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High-throughput metabolomics data are fraught with both nonignorable
missing observations and unobserved factors that influence a metabolite’s
measured concentration, and it is well known that ignoring either of these
complications can compromise estimators. However, current methods to an-
alyze these data can only account for the missing data or unobserved fac-
tors, but not both. We therefore developed MetabMiss, a statistically rigorous
method to account for both nonrandom missing data and latent factors in
high-throughput metabolomics data. Our methodology does not require the
practitioner specify a likelihood for the missing data, and makes investigat-
ing the relationship between the metabolome and tens, or even hundreds, of
phenotypes computationally tractable. We demonstrate the fidelity of Metab-
Miss’s estimates using both simulated and real metabolomics data and prove
their asymptotic correctness when the sample size and number of metabolites
grows to infinity.

1. Introduction. Metabolomics is the study of tissue- or body fluid-specific small
molecule metabolites and has the potential to lead to new insights into the origin of hu-
man disease (Finkelstein et al. (2015), Reinke et al. (2017)) and drug metabolism (Dubuis,
Ortmayr and Zampieri (2018)). Recent advances in both liquid chromatography (LC) and
untargeted mass spectrometry (MS) have made it possible to identify and quantify hundreds
to thousands of metabolites per sample (Liu, Ser and Locasale (2014)). Similar to high-
throughput gene expression and DNA methylation data, these data contain systematic tech-
nical and biological variation whose sources are not observed by the practitioner (Salerno
Stephen et al. (2017)). However, what makes untargeted LC-MS metabolomic data partic-
ularly challenging is the vast amount of missing data, nearly all of which is missing not at
random due to an unknown, metabolite-specific missingness mechanism in which more abun-
dant and ionizable analytes are more likely to be observed (Do et al. (2018)). For instance,
22% of all #metabolites × #samples = 1138 × 533 observations were missing from our data
example in Section 8, where Figure 1 shows that only analytes with the strongest signals were
likely to be quantified in all technical replicates.

There are several methods that attempt to account for either latent factors (De Livera et al.
(2012), De Livera et al. (2015), Salerno Stephen et al. (2017)) or nonrandom missing data
(Chen et al. (2017), O’Brien et al. (2018), Wang et al. (2019)) when trying to infer the rela-
tionship between the metabolome and a variable of interest. However, these are not amenable
to real, untargeted metabolomic data because the former set of methods cannot accommodate
nonignorable missing data, and the latter set ignores latent factors that can bias estimators.
Surprisingly, to the best of our knowledge, Wehrens et al. (2016) is the only work to even
acknowledge the challenge of accounting for both. However, they propose imputing missing
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FIG. 1. A density plot of the differences in mean observed metabolite log2-intensity between samples with obser-
vations in both technical replicates and those from samples with only one observation among the two replicates.
Replicate pairs were obtained by running 20 biological samples from our motivating data example twice on the
same mass spectrometer.

data with an arbitrary limit of detection, and require knowledge of control metabolites whose
concentrations are unrelated to the variable of interest to estimate latent factors.

Given the paucity of methods to analyze untargeted metabolomic data, we developed
MetabMiss, the first method to account for both latent factors and nonrandom missing data
that does not rely on erringly imputing missing data. It leverages both key properties of the
missing data in untargeted mass spectrometry experiments, as well as the fact that most of the
variation in metabolomic data can be explained by a few, possibly latent, factors, which we
treat as instrumental variables to identify and estimate each metabolite’s missingness mech-
anism. Additionally, our method to account for the latent factors uses the natural sparsity
in the relationship between the metabolome and the covariate(s) of interest, which obviates
the need for control metabolites and internal standards. Our method also offers the following
advantages:

(a) It does not require the user specify a likelihood for the missing data.
(b) It can accommodate both discrete and continuous covariates, and learns the degree to

which missingness mechanisms are shared between metabolites.
(c) It is modularized so that each metabolite-dependent missingness mechanism is esti-

mated only once per dataset, which makes computation on the order of a phenome wide
association study tractable.

And, while we assume the functional form of the missing data mechanism is known, we
provide a method to access the veracity of said function for each metabolite.

Property (b) is contrary to other methods designed to account for missing mass spectrom-
etry data, which are only applicable to case-control studies or cannot flexibly learn the sim-
ilarity between analyte-specific missingness mechanisms (Chen et al. (2017), O’Brien et al.
(2018), Wang et al. (2019)). Further, as far as we are aware, our estimates for the missingness
mechanisms are the first that satisfy Property (c) and do not depend on the covariate(s) of in-
terest. This makes analyzing modern metabolomic data tractable, as practitioners often want
to use the wealth of information available to investigate the relationship between metabolite
abundance and many different covariates. We discuss this further in Section 3.1.

The remainder of the manuscript is organized as follows: we give a mathematical descrip-
tion of the data in Section 2 and give an overview of our method in Section 3. We describe how
we estimate the metabolite-dependent missingness mechanisms, estimate the coefficients of
interest in a linear model and recover latent factors in Sections 4, 5 and 6. We conclude by
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illustrating how our method performs in simulated and real metabolomic data in Sections 7
and 8. We provide exact statements and proofs of all theory in the Supplementary Material.
An R package implementing our method, together with instructions and code to reproduce
the simulations from Section 7, are available from github.com/chrismckennan/MetabMiss.

2. Notation and problem set-up.

2.1. Notation. Let n > 0 be an integer. We let 1n ∈ R
n be the vectors of all ones, In ∈

R
n×n be the identity matrix, [n] = {1, . . . , n} and xi be the ith element of x ∈ R

n. For M ∈
R

n×m, we let M ij ∈ R, M∗j ∈R
n and M i∗ ∈ R

m be the (i, j)th element, j th column and ith
rows of M , respectively, and define PM and P ⊥

M to be the orthogonal projection matrices onto

im(M) = {Mv : v ∈ R
m} and the null space of MT. We also let X

·∼ (μ,G) if E(X) = μ and
V(X) = G, X ∼ MNm×n(μ,V ,U) if X ∈ R

m×n and vec(X) ∼ Nmn(vec(μ),U ⊗ V ) and,
lastly, define Fν(x) to be the cumulative distribution function of the t-distribution with ν > 0
degrees of freedom.

2.2. A description of and model for the data. Let ygi be the observed or unobserved log-
transformed integrated metabolite intensity for metabolite g ∈ [p] in sample i ∈ [n], where
the mass spectrometer intensity, integrated over time and mass-to-charge ratio, is proportional
to a metabolite’s concentration (Karpievitch et al. (2010)). Let X = (x1 · · ·xn)

T ∈ R
n×d and

C = (c1 · · · cn)
T ∈ R

n×K be observed and unobserved covariates (i.e., latent factors), where
the former may contain biological factors like disease status or technical factors like observed
batch variables. We assume

ygi = xT
i βg + cT

i �g + egi, egi
·∼ (

0, σ 2
g

)
, g ∈ [p]; i ∈ [n],(2.1)

where our goal is to estimate βg . The unobserved covariates ci can confound the relationship
between xi and ygi , and also induce systematic dependencies between metabolites. We as-
sume that c1, . . . , cn are independent and are independent of {egi}g∈[p],i∈[n], where {egi}i∈[n]
are independent and identically distributed for each g ∈ [p] and {egi}g∈[p] are independent
for each i ∈ [n]. The latter assumption is standard in models for metabolomic data that ac-
count for latent covariates (De Livera et al. (2015), Salerno Stephen et al. (2017)), and we
explore our method’s robustness to this assumption through simulation in Section 7.

