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Statistical inference of evolutionary parameters from molecular sequence
data relies on coalescent models to account for the shared genealogical ances-
try of the samples. However, inferential algorithms do not scale to available
data sets. A strategy to improve computational efficiency is to rely on simpler
coalescent and mutation models, resulting in smaller hidden state spaces. An
estimate of the cardinality of the state space of genealogical trees at differ-
ent resolutions is essential to decide the best modeling strategy for a given
dataset. To our knowledge, there is neither an exact nor approximate method
to determine these cardinalities. We propose a sequential importance sam-
pling algorithm to estimate the cardinality of the sample space of genealog-
ical trees under different coalescent resolutions. Our sampling scheme pro-
ceeds sequentially across the set of combinatorial constraints imposed by the
data which, in this work, are completely linked sequences of DNA at a non-
recombining segment. We analyze the cardinality of different genealogical
tree spaces on simulations to study the settings that favor coarser resolutions.
We apply our method to estimate the cardinality of genealogical tree spaces
from mtDNA data from the 1000 genomes and a sample from a Melanesian
population at the β-globin locus.

1. Introduction. Statistical inference of evolutionary parameters, such as effective pop-
ulation size N(t), from molecular sequence data is an important task in population genetics,
conservation biology, anthropology and public health (Liu et al. (2013), Nordborg (1998),
Rosenberg and Nordborg (2002)). Inference of such parameters relies on the coalescent pro-
cess that explicitly models the shared ancestry of a sample (genealogy) of n individuals from a
population. More specifically, in the standard neutral coalescent framework observed molec-
ular data Y at a nonrecombining segment from a sample of n individuals within a population
is the result of a point process of mutations with rate μ superimposed on the genealogy g of
the sample. The genealogy itself is not directly observed, but it is assumed to be a realization
of a stochastic ancestral process (coalescent process) that depends on N(t). Figure 1 shows a
realization of the standard coalescent (genealogy) and mutations.

Both Bayesian and frequentist methods rely on the marginal likelihood calculated by inte-
grating over the latent space of genealogies, that is,

(1.1) P
(
Y|N(t),μ

) =
∫

g∈G×Rn−1
P(Y | g,μ)P

(
g | N(t)

)
dg.

Integration in the previous equation involves the sum over all possible tree topologies and n−
1 integrals over coalescent times t ∈Rn−1 (bifurcating times). The integral in (1.1) is usually
approximated via Monte Carlo (MC) or Markov chain Monte Carlo (MCMC). However, the
cardinality of the hidden state space of tree topologies |G| grows superexponentially with the
number of samples n, making integration over the space of genealogies already challenging
for small n.
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FIG. 1. Coalescence and mutation. A genealogy of six individuals at a locus of 100 base pairs is depicted as
a bifurcating tree. Four mutations (at different sites) are superimposed along the branches of the tree giving rise
to the six sequences shown at the tips of the tree. The 96 sites (base pairs) that do not mutate are represented by
dots, and only the nucleotides at the polymorphic sites are shown.

In order to gain computational tractability, several methods have been proposed to infer
N(t) from summary statistics, such as the site frequency spectra (Terhorst, Kamm and Song
(2017)) from an estimated genealogy (Palacios and Minin (2013), Gattepaille, Günther and
Jakobsson (2016)) or from a small number of samples (Drummond et al. (2012)). Gao and
Keinan (2016) present an extensive list of implemented methods.

Alternative approaches that rely on lower resolution coalescent models have been recently
proposed (Sainudiin, Stadler and Véber (2015), Sainudiin and Véber (2018), Palacios et al.
(2019+)). The appealing advantage of these approaches is the a priori drastic reduction in the
cardinality of the space of tree topologies for a fixed n. However, conditionally on a given
dataset and the popular infinite sites mutation model (Watterson (1975)), the true reduction
in cardinality, that is, the number of tree topologies for which P(Y | g,μ) > 0 (compatible)
is known neither analytically nor approximately.

