estimated ER is supralinear with steeper incline at low con-
centrations. Examining the 95% credible intervals for βk , there is evidence that an increase in
PM2.5 at the low levels (≤ 9.9 μg/m3) leads to an increase in log hospitalization rates. How-
ever, 95% credible intervals for x ≥ 9.9 μg/m3 include zero. Note that the current NAAQS
for long-term exposure to ambient PM2.5 is equal to 12 μg/m3. These results indicate that
there is no exposure threshold for the effect of PM2.5 on cardiovascular outcomes which
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FIG. 8. Top: Mean ER curve of PM2.5 exposure (x-axis) and log all-cause cardiovascular hospitalization rates
(y-axis)—solid line—with 95% pointwise credible intervals. The rug of points shows the distribution of observed
PM2.5 values. Bottom: The posterior mean and 95% credible interval of the β coefficient within the four experi-
ments. The rug of points shows the posterior distribution for s for K = 3.

means that reductions in ambient PM2.5 would lead to further health improvements, even at
the low levels. These results are consistent with other epidemiological studies which have
found that the strength of the association between PM2.5 and health outcomes is larger at
low-concentration levels (Di et al. (2017b), Dominici et al. (2002), Shi et al. (2016)). Lastly,
the posterior distribution of s, shows that observations below 8 μg/m3 and over 11.5 μg/m3

are always in the same experiment.

6.3. Variability of the covariates’ posterior inclusion across PM2.5 concentration lev-
els. We investigated whether local confounding was present by examining the variability of
the covariates’ inclusion probabilities in the exposure and outcome models as a function of
PM2.5. Figure 9 shows the posterior inclusion probabilities for three covariates as a function
of PM2.5 providing a measure of the covariates’ confounding importance across the PM2.5
concentration range.

The posterior inclusion probabilities vary substantially at different concentration levels,
indicating that local confounding is likely to be present. In Figure 3 the exploratory analysis
showed that the zip code median household value (House Value) was predictive of both

FIG. 9. Posterior inclusion probability of zip code population percentage with less than a high school education,
population density, and median house value in the exposure and outcome model as a function of PM2.5.
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PM2.5 and hospitalization rates at the high ambient concentration levels but only of the out-
come at the low levels. The LERCA results in Figure 9 lead to the same conclusion. Similarly,
the posterior inclusion probability for the variable representing the zip code’s percentage of
the population with less than a high school education (% Below HS) indicates that this
variable is an important confounder only at the low levels, in accordance to the exploratory
analysis. LERCA returns a similar conclusion about the variable representing population den-
sity (Population/SQM), in disagreement with the analysis in Section 2 which showed that
population density was predictive of both PM2.5 concentrations and the outcome at both low
and high levels. Comparisons between the results in Figure 8 and the outcome model poste-
rior inclusion probabilities were performed for all variables. LERCA tends to include in the
outcome model a smaller number of variables than what one might have assumed based on
the exploratory analysis. This is expected since LERCA considers the confounding impor-
tance of all variables simultaneously.

6.4. Outcome model variability at low exposure levels. With the focus of our study being
the evaluation of the effect of ambient PM2.5 at the low-concentration levels, we studied the
interpretation of β1 across MCMC samples. Since the interpretation of β1 as a causal effect
requires that a sufficient adjustment set is included in the outcome model, we examined the
variability of the covariates’ outcome model inclusion indicators within the low experiment
across iterations of the MCMC.

Across MCMC samples, 174 combinations of the covariates were included in the outcome
model (out of the 227 possible ones). Even though this is a large number of potential models,
51% of the posterior weight was given to the model with the following nine covariates: the
zip code’s median house value and percentage of the population with at most a high school
education, as measured in the 2000 Census and its extrapolation between 2000 and 2013, the
population rate that has been a smoker at some point in their lives, the zip code’s population
density, the average dew point, the average age of Medicare beneficiaries and the percentage
of them that are women. We refer to this model as Model 1. The model with the second highest
posterior probability included the same covariates, except for smoking rate, and accounted
for 7% of the MCMC samples. Therefore, there is evidence that Model 1 outperformed the
rest in confounding adjustment at low levels.