We next define the indicator variable rgi = I (ygi is observed) and assume that for some
known cumulative distribution function �(x),

P(rgi = 1 | ygi) = �
{
αg(ygi − δg)

}
, g ∈ [p]; i ∈ [n].(2.2)

The metabolite-dependent scale and location parameters satisfy αg > 0 and δg ∈ R, where
αg ↘ 0 implies the mechanism is missing completely at random (MCAR) and αg ↗ ∞ im-
plies ygi is left-censored at δg . Model (2.2) is consistent with Figure 1 and is a classic model
for missing data in untargeted mass spectrometry experiments (Chen et al. (2017), O’Brien
et al. (2018), Wang et al. (2019)). It reflects the observation that nearly all missing data in
LC-MS metabolomic experiments are a technical artifact of the mass spectrometer, which can
only analyze metabolites whose mass spectrometer-determined intensity is above a limit of
detection determined by the ambient background noise and the mass spectrometer’s sensitiv-
ity (Do et al. (2018), Wang et al. (2006)). Typical choices for � include the logistic function
(Wang et al. (2019)) and the probit function (O’Brien et al. (2018)). However, we observed in
simulations that �(x) = F4(x) is a more robust option, since its heavy tails make it less sen-
sitive to outliers. This has previously been used as a robust alternative to logistic and probit
functions (Kang and Schafer (2007)).

https://github.com/chrismckennan/MetabMiss
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The above model makes no parametric assumptions on the likelihoods pr(ci | xi ) and
pr(ygi | xi ) and, consequently, avoids placing assumptions on the likelihood for the miss-
ing data, pr(ygi | xi , rgi = 0). Implicit in (2.2) is the important assumption that conditional
on Y = (ygi)g∈[p],i∈[n] ∈R

p×n, {rgi}g∈[p],i∈[n] are independent, where the distribution of rgi

only depends on ygi . This may be only approximately true in practice if other intense an-
alytes preclude MS/MS fragmentation, if the mass spectrometer’s sensitivity changes over
time or if the abundance of exogenous contaminants contributing to the background noise
is significantly different between samples. However, properly tuning the dynamic exclusion
time, suitably calibrating the mass spectrometer with performance standards and proper sam-
ple handling can substantially mitigate these sources bias (Bouhifd et al. (2015), Broadhurst
et al. (2018), Johnson et al. (2013)).

3. A road map of our methodology. Here, we provide a compendious description of
our method to estimate the metabolite-dependent missingness mechanisms, recover C and
estimate β1, . . . ,βp . We delineate these steps in more detail in Sections 4, 5 and 6.

3.1. IV-GMM to estimate αg and δg . We first estimate αg and δg for metabolites g with
missing data. Unlike existing methods, our estimates do not depend on the user-specified X
and only need to be estimated once per data matrix Y . This makes analyzing modern datasets
tractable, as practitioners typically collect a wealth of covariate information for each sample i,
and therefore will need to infer the relationship between Y and X for many different covariate
matrices X.

Estimating αg and δg is challenging for two reasons. First, the population parameters αg

and δg may be difficult to identify because the observed data are not representative of the
overall population when ygi is missing not at random (MNAR). Second, the parametric form
for the likelihood pr(ygi | xi ) is unknown because pr(ci | xi ) and pr(egi) are unknown. We
resolve these issues by building upon Wang, Shao and Kim (2014) and use instrumental
variable generalized method of moments (IV-GMM) to estimate αg and δg . The instrumental
variables, which are always observed, act as a proxy for missing ygi and, therefore, help
to identify αg and δg . Further, the moment condition obviates specifying a likelihood for
pr(ygi | xi ), which can be difficult or impossible to justify in the presence of nonrandom
missing data. To describe the procedure, fix a g ∈ [p], and let A1, . . . ,An ∈ R

s be random
vectors such that rgi |= Ai | ygi for all i ∈ [n]. We consider the following observable s + 1
dimensional function for metabolite g:

h
{
(ygi, rgi,Ai ), (α, δ)

} = (
1AT

i

)T(1 − rgi

[
�

{
α(ygi − δ)

}]−1)
, i ∈ [n],(3.1)

E
[
h

{
(ygi, rgi,Ai ), (αg, δg)

}] = 0, i ∈ [n],(3.2)

where (3.2) follows from (2.2). In order for (3.2) to identify αg and δg , we require ygi to
depend on Ai and, therefore, act as an instrumental variable for rgi (Wang, Shao and Kim
(2014)). Otherwise, αg and δg would not be identifiable because (3.2) would hold at an infinite
number of points (α, δ).

Unfortunately, as is the case with nearly all biological data, Y is typically only weakly
dependent on the observed covariates X, meaning viable instruments Ai are almost never
observed in metabolomic data. Instead, we leverage the fact that the majority of the variation
in high-throughput metabolomic data, like nearly all high-throughput biological data, can
be be explained by a relatively small number of potentially latent factors (De Livera et al.
(2015), Leek and Storey (2007)). For example, applying principal components analysis to the
metabolites with complete data from our motivating data example revealed that only 10 com-
ponents were necessary to explain nearly 50% of the variation in those fully observed data.
This fact forms the basis of our method to estimate each metabolite’s missingness mecha-
nism, which we briefly describe in Algorithm 3.1.
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ALGORITHM 3.1. Fix εmiss ∈ [0,1), Kmiss ≥ 2, and let S = {g ∈ [p] : n−1 ∑n
i=1(1 −

rgi) ≤ εmiss} and M = {g ∈ [p] : n−1 ∑n
i=1(1− rgi) > εmiss} be the metabolites with (nearly)

complete and missing data, respectively:

(1) Use YS = (ygi)g∈S,i∈[n] to generate Kmiss n-dimensional factors that explain most of
the variation in YS .

(2) For each g ∈ M, select two out of the Kmiss factors estimated in Step (1) to act as
instruments for the missingness indicators rg1, . . . , rgn.

(3) For each g ∈ M, use IV-GMM with (3.1) and instruments obtained from Step (2) to
compute estimates for αg and δg , α̂

(GMM)
g and δ̂

(GMM)
g .

(4) Identify metabolites g ∈ M whose missing data patterns may not follow Model (2.2)
using α̂

(GMM)
g , δ̂

(GMM)
g and the Sargan–Hansen J statistic.

(5) Obtain estimates for αg, δg and the weights wgi = rgi/�{αg(ygi − δg)} for g ∈ M
and i ∈ [n] using Hierarchical Bayesian Generalized Method of Moments (HB-GMM).