In this work we propose a set of algorithms to approximate the cardinality of different tree
topology spaces modeled at different coalescent resolutions, the so-called Kingman–Tajima
resolutions (Sainudiin, Stadler and Véber (2015)). Reliable estimation of the cardinality of
the coalescent hidden state space should provide valuable guidance to statisticians in design-
ing methods employing these different resolutions. State-space count also offers an important
auxiliary tool for practitioners: first, it can aid tuning parameters of the MCMC chains, for
example, length of the chain; second, and closely related, it is informative of the compu-
tational feasibility of coalescent based inference for a given dataset, for example, we will
quantify how it is not solely sample size that drives computational feasibility, but for fixed n,
the state space size and, consequently, the computational burden, varies largely as a function
of the data at hand; lastly, it may offer a convergence diagnostic criteria for sampling meth-
ods, for example, what proportion of the state space has been explored in the approximate
posterior distribution. In addition, the cardinality of the topological tree space is already an
input of some inferential algorithms beyond MCMC, such as the combinatorial sequential
Monte Carlo (Wang, Bouchard-Côté and Doucet (2015)).

Counting genealogical trees is a very active area of research in biology and mathematics
starting from Cayley (1856); see Steel (2016) for a review. To our knowledge, the large body
of work in this area has focused on exact combinatorial results or recursive algorithms to
explore a constrained space. In this work the combinatorial question of counting the number
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of compatible tree topologies with the data is treated as a statistical problem—estimation of
the normalizing constant of a uniform discrete distribution over the space of compatible tree
topologies (Jerrum, Valiant and Vazirani (1986)). In this work we estimate the normalizing
constant by sampling compatible trees.

Lacking a trivial uniform sampling algorithm in this context, there are two classes of meth-
ods to estimate the cardinality of discrete structures subject to constraints, MCMC and se-
quential importance sampling (SIS). There is a large literature documenting both applications
to challenging combinatorial problems and good empirical performances of both MCMC
methods (Blanchet and Rudoy (2009), Jerrum and Sinclair (1996), Sinclair (2012)) and SIS
methods (Blitzstein and Diaconis (2010), Chen and Chen (2018), Chen et al. (2005), Diaconis
(2018), Knuth (1976)). However, there is not a prevailing consensus that one method outper-
forms the other, even within the same application. Moreover, we are not aware of the use of
these methods in the context of coalescent models.

Our estimation method is an instance of SIS. More specifically, our algorithm sequentially
samples topologies g compatible with the data with a tractable sampling probability q(g).
The SIS estimation of the cardinality is computed by a Monte Carlo approximation of the
following expectation:

(1.2) Eq

[
1

q(g)

]
= ∑

g∈GC

1

q(g)
q(g) = |GC |,

where GC is the space of compatible tree topologies. The main contribution of this work is
a set of algorithms that sample only compatible tree topologies under different coalescent
models and, consequently, correspond to different proposals q . Whereas the focus of this
work is the estimation of state-space cardinalities, it is easy to see that the same procedure
can be applied to enumerate tree topologies with certain features of interest. For example, the
number of balanced trees and trees with certain shapes are indicatives of population structure
and phylogenetic diversity (Ferretti et al. (2017), Maliet, Gascuel and Lambert (2018)); the
number of cherries and pitchforks are indicatives of neutrality (Disanto and Wiehe (2013),
Griffiths (1987)). Although we do not explore this research direction in this paper, our al-
gorithms offer a building block to study how a neutral coalescent model fits the data set at
hand.

The rest of the paper proceeds as follows. Section 2 reviews the Kingman–Tajima coa-
lescent and the perfect phylogeny representation of molecular sequence data. In Section 3
we present the sampling algorithms. In Section 4 we analyze the cardinality of genealogi-
cal spaces under different coalescent resolutions from simulated data, and in Section 5 we
present two case studies, one case study from simulated data and one case study of a sam-
ple of human mtDNA from the 1000 genomes and other human DNA datasets. Section 6
concludes.