In order to evaluate the impact of model averaging on our final estimates, we compared the
posterior distribution of β1 across all MCMC samples to its distribution based on the MCMC
samples among which Model 1 was chosen. Across all samples, β1 was estimated to be equal
to 0.035 with 95% credible interval 0.012–0.06 and posterior probability that it is greater
than zero equal to 99.7%. Among posterior samples for which Model 1 was chosen, β1 was
estimated to be 0.034 with 95% credible interval 0.011–0.056 and posterior probability that
β1 is greater than zero also equal to 99.7%. The consistency of the Model 1 estimates and the
model averaged estimates is an indication that model averaging, in this situation, did not lead
to averaging over incompatible models.

7. Discussion. We have introduced an innovative Bayesian approach for flexible estima-
tion of the ER curve in observational studies that has the following features: (1) it casts the
formulation of the ER within a potential outcome framework and mimics several randomized
experiments across exposure levels; (2) it uses the data to inform the experiment configura-
tion; and, given the current experiment configuration, (3) allows for the possibility which is
a reality in our study (Figure 3 and Figure 9) that different sets of covariates are confounders
at different exposure levels; (4) allows for varying confounding effect across levels of the
exposure; (5) performs local covariate selection to increase efficiency; (6) propagates model
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uncertainty for the experiment configuration and covariate selection in the posterior infer-
ence on the whole ER curve, and; finally, (7) provides important scientific guidance related
to which covariates are confounders at different exposure levels.

Although nonparametric and varying coefficient approaches (Hastie and Tibshirani (1993))
for ER estimation could, in theory, allow for differential confounding across different expo-
sure levels, none of the existing methods for ER estimation explicitly accommodates local
confounding nor provides guidance for which covariates are confounders of the effect of in-
terest at different levels of the exposure. Furthermore, the use of nonparametric methods to
estimate a generalized propensity score or to model the outcome of interest could prove un-
fruitful in situations where most of the available data are over a specific range of the exposure
variable, the number of potential confounders is large and interest lies in the estimation of
causal effects for a change in the exposure in the tails of the exposure distribution. In such
situations LERCA provides a way to model the outcome acknowledging that the exposure-
response relationship might be confounded by different covariates at different exposure lev-
els. Lastly, it is worth noting that LERCA shall not be seen as a direct competitor to the
approach by Kennedy et al. (2017). In fact, since the Super Learner algorithm combines dif-
ferent approaches for modeling the outcome, LERCA could be incorporated in the algorithm
as an approach that allows for the presence of local confounding.

The main contribution of this paper is in addressing the issue of local confounding in
ER estimation and in providing guidance of covariates’ confounding importance at different
exposure levels. In doing so, LERCA is based on several modeling decisions that can be eas-
ily altered. First, within each experiment and, thus, locally within a narrow exposure range,
LERCA assumes linearity for both the outcome and exposure models. Local linearity could
be relaxed by using higher order polynomials. Second, the informative prior on the inclu-
sion indicators could lead to the inclusion of instrumental variables in the outcome model,
which will not lead to bias but will decrease the efficiency of our estimators. In the study of
air pollution, strong instrumental variables are not expected to be present. Alternative strate-
gies for local confounder selection can be accommodated here, extending, for example, work
by Cefalu et al. (2017), Wilson and Reich (2014) and Antonelli, Parmigiani and Dominici
(2019). An interesting line of research is to explore LERCA’s extensions to more flexible
functional specifications and to evaluate the performance of different approaches to model
averaging and model selection (via prior specifications or penalization techniques) for differ-
ent confounding scenarios.

An alternative modification of LERCA could enforce that the ER curve is monotone, by
assuming prior distributions on βk that are left (or right)-truncated at zero. This modification
could be of explicit interest for environmental and toxicological research and in studies of air
pollution in particular where the ER relationship is often believed to be supralinear (Pinault
et al. (2017), Vodonos, Awad and Schwartz (2018)). In risk assessment studies the shape
of the ER can greatly affect conclusions (Pope et al. (2015)) and is often assumed to be
linear, log-linear, log-log or power function with or without threshold (Devos et al. (2016),
Burnett et al. (2014)). Nasari et al. (2016) proposed a class of models that can capture various
ER shapes and are easy to implement in large data sets. Even though LERCA can capture
effectively any ER shape, development of a faster and computationally efficient estimation
procedure is required for very large data sets. Future work could focus on incorporating
local confounding adjustment in air pollution analyses, including the whole United States
and including zip codes that are not located near an air pollution monitor.