We set εmiss = 0.05 in practice because simulations show that trace amounts of missing
data have negligible effects on the bias in our downstream estimators for βg . We explain
how we choose Kmiss in Section 4.2. Algorithm 3.1 tends to perform well because the esti-
mated factors from Step (1) will be approximately the columns of (XC) from Model (2.1)
that explain much of the variance in Y . And, since they are not estimated using metabolites
with missing data, they will be approximately independent of rg1, . . . , rgn conditional on
yg1, . . . , ygn and, therefore, auspicious instruments for rg1, . . . , rgn for g ∈M. Step (4) helps
flag metabolites whose missingness mechanisms cannot be reliably estimated, and Step (5)
utilizes the output from Step (3) to determine sample weights used to estimate βg . We detail
and provide concise, intuitive explanations of Steps (1)–(5) in Sections 4.1–4.5 below. We
also justify Algorithm 3.1 in Sections S8–S10 of the Supplementary Material (McKennan,
Ober and Nicolae (2020)), where we study the asymptotic properties of the estimators from
each step when εmiss = 0 and n,p → ∞.

3.2. Recovering latent factors and estimating coefficients of interest. Estimating C is
challenging because C is not expected to be orthogonal to X. For example, diet, an important
source of variation in metabolomic studies that is typically unobserved by the researcher
(O’Sullivan, Gibney and Brennan (2010)), is often correlated with X (Afshin et al. (2019)).
This could potentially complicate estimators, since one would need to be careful to avoid
attributing variation due to C as arising from X or vice versa. Therefore, we partition C as
C = P ⊥

X C +PXC and note that, since variation due to P ⊥
X C is unequivocally distinguishable

from that due to X, we first estimate P ⊥
X C and subsequently use said estimate, as well as the

natural sparsity of (β1 · · ·βp), to carefully recover PXC. We then plug-in our estimate for C
when estimating β1, . . . ,βp .

The aforementioned procedure is computational fast and only depends on the metabolite-
dependent missingness mechanisms through the output of Algorithm 3.1. This ensures that
Algorithm 3.1 only has to be run once per data matrix Y , and makes analyzing the relationship
between Y and tens, or even hundreds, of different X’s computationally tractable.

4. Estimating the missingness mechanisms using Algorithm 3.1.

4.1. Estimating the instruments in Step (1). We define the factors from Step (1) of Al-
gorithm 3.1 to be Ĉmiss ∈ R

n×Kmiss , where Ĉmiss is the maximum likelihood estimator for
C̃ ∈ R

n×Kmiss in the model

YS ∼ MNps×n

(
μ̃1T

n + L̃C̃
T
, σ̃ 2Ips , In

)
,(4.1)
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where ps = |S|, C̃
T
1n = 0, n−1C̃

T
C̃ = IKmiss , L̃

T
L̃ is diagonal with nonincreasing elements

and any missing data are MCAR. If εmiss = 0, Ĉmiss is a scalar multiple of the first Kmiss

right singular vectors of Y SP ⊥
1n

. When εmiss > 0, the columns of Ĉmiss are still ordered by
decreasing average effect on the log intensities of metabolites with nearly complete data.
Further, by McDiarmid’s Inequality, P(g ∈ S) ≤ e−2η2n if n−1 ∑n

i=1 E(1−rgi) ≥ εmiss+η for
η > 0, meaning it suffices to assume Ĉmiss |= rgi | ygi if g ∈ M for sufficiently large n. That is,
for h defined in (3.1) and ĉi the ith row of Ĉmiss, we assume E[h{(ygi, rgi, ĉi ), (αg, δg)}] = 0
for g ∈ M and i ∈ [n].

The columns of Ĉmiss are the factors that explain the most variation in YS . While we
expect most of them to derive from C, some may be related to X if {βg}g∈S are large enough.

Note that Ĉmiss is invariant of the choice of X.

4.2. Instrument selection in Step (2). It is critical that ygi be dependent on the instru-
ments chosen in Step (2) of Algorithm 3.1. Otherwise, the moment condition in (3.1) will
not identify the parameters αg and δg . We therefore use Algorithm 4.1 to only select the
instruments Ûg ∈R

n×2 that influence metabolite g’s intensity.

ALGORITHM 4.1. Let Ĉmiss = (Ĉ1 · · · ĈKmiss) and yg = (ygi)i∈[n]:

(1) For each g ∈ M and k ∈ [Kmiss], use ordinary least squares (OLS) to regress yg onto

(1nĈk) ∈ R
n×2, where missing data are treated as MCAR. Let pg,k be the OLS P value for

the null hypothesis that Ĉk is independent of yg .
(2) For each k ∈ [Kmiss], use {pg,k}g∈M to determine the corresponding q-values

{qg,k}g∈M.
(3) For each g ∈ M, let qg,g1 ≤ · · · ≤ qg,gKmiss

be the Kmiss ordered q-values. Define

Ûg = (ûg1 · · · ûgn)
T = (Ĉg1Ĉg2).

Step (1) is justified by Theorem S8.1 in Section S8 of the Supplementary Material
(McKennan, Ober and Nicolae (2020)), which states that under technical assumptions on
the distributions of Y S and yg for g ∈ M, pg,k is asymptotically uniform under the null

hypothesis H
(g,k)
0 that Ĉk is independent of yg . The q-value qg,k in Step (2), defined as the

minimum false discovery rate necessary to reject H
(g,k)
0 , is the multiple testing analogue of

the P value pg,k and is estimated using Storey et al. (2015). A small q-value qg,k therefore
implies Ĉk is a viable instrument for rgi . We also use Algorithm 4.1 to choose Kmiss. If
f (k) is the fraction of metabolites g ∈ M such that qg,g2 ≤ 0.05 assuming Kmiss = k, we
set Kmiss = min{k ∈ {2, . . . ,KPA} : f (k) ≥ 0.9}, where KPA is parallel analysis’ (Buja and
Eyuboglu (1992)) estimate for K under Model (4.1) with εmiss = 0. The estimate Kmiss is
typically much smaller than KPA in practice. For example, Kmiss = 10 and KPA = 20 in
our motivating data example. We show that our results are robust to the choice of Kmiss in
Section 7.

Evidently, this selection step implies ûgi is not strictly independent of rgi conditional on
ygi . However, we show in Section S8 of the Supplementary Material that this dependence
is asymptotically negligible under weak assumptions (McKennan, Ober and Nicolae (2020)).
Therefore, we assume that the indices g1, g2 are known and ûgi ⊥⊥ rgi | ygi for the remainder
of Section 4.
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4.3. IV-GMM in Step (3). Fix a g ∈ M and define

hgi(α, δ) = h
{
(ygi, rgi, ûgi), (α, δ)

} ∈ R
3, h̄g(α, δ) = n−1

n∑
i=1

hgi(α, δ).(4.2)

We let {α̂(GMM)
g , δ̂

(GMM)
g } be the two-step generalized method of moments estimator

{
α̂(GMM)

g , δ̂(GMM)
g

} = arg min
α>0,δ∈R

{
h̄g(α, δ)TW gh̄g(α, δ)

}
,(4.3)

where, for {α̂(1)
g , δ̂

(1)
g } = arg minα>0,δ∈R{h̄g(α, δ)Th̄g(α, δ)}, the weight matrix W g is

W g = W g

{
α̂(1)

g , δ̂(1)
g

} =
[
n−1

n∑
i=1

hgi

{
α̂(1), δ̂(1)}hgi

{
α̂(1), δ̂(1)}T

]−1

.(4.4)