2. Preliminaries.

2.1. Kingman–Tajima coalescent. Kingman’s coalescent is a continuous-time Markov
chain with state space the set of partitions of the label set [n] = {1, . . . , n} of the n individuals
in a sample (Kingman (1982)). The process starts at {{1}, . . . , {n}}; it then jumps when two of
the n individuals coalesce (represented as the merger of two branches in a single internal node
in the genealogy). The state of the process after the first transition is the partition of [n] into
n− 1 sets, one set with the labels of the two individuals that coalesce and n− 1 singleton sets
with the labels of the remaining individuals. The process ends when all individuals coalesce,
that is, at state {1, . . . , n} when there is a single set (at the root of the genealogy when all
individuals have a common ancestor).
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FIG. 2. Coalescent tree topologies. (a) A complete realization from Kingman’s jump chain and (b) its corre-
sponding bijection, a ranked labeled tree topology. (c) A complete realization from Tajima’s jump chain and
(d) its corresponding bijection, a ranked tree shape.

A complete realization of Kingman’s coalescent process is commonly represented as a
timed bifurcating tree (genealogy) denoted by gK = {gK, t}. In this work we concern our-
selves with the tree topology only, that is, a complete realization of the embedded jump chain
of the process gK = {ci}i=n:1, where ci is the state of the process when there are i branches.
A genealogical representation of gK is given in Figure 2(b) and the corresponding chain in
Figure 2(a). Superindex K in gK serves to distinguish a Kingman’s tree topology to any other
type of tree topology. The transition probability of the jump chain is

(2.1) P(ci−1 | ci) =

⎧⎪⎪⎨
⎪⎪⎩

(
i

2

)−1

if ci−1 ≺ ci,

0 otherwise,

where ci−1 ≺ ci means that ci−1 can be obtained from joining two elements of ci . It follows
from (2.1) that P(gK) = 2n−1/[n!(n − 1)!], that is, the discrete uniform over all possible
chain trajectories. We will use GK

n to denote the space of such Kingman’s topologies.
Tajima’s coalescent is a continuous-time Markov chain whose complete realization is also

in bijection with a timed bifurcating tree. Its embedded jump chain {(αi, βi)}i=n:1 keeps
track of the number of singletons αi and the set of extant vintage labels βi when there are i

branches (Sainudiin, Stadler and Véber (2015), Tajima (1983)). We refer to singleton branch
as a branch in the tree that subtends a leaf and a vintage as the internal branch that subtends
the subtree labeled by the ranking at which the subtree was created in the jump chain. Since
singletons’ labels are ignored, there are up to three types transitions: two singletons merge,
one singleton and a vintage merge, or two vintages merge. Formally, given a current state
(αj , βj ), when there are j = αj + |βj | branches in the genealogy, the chain transitions to
αj−1 = αj − 2 and βj−1 = βj ∪ {j} if two singletons create a new vintage node with label
{j}; the chain transitions to αj−1 = αj − 1 and βj−1 = βj \ {i} ∪ {j} if one singleton and
vintage branch with label {i} merge to create a new vintage node with label {j}, and the chain
transitions to αj−1 = αj and βj−1 = βj \ {i, k} ∪ {j} if vintages {i} and {k} merge to create
a new vintage with label {j}. The process starts at state αn = n and βn = ∅ (at the tips of the
tree). The chain then jumps to αn−1 = n−2 and βn−1 = {1} (with probability one since this is
the only possible transition at this step), and the vintage {1} is created. The process ends at the
root when there is a single vintage, that is, α1 = 0, and β1 = {n − 1}. A complete realization
of Tajima’s coalescent continuous process can be represented as a genealogy gT = {gT , t}.
A complete realization of the jump chain of the process is denoted by gT = {(αi, βi)}i=n:1
(Figure 2(c)). The jump chain has the following transition probabilities:

(2.2) P
[
(αi−1, βi−1)|(αi, βi)

] =

⎧⎪⎪⎨
⎪⎪⎩

( αi

αi−αi−1

)
(αi+|βi |

2

) if (αi−1, βi−1) ≺ (αi, βi),

0 otherwise.
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FIG. 3. Tree topologies: The (a) ranked labeled tree topology (gK , Kingman), (b) labeled (unranked) tree topol-
ogy (gLT), (c) ranked tree shape (gT , Tajima) and (d) tree shape (gTS).