The results of our study are in agreement with a supralinear ER shape, indicating that there
is a larger health impact of ambient air pollution concentrations at low exposure levels, and
that, if the causal assumptions hold, lowering ambient PM2.5 concentrations would lead to a
reduction in cardiovascular hospitalization rates. Even though our analysis addresses a key
question in air pollution epidemiology, it is also met with its own challenges.
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First, even though focusing on ambient pollution concentrations is important from a policy
perspective (since regulations can more directly control ambient concentrations), the results
of this study are not directly interpretable for evaluating the health effects of personal ex-
posure to PM2.5. The relationship between ambient concentrations and personal exposures
is complicated, with studies showing that there is substantial variability in personal expo-
sures among individuals of similar ambient exposure concentrations (Dockery and Spengler
(1981), Clayton et al. (1993)), largely due to the individuals’ activities (Meng et al. (2009)).
The correlation between ambient concentrations and personal exposures might differ by ex-
posure levels if, for example, individuals residing in highly polluted areas are more likely to
avoid outdoor activities. This further complicates interpreting the results of the relationship
between ambient concentrations and health to personal exposures. Furthermore, variables that
are expected to be confounders of personal exposures and health outcomes (such as an indi-
vidual’s smoking habits, variables C̃2 in Figure 2) are not necessarily confounders of ambient
PM2.5 concentrations and outcomes (variables C̃1 in Figure 2). Indication of confounding of
the relationship between ambient concentrations and health outcomes by variables such as
the median household value (see Figure 9) implies that these variables are not confounders in
the classic sense (since they are not driving ambient PM2.5 concentrations) but are correlated
with variables that are. Therefore, a variable’s confounding strength for ambient concentra-
tions is not directly interpretable as its confounding strength for personal exposures.

Second, this analysis has used log event rates as the outcome of interest in a linear regres-
sion setting, with all zip codes contributing equally to the estimation of the models irrespec-
tive of their size. Linear regression for the analysis of rate data has been used in various set-
tings, for example, in Chua et al. (2009), Joshua and Garber (1990), Mohamedshah, Paniati
and Hobeika (1993), Wang, Parmigiani and Dominici (2012) and Liu-Smith et al. (2016).
A Poisson regression model where the number of hospitalizations is the response variable
and the Medicare population size within a zip code is the offset would be more in agreement
with the literature on count outcomes (and within air pollution epidemiology specifically).
However, extending local confounding adjustment to Poisson regression is computationally
complicated: (a) enforcing ER continuity for Poisson regression is not straightforward since
EC{E[Y |X = x,C]} is not easily acquired (see Section 4.1.4), (b) posterior sampling of the
experiment configuration and regression coefficient involves marginal densities of regression
models, and (c) no conjugate prior distribution exists for regression coefficients in Poisson
regression.

Software. An R package, which can be used to generate data with local confounding
and fit LERCA, is available at https://github.com/gpapadog/LERCA and as Supplementary
Material to this manuscript.
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SUPPLEMENTARY MATERIAL

LERCA code (DOI: 10.1214/20-AOAS1330SUPPA; .zip). We provide the R package
used to generate data with local confounding and fit LERCA.

Supplementary materials (DOI: 10.1214/20-AOAS1330SUPPB; .pdf). This supplemen-
tary file includes (1) information on the creation of the data set, and included covariates,
(2) further investigation of the presence of local confounding in our study, (3) simulation
results under alternative data generative mechanisms, (4) information on the specification

https://github.com/gpapadog/LERCA
https://doi.org/10.1214/20-AOAS1330SUPPA
https://doi.org/10.1214/20-AOAS1330SUPPB
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of prior distributions for model parameters, (5) derivations for posterior sampling, including
extensive information on sampling the experiment configuration and inclusion indicators to
improve mixing, and (6) discussion on simulating data with local confounding.
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