The properties of this estimator when Ûg is observed and not estimated and the triplets
{(rgi, ygi, ûgi)}i∈[n] are independent are well understood (Hansen (1982), Wang, Shao and
Kim (2014)). We extend these results in Theorem S10.1 in the Supplementary Material
(McKennan, Ober and Nicolae (2020)) to account for the uncertainty in Ûg and prove that
under similar regularity conditions as those considered in Wang, Shao and Kim (2014), both
|α̂(GMM)

g − αg| and |δ̂(GMM)
g − δg| are OP (n−1/2) and for �g(α, δ) = ∇α,δh̄g(α, δ) ∈R

3×2,

n1/2V̂
−1/2
g

[{
α̂(GMM)

g , δ̂(GMM)
g

} − (αg, δg)
] d→ N2(0, I2),(4.5a)

V̂ g = [
�g

{
α̂(GMM)

g , δ̂(GMM)
g

}T
W g�g

{
α̂(GMM)

g , δ̂(GMM)
g

}]−1(4.5b)

as n,p → ∞. This result is analogous to Theorem 2 in Wang, Shao and Kim (2014), and we
use (4.5) to refine our estimates for αg and δg in Section 4.5.

4.4. The Sargan–Hansen J statistic in Step (4). The accuracy of downstream estimates
for βg is contingent on the missing data model being approximately correct. Therefore, we
leverage the fact that we use three moment conditions to estimate two parameters and use the
Sargan–Hansen J statistic, which is routinely used to test moment restrictions in generalized
method of moment estimators (Baum, Schaffer and Stillman (2003), Davidson and MacK-
innon (2003), Hansen (1982)), to flag metabolites whose missingness mechanisms may not
follow Model (2.2).

A consequence of (4.5) is that, under the null hypothesis H0,g that Model (2.2) is cor-
rect for metabolite g ∈ M and the assumptions necessary to prove (4.5) hold, the statis-
tic Jg = nh̄g{α̂(GMM)

g , δ̂
(GMM)
g }TW gh̄g{α̂(GMM)

g , δ̂
(GMM)
g } is asymptotically χ2

1 as n,p → ∞,
which is analogous to Lemma 4.2 in Hansen (1982). One could then use Jg to test H0,g . How-
ever, it has been repeatedly observed that using said asymptotic distribution to do inference
with Jg is anticonservative in data with moderate and even large sample sizes (Brown and
Newey (2002), Hall and Horowitz (1996), Hansen and West (2002)). To circumvent this, we
followed Brown and Newey (2002) and developed an empirical likelihood-derived bootstrap
null distribution for Jg to determine the P value for H0,g . We subsequently use Storey et al.
(2015) to estimate lf drg = P(H0,g | Jg) and flag any metabolites with an lf drg smaller than
a user-specified value, which defaults to 0.8 in our software. Section S2 in the Supplemen-
tary Material describes the details of the bootstrap procedure (McKennan, Ober and Nicolae
(2020)).
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4.5. HB-GMM in Step (5). So far we have estimated all |M| missingness mechanisms
independently of one another. While the mechanisms are almost certainly not identical, one
might expect them to be relatively similar, meaning one should be able to design a better
estimator by pooling information across metabolites. Further, constructing an informative
prior for the missingness mechanisms allows one to better explore the possible multimodal
objective function in (4.3) (Franks, Airoldi and Rubin (2016)). We therefore developed Hi-
erarchical Bayesian Generalized Method of Moments (HB-GMM), a Bayesian method to
estimate αg , δg and the weights wgi = rgi/�{αg(ygi − δg)} for each g ∈M and i ∈ [n]. The
weights play an important role in estimating C in Section 6.

Our method extends Bayesian generalized method of moments (Kim (2002), Li and Jiang
(2016), Yin (2009)) by both incorporating estimated instruments and estimating an informa-
tive prior from the data. Define D = {(ygi, rgi, ûgi)}g∈M,i∈[n]. By Bayes’ rule and assuming
{(αg, δg)}g∈M are independently drawn from some prior distribution,

pr
[{

(αg, δg)
}
g∈M | D] ∝ pr

[
D | {

(αg, δg)
}
g∈M

] ∏
g∈M

pr(αg, δg).(4.6)

However, the likelihood pr[D | {(αg, δg)}g∈M] is unknown because the distribution of ygi is
unknown. Nevertheless, we do know that, under Model (2.2) and assuming ûgi ⊥⊥ rgi | ygi

for all g ∈ M and i ∈ [n], h̄g(αg, δg) and h̄s(αs, δs) are uncorrelated for g �= s ∈M. Further,
since h̄g(αg, δg) is an average of n approximately independent random variables, h̄g(αg, δg)

has the following asymptotic distribution under the same assumptions used to prove (4.5):

n1/2{
�̂g(αg, δg)

}−1/2
h̄g(αg, δg)

d→ N3(0, I3) as n,p → ∞, g ∈ M,

�̂g(αg, δg) = n−1
n∑

i=1

{
hgi(αg, δg) − h̄g(αg, δg)

}{
hgi(αg, δg) − h̄g(αg, δg)

}T
.

(4.7)

These facts help to justify replacing the likelihood in (4.6) with the pseudolikelihood

q
[
D | {

(αg, δg)
}
g∈M

] = ∏
g∈M

N
{
h̄g(αg, δg) | 0, n−1�̂g(αg, δg)

}
,

where N (· | a,b) is the likelihood of a normal distribution with mean a and variance b. The
form that the pseudolikelihood takes is computationally convenient because it implies we can
sample from the pseudoposterior

q
[{

(αg, δg)
}
g∈M | D] ∝ ∏

g∈M

[
N

{
h̄g(αg, δg) | 0, n−1�̂g(αg, δg)

}
pr(αg, δg)

]

with Markov chain Monte Carlo using |M| parallel chains, which we use to obtain:

α̂g = E(αg | D), δ̂g = E(δg | D), g ∈M,(4.8a)

ŵgi = E(wgi | D) = rgiE
[
1/�

{
αg(ygi − δg)

} | D]
, g ∈ M; i ∈ [n],(4.8b)

v̂gi = E
(
w2

gi | D) = rgiE
[
1/�

{
αg(ygi − δg)

}2 | D]
, g ∈M; i ∈ [n].(4.8c)

This technique of replacing the likelihood with the pseudolikelihood in (4.6) is standard in
Bayesian GMM when |M| = 1 and Ûg is observed (Kim (2002), Li and Jiang (2016), Yin
(2009)).