Given (2.2), one can compute the probability of a Tajima’s tree topology gT as P(gT ) =
2n−c(g)−1/(n − 1)!, where c(g) is the number of coalescent events joining two singletons.
We will use GT

n to denote the space of such Tajima’s topologies.
While Kingman’s coalescent keeps track of who is related to whom, Tajima’s coalescent

describes the evolutionary relationships of a sample of n individuals by keeping track of
the number of singletons and the vintage labels of extant “families”. We note that Tajima’s
coalescent has the same number of transitions and wait time distribution as Kingman’s co-
alescent. Tajima’s coalescent is a lower-resolution coalescent process since it takes values
in a smaller state space than Kingman’s. Sainudiin, Stadler and Véber (2015) formalize this
notion and describe in detail other coalescent resolutions.

The corresponding tree topology under Kingman coalescent gK is a ranked labeled tree,
and the corresponding tree topology under Tajima coalescent gT is a ranked tree shape (Fig-
ure 2). The formal definitions are as follows:

DEFINITION 1. A ranked labeled tree is a rooted binary tree with unique labels at the
tips and a total ordering (ranking) for the internal nodes.

DEFINITION 2. A ranked tree shape is a rooted binary unlabeled tree with a total order-
ing (ranking) for the internal nodes.

Although our main objective is to analyze Kingman and Tajima tree topologies, we extend
our analysis to the corresponding unranked tree topologies, unranked labeled tree and tree
shapes. Figure 3 shows the four tree topologies analyzed in this manuscript.

There are explicit or recursive formulas to compute the number of topologies with n leaves.
The number of ranked labeled trees is |GK

n | = n!(n − 1)!/2n−1; the number of unranked la-
beled trees (binary phylogenetic trees) is |GLT

n | = (2n − 3)!! (Steel (2016)); the number of
ranked tree shapes |GT

n | is the nth term of the Euler zig-zag sequence (alternating permuta-
tions, OEIS: A000111) (Disanto and Wiehe (2013)), and the number of tree shapes is the nth
Wedderburn–Etherington number (OEIS: 01190) (Steel (2016)).

For n > 3, it holds that |GTS
n | < |GLT

n | and |GT
n | < |GK

n |, that is, the unlabeled tree topolo-
gies have smaller cardinalities that the labeled counterparts. For example, for n = 5, there
are 180 ranked labeled trees and five unlabeled ranked trees. Similarly, 105 labeled trees and
three tree shapes. This cardinality difference has motivated the study of lower resolution coa-
lescent processes (Sainudiin, Stadler and Véber (2015)). However, it is not clear how big this
difference is when the observed data restricts the space of topologies. In the next section we
describe how observed data imposes combinatorial constraints on the topological space.

2.2. Perfect phylogeny and infinite sites model. As mentioned in the Introduction, we
assume that molecular variation at a nonrecombining contiguous segment of DNA (or lo-
cus) is the result of a mutation process superimposed on the timed genealogy g (Figure 1).
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FIG. 4. Incidence matrix and perfect phylogeny representation. Data is summarized as an incidence matrix
(h denotes the haplotypes, s the segregating sites) and a vector of frequencies. (a) Original perfect phylogeny
T in bijection with the incidence matrix; each of the four polymorphic sites labels exactly one edge. When an
edge has multiple labels, the order of the labels is irrelevant. Each of the three haplotypes labels one leaf if T .
(b) Kingman’s perfect phylogeny T K : it is a perfect phylogeny with edge labels removed and leaf labels the set of
individual labels for each haplotype. (c) Tajima’s perfect phylogeny T T : it is a perfect phylogeny with edge labels
removed and leaf labels the corresponding haplotype frequency.