It remains to specify the prior for (αg, δg). We assume that (log(αg), δg)
T | (μ,U) ∼

N2(μ,U) for all g ∈ M, where we log-transform αg to make it amenable to a normal prior.
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We first estimate μ as μ̂ = |M|−1 ∑
g∈M(log{α̂(GMM)

g }, δ̂(GMM)
g )T. Assuming (4.5) is ap-

proximately correct, we then use empirical Bayes and define our estimate for U , Û , as the
maximizer of the following objective over U � 0:∏

g∈M

∫
N

[(
log

{
α̂(GMM)

g

}
, δ̂(GMM)

g

)T | (ηg, δg)
T, R̂g

]
N

{
(ηg, δg)

T | μ̂,U
}
dηg dδg,

where R̂g = diag{1/α̂
(GMM)
g ,1}V̂ g diag{1/α̂

(GMM)
g ,1} for V̂ g defined in (4.5). We estimate

U using the product of marginal likelihoods because, under the assumptions used to prove
(4.5), the estimates (α̂

(GMM)
g , δ̂

(GMM)
g ) and (α̂

(GMM)
s , δ̂

(GMM)
s ) are asymptotically independent

for g �= s ∈M. See Section S10 in the Supplementary Material for more details (McKennan,
Ober and Nicolae (2020)).

5. Estimating coefficients when C is known. Here, we describe our method for esti-
mating βg and �g in Model (2.1) when C is known, which is based on inverse probability
weighting (Liang and Qin (2000)). This methodology is used in Section 6 to recover C, and is
also our default method to perform inference on the coefficients of interest because estimates
are consistent, it obviates specifying a probability model for the missing data and computa-
tion is fast enough to perform a metabolite phenome wide association study. For simplicity,
we rewrite (2.1) as

ygi = zT
i ηg + egi, egi

·∼ (
0, σ 2

g

)
, g ∈ [p]; i ∈ [n]

for the remainder of Section 5. Since estimation is trivial when there is little missing data,
our goal is to estimate ηg for all g ∈M when Z = (z1 · · ·zn)

T is observed.

5.1. Point estimates. Fix a g ∈ M, and, for all i ∈ [n], define the score function sgi(η) =
zi (ygi − zT

i η), γgi = P(rgi = 1 | Z) and the inverse probability weighted estimating equation
f g(η) = ∑n

i=1 γ̂giŵgisgi(η), where ŵgi is defined in (4.8b) and γ̂gi is an estimate of γgi . If
ŵgi = wgi and γ̂gi = γgi for all i ∈ [n], then

E
{
f g(ηg) | Z} =

n∑
i=1

γgiE
{
E(wgi | ygi)sgi(ηg) | Z} =

n∑
i=1

γgiE
{
sgi(ηg) | Z} = 0.

The above equality can be shown to hold in the more general case when γgi |= yg | Z for all
i ∈ [n], meaning the root of f g will be an accurate estimate of ηg if ŵgi is consistent for wgi

and γ̂gi is only weakly dependent on yg . Since γ̂gi will tend to be small if ŵgi is large, includ-
ing γ̂gi in f g has the effect of stabilizing potentially large weights ŵgi , thereby reducing the
variance of our downstream estimates. This method of stabilized inverse probability weight-
ing has been successfully applied to data that are missing at random (Xu et al. (2010a)), and
we estimate γgi using a logistic regression with the estimated instruments Ûg . We then define
our estimate for ηg as the root of f g ,

η̂g = (
ZTŴ gZ

)−1
ZTŴ gyg, Ŵ g = diag(ŵg1γ̂g1, . . . , ŵgnγ̂gn).(5.1)

Note sgi in f g can be redefined to be any M-estimator, like Huber’s or Tukey’s robust esti-
mators, provided E{sgi(ηg) | Z} = 0.

5.2. Quantifying uncertainty. Fix a g ∈ M. Here, we describe our estimator for V(η̂g),
which we use to both recover C in Section 6 and perform inference on ηg . Our estimator is
a novel finite sample-corrected sandwich variance estimator that also accounts for the uncer-
tainty in the estimated weights ŵgi .
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Suppose, for simplicity, that ŵgi = wgi and γ̂gi = γgi . Then,

n1/2(ηg − η̂g) = (
n−1ZTŴ gZ

)−1

(
n−1/2

n∑
i=1

γgiwgiegizi

)
.

Since {(ygi, rgi)}i∈[n] are mutually independent and E(γgiwgiegi | Z) = 0,

nV(η̂g | Z) ≈ (
n−1ZTŴ gZ

)−1

(
n−1

n∑
i=1

γ 2
giw

2
gie

2
giziz

T
i

)(
n−1ZTŴ gZ

)−1
.

Therefore, we need only to approximate the middle term to estimate V(η̂g | Z). Simply plug-
ging in ŵ2

gi for w2
gi will tend to underestimate V(η̂g | Z), since the uncertainty in ŵgi in-

creases as wgi increases. Further, plugging in êgi = ygi − zT
i η̂g for egi will also underes-

timate V(η̂g | Z), since this ignores the uncertainty in η̂g . We circumvent the former by
replacing w2

gi with v̂gi , defined in (4.8c), where v̂gi ≥ ŵ2
gi such that v̂gi = ŵ2

gi if and only if
V(wgi | D) = 0. That is, v̂gi helps account for the uncertainty in our estimate for wgi . Lastly,
we show how we estimate e2

gi in Section S4 of the Supplementary Material (McKennan, Ober
and Nicolae (2020)), which leads to the following estimate for V(η̂g | Z):

V̂(η̂g | Z) = (
ZTŴ gZ

)−1

{
n∑

i=1

(1 − ĥgi)
−2γ̂ 2

gi v̂gi ê
2
giziz

T
i

}(
ZTŴ gZ

)−1
.(5.2)

The term (1 − ĥgi)
−2 is a finite sample correction, where ĥgi is the ith leverage score of

Ŵ
1/2
g Z for i ∈ [n]. This resembles the (1 − ĥgi)

−1 inflation term commonly used to correct
the sandwich variance estimator (Wang et al. (2016)). The difference arises because the resid-

uals eg1, . . . , egn are dependent on the design matrix Ŵ
1/2
g Z when data are MNAR. As far

as we are aware, this is the first such finite sample variance correction for inverse probability
weighted estimators derived from data that are MNAR.

6. Recovering C when data are MNAR. In this section we return to using the notation
of Model (2.1) and describe our estimator for C. Let X = (XintXnuis), where Xint contains
the covariates of interest, like disease status, and Xnuis contains observed nuisance covari-
ates, like the intercept and technical factors. We assume, for simplicity of presentation, that
X = Xint and detail the simple extension when X = (XintXnuis) in Section S3 in the Supple-
mentary Material (McKennan, Ober and Nicolae (2020)).

Once we obtain Ĉ, our estimator for C, our estimate for ηg = (βT
g,�

T
g)

T is

η̂g =
{(

ZTRgZ
)−1

ZTRgyg if g ∈ S,

(5.1) if g ∈M,
(6.1a)

V̂(η̂g) =
{{

Tr(Rg) − d − K
}−1∥∥Rg(yg − Zη̂g)

∥∥2
2

(
ZTRgZ

)−1 if g ∈ S,

(5.2) if g ∈ M,
(6.1b)

where Z = (XĈ) and Rg = diag(rg1, . . . , rgn). Note that when g ∈ S , (6.1) gives the OLS
estimator obtained when missing data are treated as MCAR. Since the estimators for βg and

V(β̂g) in (6.1) depend solely on im(Ĉ), Ĉ need only satisfy im(Ĉ) ≈ im(C), which is quite
auspicious given that C itself is not identifiable in Model (2.1). If B = (β1 · · ·βp)T = 0 and
L = (�1 · · ·�p)T ∈ R

p×K is full rank, then im(C) = im(CLT) = im{E(Y T | C)} is identifiable
and, therefore, estimable. When B �= 0, B being adequately sparse is a sufficient condition
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to ensure im(C) is identifiable, since the aforementioned argument is applicable to the sub-
matrix of Y containing only the rows g with βg = 0 (McKennan and Nicolae (2018)). While
there are other, more general, assumptions one may place on B to ensure im (C) is identifi-
able, the sparsity condition is satisfactory because B is typically sparse in practice (Koeman
et al. (2019)). Therefore, we assume that im(C) is identifiable and estimable throughout this
section.

Let yg = (ygi)i∈[n] and eg = (egi)i∈[n] for each g ∈ [p]. As discussed in Section 3.2, we
separately estimate P ⊥

X C and PXC = X{(XTX)−1XTC} to ensure we accurately identify the
components of the variation in yg that are attributable to C and X. To do so, we see that
Model (2.1) in vector form can be expressed as

yg = Xβ̃g + C2�g + eg, β̃g = βg + ��g, eg
·∼ (

0, σ 2
g In

)
, g ∈ [p],(6.2a)

C2 = P ⊥
X C, � = (

XTX
)−1

XTC,(6.2b)

where X� = PXC and C = C2 + X�. We estimate C2 and � in Sections 6.1 and 6.2 below
and define

Ĉ = Ĉ2 + X�̂.(6.3)

6.1. Estimating latent factors that are orthogonal to the design. We first describe our
estimators for β̃g , �g and C2, which we also use in Section 6.2 to estimate �. Let M1 = {g ∈
M : qg1 ≤ 0.05, lf drg ≥ 0.8} be the set of metabolites with missing data, at least one viable
instrument and whose missingness mechanisms appear to follow (2.2), where qg1 and lf drg

were defined in Sections 4.2 and 4.4. We estimate β̃g,�g and C2 by solving the following
optimization problem:

{{ ˆ̃βg, �̂g}g∈S∪M1, Ĉ2
} = arg min

β̃
∗
g∈Rd ,�∗

g∈RK

C∗
2∈Rn×K,XTC∗

2=0

{ ∑
g∈S∪M1

mg

(
β̃

∗
g,�

∗
g,C

∗
2
)}

,

mg

(
β̃

∗
g,�

∗
g,C

∗
2
) =

⎧⎨
⎩

∥∥Rg

{
yg − (

Xβ̃
∗
g + C∗

2�
∗
g

)}∥∥2
2 if g ∈ S,∥∥Ŵ 1/2

g

{
yg − (

Xβ̃
∗
g + C∗

2�
∗
g

)}∥∥2
2 if g ∈ M1,

(6.4)

where the “*” distinguishes β̃
∗
g,�

∗
g and C∗

2 from the true parameters β̃g,�g and C2. If each ygi

is observed, minimizing the above optimization problem is equivalent to performing principal
components analysis on YP ⊥

X , where im(Ĉ2) is the span of the first K right singular vectors
of YP ⊥

X and is known to accurately estimate im(C2) (McKennan and Nicolae (2018)). When
there are missing data, assume for simplicity of explanation that metabolites g ∈ S have no
missing data and γ̂gi = 1 for all g ∈ M1 and i ∈ [n]. If we ignore the uncertainty in Ŵ g ,
Model (2.2) implies the expected loss, conditional on the observed and unobserved data, is

E
{
mg

(
β̃

∗
g,�

∗
g,C

∗
2
) | yg,X,C

} = ∥∥yg − Xβ̃
∗
g − C∗

2�
∗
g

∥∥2
2, g ∈ S ∪M1.

That is, the loss in (6.4) is expected to behave like the loss when each ygi is observed, which
is known to accurately estimate im(Ĉ2). Further, since X is observed and XTC∗

2 = 0, we can
disentangle Xβ̃g from the mean Xβ̃g + C2�g , which helps to identify β̃g . Like we did in

Section 5.1, we include γ̂gi in Ŵ g to stabilize large weights, since γ̂gi is likely to be small if
ŵgi is large. We provide additional intuition as to why (6.4) is expected to accurately recover
im(C2) and {β̃g}g∈S∪M1 in Section S5 of the Supplementary Material (McKennan, Ober and
Nicolae (2020)).
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6.2. Estimating latent factors in the image of the design. We now describe how we es-
timate �. To simplify the notation, we assume that S ∪ M1 = [p] for the remainder of the
section, but note that, like C2, � is estimated using only metabolites g ∈ S ∪ M1. Define

L̂ = (�̂1 · · · �̂p)T, B = (β1 · · ·βp)T and ˆ̃B = (
ˆ̃β1 · · · ˆ̃βp)T. Since (

ˆ̃βT
g, �̂

T

g)
T can be expressed

as (6.1a) using the design matrix Z = (XĈ2), (6.2a) suggests an approximate model for ˆ̃B∗j

is

ˆ̃B∗j
·∼ (B∗j + L̂�j∗, τ̂ j ), τ̂ j = diag(τ̂1,j , . . . , τ̂p,j ),(6.5)

where τ̂g,j is the j th diagonal element of V̂(η̂g) defined in (6.1b) for Z = (XĈ2). If B∗j is

sparse, (6.5) suggests we can regress ˆ̃B∗j onto L̂ for each j = 1, . . . , d to estimate �. This
is detailed in Algorithm 6.1 below, which extends existing methodology in Gagnon-Bartsch,
Jacob and Speed (2013), McKennan and Nicolae (2019), Wang et al. (2017) to data with
nonignorable missing observations.

ALGORITHM 6.1 (Estimating �). Let εq ∈ [0,1] and R ≥ 1 be an integer:

(0) For j ∈ [d], let V
(0)
j = τ̂−1

j , �̂
(0)

j = (L̂
T
V

(0)
j L̂)−1L̂

T
V

(0)
j

ˆ̃B∗j and �̂
(0) = (�̂

(0)

1 · · ·
�̂

(0)

d )T. Define Ĉ
(0) = X�̂

(0) + Ĉ2.

(1) Let Ĉ
(r)

be given. Regress yg onto (XĈ
(r)

) using (6.1) with Z = (XĈ
(r)

), and define
zg,j to be the z-score corresponding to the j th coefficient from the regression. Let pg,j =
P{|zg,j | ≥ |N1(0,1)|} be the corresponding P value.

(2) For all j ∈ [d], obtain the q-values {qg,j }g∈[p] using the P values {pg,j }g∈[p]. Repeat

Step (0) with V
(0)
j replaced with V

(r+1)
j = diag{τ̂−1

1,j I (q1,j > εq), . . . , τ̂
−1
p,j I (qp,j > εq)} to

obtain �̂
(r+1)

and Ĉ
(r+1)

. Update r ← r + 1.

(3) Repeat Steps (1) and (2) for r = 0,1, . . . ,R − 1, and return �̂ = �̂
(R)

.