Here, we assume that mutations (or substitutions) occur at sites that have not mutated previ-
ously. This mutation model is called the infinite-sites model (ISM) (Kimura (1969), Watterson
(1975)). Further, we assume that our data consists of a single nonrecombining segment of
DNA. Although we will not model the mutation process explicitly, it is commonly assumed
that mutation happens as Poisson process on the timed genealogy g. However, an important
consequence is that the ISM imposes a restriction on the space of tree topologies: given that
at most one mutation occurs at a site, this mutation must occur on a branch subtending in-
dividuals with the observed mutation (Figure 1). Therefore, mutations partition the observed
sequences into two sets: the sequences that carry the mutations and the sequences that do not.
In addition, if the ancestral type at each polymorphic site is known, molecular data from n

individuals at m polymorphic sites can be represented as an incidence matrix Y and a vector
of the row frequencies of the matrix Y. The incidence matrix Y is a k × m matrix with 0–1
entries, where 0 indicates the ancestral type and 1 indicates the mutant type; k is the number
of unique sequences (or haplotypes) observed in the sample, and the vector of frequencies
indicates the number of times each haplotype is observed in the sample. For example, the
n = 6 sequences displayed at the leaves of the genealogy in Figure 1 can be summarized as
the incidence matrix and corresponding frequency vector in Figure 4. The three haplotypes in
this example are A...A...A...C, T...A...T...G and A...T...T...G with labels ha , hb and hc, respec-
tively. In this example, the ancestral sequence is displayed at the root of the tree in Figure 1.
In what follows, we will assume that our data are an incidence matrix and corresponding
frequencies as in Figure 4.

Gusfield (1991) proposed an algorithm to represent the incidence matrix as a multifur-
cating tree called perfect phylogeny. A perfect phylogeny is in bijection with an incidence
matrix, and it exists if and only if the infinite sites and no recombination assumptions hold.
In our example, the multifurcating tree displayed in Figure 4(a) is the corresponding perfect
phylogeny representation of the incidence matrix. The key in the perfect phylogeny repre-
sentation is that mutations (labeled as s1, . . . , s4 in Figure 4) partition the haplotypes into
different groups (three groups represented as leaf nodes in Figure 4(a)) and thus enforce a
combinatorial constraint.

More formally, given an incidence matrix Y, a perfect phylogeny T is a rooted tree (pos-
sibly multifurcating) with k leaves and satisfying the following properties:

1. Each of the k haplotypes labels one leaf in T .
2. Each of the m polymorphic sites labels exactly one edge. When multiple sites label the

same edge, the order of the labels along the edge is arbitrary. Some external edges (edges
subtending leaves) may not be labeled, indicating that they do not carry additional mutations
to their parent node.
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FIG. 5. Compatibility of ranked labeled trees with the perfect phylogeny. (a) Kingman perfect phylogeny, (b) two
examples of ranked labeled trees compatible with the perfect phylogeny, (c) incompatible ranked labeled tree ({c}
should coalesce first with individuals in its node).

3. For any haplotype hk , the labels of the edges along the unique path from the root to the
leaf hk specify all the sites where hk has the mutant type.

Allow a few remarks. The tree T is usually not the tree topology of a coalescent genealogy.
First, each leaf node labels a unique haplotype that could have been sampled with frequency
higher than one. Second, we have restricted our attention to binary trees, those sampled from
one of the coalescent processes and T is not necessarily binary (in most cases it is not).

To simplify our exposition in the following sections, we summarize the perfect phylogeny
somewhat different than the original Gusfield’s algorithm depending on whether we wish to
count Kingman’s or Tajima’s topologies compatible with the observed data. Our perfect phy-
logeny representation for counting Kingman’s tree topologies is denoted by T K . In T K , we
remove the edge labels and label the leaf nodes by the set of individuals labels that share the
same haplotype. For example, in Figure 4(b) individuals {c}, {d}, {e} and {f } share the same
haplotype hc. In the case when a haplotype leaf descends from an edge with no mutations,
we attach the set of individuals labels to its parent node and remove the leaf. Similarly, our
perfect phylogeny representation for counting Tajima’s tree topologies is denoted by T T . In
T T , we again remove edge labels, but now we label leaf nodes by the frequency of their cor-
responding haplotypes (Figure 4(c)). Note that such a representation reflects the fact that two
individuals sharing the same mutations are indistinguishable. In the case when a haplotype
leaf descends from an edge with no mutations, we attach the frequency of the haplotype to
its parent node and remove the leaf.