Since qg,j is the smallest false discovery rate necessary to reject the null hypothesis

H
(g,j)
0 : Bgj = βgj

= 0, removing metabolites with small q-values in Step (2) mitigates the
impact of outliers due to B∗j in the regression estimate for � when B is only approximately
sparse. Our software’s default is εq = 0.1 and R = 3.

7. A simulation study.

7.1. Simulation setup. Here, we analyze simulated metabolomic data to compare the per-
formance of our method with other existing methods. We simulated the log-intensities of
p = 1200 metabolites in n = 600 individuals, 300 of which were cases and the remaining 300
were controls. The observed design matrix was X = (Xint1n), where Xint = (1T

n/2,0T
n/2)

T ∈
R

n. The parameters p and n were chosen to match those from our real data example in Sec-
tion 8, and we include additional results when n = 100 and n = 300 in Section S6.4 of the
Supplementary Material (McKennan, Ober and Nicolae (2020)). We set K = 10, and, for
some constant a and appropriate �(x), simulated data as

log(αg) ∼ N1
(
μα,0.42)

, δg ∼ N1
(
16,1.22)

, g ∈ [p],(7.1a)

C = (c1 · · · cn)
T ∼ MNn×K

(
(aXint0n · · ·0n), In, IK

)
,(7.1b)

�gk
∼ πkδ0 + (1 − πk)N1

(
0, τ 2

k

)
, g ∈ [p];k ∈ [K],(7.1c)

μg ∼ N1
(
18,52)

, σ 2
g ∼ Gamma

(
0.2−2,0.2−2)

, g ∈ [p],(7.1d)



METABMISS 801

TABLE 1
The πk and τk values used to simulate �1, . . . ,�p (k = 1, . . . ,10)

Factor number (k) 1 2 3 4 5 6 7 8 9 10

πk 0 0 0.76 0.56 0.48 0.32 0.28 0.20 0.20 0.20
τk 0.78 0.57 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

βg ∼ 0.8δ0 + 0.2N1
(
0,0.42)

, g ∈ [p],(7.1e)

ygi ∼ N1
(
μg + Xinti βg + cT

i �g, σ
2
g

)
, g ∈ [p]; i ∈ [n],(7.1f)

rgi ∼ Bernoulli
[
�

{
αg(ygi − δg)

}]
, g ∈ [p]; i ∈ [n],(7.1g)

where δ0 is the point mass at 0 and μα in (7.1a) was set such that if Z has cumulative
distribution function �{exp(μα)x}, V(Z) = 1. The constant a in (7.1b) was chosen so that C
explained 7.5% of the variance in Xint on average across all simulations, and Table 1 contains
the values of πk and τ 2

k . These were chosen so that the nonzero eigenvalues λ1, . . . , λK of
I = (n− 1)−1P ⊥

1n
C(p−1 ∑p

g=1 σ−2
g �g�

T
g)C

TP ⊥
1n

were 0.61, 0.33, 0.19, 0.14, 0.12, 0.08, 0.07,
0.05, 0.05 and 0.05 on average across all simulated datasets, since these were the first 10
eigenvalues of the estimated I in our data example in Section 8. Similarly, the prior variances
for the missingness mechanism parameters in (7.1a), as well as the mean and variance for the
global mean μg in (7.1d), were set to their estimated equivalents from our data example in
Section 8. Since we typically do not know the exact functional form of �(x) in practice,
we set �(x) = exp(x)/{1 + exp(x)} and analyzed each simulated dataset assuming �(x) =
F4(x). The distribution of missing data is given in Table 2, which closely matched that in our
real data example.

We simulated 60 datasets, and in each simulation, removed all metabolites that were miss-
ing in more than 50% of the samples, since we find that these metabolites tend to have large
J statistics in real data. We used Algorithm 3.1 with εmiss = 0.05 and Kmiss = 5 to estimate
the metabolite-dependent missingness mechanism parameters αg and δg and, subsequently,
estimated C as (6.3) with εq = 0.1, assuming K = 10 was known. We lastly estimated βg and
said estimator’s variance using (6.1), and formed 95% confidence intervals and computed P

values assuming β̂g ∼ N1(βg, V̂(β̂g)). We refer to this procedure as “MetabMiss.”
Similar to our real data example, Kmiss was such that qg,g2 , defined in Algorithm 4.1,

was less than 0.05 in at least 90% of all metabolites g ∈ M in each simulated dataset. Our
results were identical when we let Kmiss be as small as 3 and as large as 10. The fact that
K was assumed to be known when estimating C was inconsequential, since the method of
Leek et al. (2017) applied to metabolites with only complete data consistently estimated
K = 10. We demonstrate the fidelity of MetabMiss’ estimates for β1, . . . , βp in Section 7.2.
We also illustrate the accuracy of Algorithm 3.1’s estimates for αg and δg , the uniformity of
the bootstrapped Sargan–Hansen J statistic P values, as well include additional simulation
results when metabolites grouped in pathways are correlated in Sections S6.1–S6.3 of the
Supplementary Material (McKennan, Ober and Nicolae (2020)).

TABLE 2
The expected number of metabolites in each missing data bin for data simulated according to (7.1) with

�(x) = exp(x)/{1 + exp(x)}, where f is the frequency of missing data

f = 0 0 < f ≤ 0.05 0.05 < f ≤ 0.5 0.5 < f

251.6 233.6 298.3 416.4
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7.2. Simulation results. Given the paucity of methods available to analyze metabolomics
data, we could only compare our method to those that account for nonrandom missing data
or C, but not both. It is not interesting to compare MetabMiss to methods that only account
for the former, like those proposed in Chen et al. (2017), O’Brien et al. (2018), Wang et al.
(2019), because ignoring C can dramatically inflate type I and reduce type II error even when
there are no missing data (McKennan and Nicolae (2019)). Instead, we compared MetabMiss
to existing methods that have been used to recover C in metabolomic data but do not account
for the nonrandom missing data, which included IRW-SVA (Leek and Storey (2008)), dSVA
(Lee et al. (2017)), RUV-2 (Gagnon-Bartsch and Speed (2012)), RUV-4 (Gagnon-Bartsch,
Jacob and Speed (2013)), and when C is assumed to be known. We do not report results from
the method of Wang et al. (2017), as it performed nearly identically to dSVA in all simulation
scenarios. Since none of the of the aforementioned methods can accommodate missing data,
we estimated C with each using only metabolites with complete observations and computed
confidence intervals and P values using OLS with the estimated design matrix (XĈ), as-
suming missing data were MCAR. Seeing that RUV-2 and RUV-4 require prior knowledge
of control metabolites with βg = 0, we selected 20 metabolites uniformly at random from
the set of all metabolites g with no missing data and βg = 0 to act as control metabolites
when applying RUV-2 and RUV-4. This, in relative terms, is substantially more than the 30
control genes used when analyzing the simulated expression of p = 5000 genomic units in
Wang et al. (2017), which outlines the theoretical properties of RUV-4. We remark that we
could not analyze these simulated data with the methods proposed in De Livera et al. (2012)
or Salerno Stephen et al. (2017) because both methods rely on a random effects model whose
estimators are not amenable to any missing data.

We first evaluated each method’s ability to identify metabolites with βg �= 0 while control-
ling the false discovery rate (FDR) at a nominal level. The results are given in Figure 2, where
the only methods to suitably control the FDR were MetabMiss and when C was known.
However, as seen in Figure S5 in Section S6.4 in the Supplementary Material (McKennan,
Ober and Nicolae (2020)), the latter could not control the FDR in simulations with n = 300
or n = 100, indicating that accounting for both C and nonrandom missing data is critical
for ensuring reliable FDR control across experimental settings. The fact that MetabMiss is
slightly underpowered compared to the other methods that estimate C is to be expected, as
anticonservative inference is typically more powerful. We also evaluated the confidence in-
terval coverage for βg for each method in Figure 3, which illustrates both the consequences
of performing inference on estimators that do not properly account for the missing data, as
well as the fidelity of our finite sample-corrected estimator for the variance defined in (5.2).

8. Data analysis. We used blood plasma metabolomic data measured in n = 533 6-year-
old Danish children enrolled in the Copenhagen Prospective Studies of Asthma in Children
cohort (Bisgaard et al. (2013)) to demonstrate the importance of accounting for both miss-
ing data and unobserved covariates in untargeted metabolomic data. Table 3 provides an
overview of the extent of the missing data in each of the p = 1138 measured metabolites. We
excluded metabolites that were missing in more than 50% of the samples and set εmiss = 0.05
and Kmiss = KPA/2 = 10 when estimating the missingness mechanisms with Algorithm 3.1,
where KPA was parallel analysis’ (Buja and Eyuboglu (1992)) estimates for K . Kmiss was
chosen using the procedure outlined in Section 4.2.

Once we estimated the missingness mechanisms, we could easily assess the relationships
between the quantified metabolome and the many recorded phenotypes using MetabMiss. We
were particularly interested in phenotypes related to asthma, and present the results for spe-
cific airway resistance (sRAW), which measures airway resistance to flow (Kaminsky (2012)).
Using the design matrix X = (Xint1n), where Xint ∈ R

n was each individual’s measured
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FIG. 2. From left to right: The false discovery proportion, FDP (top), and true recovery proportion, TRP (bot-
tom), for metabolites with q-values ≤ 0.05, 0.1, 0.15 and 0.2, determined using Storey et al. (2015). The TRP is
the fraction of metabolites with βg �= 0 identified at a given q-value cutoff.

FIG. 3. The fraction of effects of interest {βg}g∈M in all 60 simulated datasets that lie in their respective 95%

confidence intervals β̂g ± 1.96{V̂(β̂g)}1/2, stratified by |βg |. The coverage when C was ignored was uniformly
less than IRW-SVA’s.



804 C. MCKENNAN, C. OBER AND D. NICOLAE

TABLE 3
The number of metabolites in each missing data bin in the blood plasma metabolomic data, where f is as

defined in Table 2

f = 0 0 < f ≤ 0.05 0.05 < f ≤ 0.5 0.5 < f

400 256 300 182

sRAW value, we estimated K with the method of Leek et al. (2017) using the metabolites
with complete data and regressed the quantified metabolites onto X using MetabMiss. We
present the Q–Q plots of P values in Figure 4.

Figure 4 shows that MetabMiss not only corrects the minor P value inflation, but also
empowers the analysis by reducing the residual variance. While the analysis with dSVA only
identified a single metabolite, MetabMiss identified six additional metabolites at a a q-value
threshold of 0.2: two sphingolipids, a benzoate derivative, pyruvate and three derivatives of
piperine, which is an alkaloid found in black pepper. A reduction in sphingolipid synthesis
was associated with increased airway hyperractivity in children (Ono, Worgall and Worgall
(2015)), which is congruent with the estimated sign of the sRAW effect on the intensity of
the two sphingolipid metabolites. Benzoate preservatives have been linked to lung function-
related phenotypes (Balatsinou et al. (2004), Pacor et al. (2004)), and pyruvate and lactate
(q-value = 0.23) levels have previously been associated with asthma (Ostroukhova et al.
(2012), Xu et al. (2010b)).

The three derivatives of piperine were particularly interesting in the context of our method-
ology because all three had between 12% and 48% missing data with J-test P values between
0.77 and 0.99 (see Section 4.4), suggesting that Model (2.2) is a reasonable model for their
missingness mechanisms. We found that higher concentrations of these three metabolites
were associated with increased airway resistance. This corroborates the known biological
impact of piperine, as it has been shown that piperine has a strong affinity for and activates
TRPV1 cation channels on the ends of somatic and visceral parasympathetic nervous sys-
tem sensory fibers (Premkumar (2014)). This triggers mast cells, bronchial epithelial cells
and immune cells to release proinflammatory cytokines (Frias and Merighi (2016)), which
ultimately causes bronchoconstriction (Choi et al. (2018), Jia and Lee (2007)).

FIG. 4. A Q–Q plot of P values for the null hypotheses H0,g : βg = 0 when C is estimated with dSVA using
metabolites with complete data and the missing data are treated as MCAR (left) and using MetabMiss (right). The
x-axis is the expected ordered P value under the null hypothesis, assuming all tests are independent. The three
quantified derivatives of piperine are each labeled with a violet “×.”
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An interesting feature of Figure 4 is that the ordering of the P values changes when one
accounts for the missing data. In fact, we would not have identified the association between
sRAW and piperine concentration if one used existing latent factor correction methods. This is,
in part, because metabolites with missing data had a slightly different latent factor signature
than those with complete data, which is why MetabMiss is able to better estimate C than
existing methods.

9. Discussion. We have presented, to the best of our knowledge, the first method
to simultaneously account for latent factors and nonignorable missing data in untargeted
metabolomic data. Our method simplifies this complex problem by modularizing the esti-
mation of each metabolite-dependent missingness mechanism and latent factors, and does so
without assuming a likelihood for the missing data. This modularization also makes mod-
ern metabolomic data analysis tractable, since our estimators for the missingness mechanism
only depend on Y and are invariant to the choice of model matrix X.

An important assumption we made was that the missingness mechanism was only a func-
tion of ygi and did not further depend on the sample i, which as described in Section 2.2,
reflects the nature of the missing data. However, there might be scenarios where Model (2.2)
is incorrect. For example, the missingness mechanism might depend on i in experiments
where there is a significant amount of time between the analysis of batches of samples or in
experiments whose samples are run on different mass spectrometers. These considerations
may inspire new and interesting research.
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SUPPLEMENTARY MATERIAL

Supplementary material for “Estimation and inference in metabolomics with non-
random missing data and latent factors” (DOI: 10.1214/20-AOAS1328SUPPA; .pdf). This
supplemental file contains the details of our bootstrap procedure to estimate J statistic P val-
ues from Section 4.4, an extension of Section 6 when X contains nuisance covariates, addi-
tional intuition regarding the estimation of C2 from Section 6.1, additional simulation results
and a theoretical justification for Algorithms 3.1 and 4.1.

MetabMiss (DOI: 10.1214/20-AOAS1328SUPPB; .zip). This supplemental file contains
the R package implementing our method, as well as instructions and code to reproduce the
simulations from Section 7.
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