A tree topology g is compatible with the perfect phylogeny T if P(T |g, t) > 0. That is,
if all sequences descending from a node V in T coalesce in g before coalescing with any
other sequence descending from a different node U in T . Figure 5(b) shows examples of two
compatible ranked labeled trees with the perfect phylogeny in Figure 4(b) and 5(a), while
Figure 5(c) shows an incompatible ranked labeled tree topology. The topology in Figure 5(c)
is not compatible since there is no node in gK that groups together {c}, {e}, {f }, {g} without
{a} or {b}. In the following sections we describe our algorithms for approximating the number
of tree topologies compatible with a given perfect phylogeny. In the following we denote the
set of compatible tree topologies by Gn,C ⊆ Gn.

3. Sequential importance sampling. Let p denote the uniform discrete distribution on
Gn,C . Suppose we can sample from a distribution q with support Gn,C , then the normalizing
constant of p, that is, |Gn,C | is given by

(3.1) Eq

[
1

q(g)

]
= ∑

g∈Gn,C

1

q(g)
q(g) = |Gn,C |,

which, given an i.i.d . sample from q of size N , can be approximated via Monte Carlo by

(3.2) |̂Gn,C | = 1

N

N∑
i=1

1

q(gi)
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with standard error: se(|̂Gn,C |) =
√

Varq(1/q(g))/
√

N , and the variance can be approximated
with its empirical counterpart.

Average (3.2) is an instance of importance sampling (IS) (Hammersley and Handscomb
(1965), Owen (2013)). As described in previous sections, observed data impose combinato-
rial constraints to the space of compatible tree topologies. The idea is to construct a compat-
ible tree topology g ∈ Gn,C sequentially with choices cn, . . . , c1 (one coalescence at a time)
from the tips to the root, ensuring that each choice is compatible with the observed data (or
perfect phylogeny) and with known probability

(3.3) q(g) = q(cn)q(cn−1 | cn) · · ·q(c1 | c2).

Approaches with a similar stochastic sequential nature construction have been used for
enumeration in other contexts, such as random graphs, networks and contingency tables
(Blitzstein and Diaconis (2010), Chen and Chen (2018), Chen et al. (2005), Knuth (1976),
Diaconis (2018)).

It is clear from this literature that the algorithm should satisfy two desiderata: it should not
“get stuck,” that is, it should not sample g outside |Gn,C |; in addition, q(g) should be easily
computed.

How large N should be largely depends on how close the proposal distribution q is to the
target distribution p. In our problem, p is uniform discrete on the set of compatible trees.

Chatterjee and Diaconis (2018) show that N ≈ exp(KL(q,p)) is necessary and sufficient
for accurate estimation by IS, where KL denotes the Kullback–Leibler divergence. In addi-
tion, Chatterjee and Diaconis (2018) warn against the use of sample variance as a criterion
for IS convergence; they prove that it can be arbitrary small for large N independently from
p and q .

A common metric to assess convergence is the importance sampling effective sample size
ESS, where ESS = N/(1 + cv2) and cv2 is the coefficient of variation given by

cv2 = Varq[p(g)/q(g)]
E2

q[p(g)/q(g)]
and estimated empirically. cv2 is the χ2-distance between p and q . A low cv2 (ESS close to
N ) is a good indicator of the quality of the proposal q .

In lieu of sample variance as a metric for convergence, Chatterjee and Diaconis (2018)
define qN = E[QN ] where

QN = max1≤i≤N p(gi)/q(gi)∑N
i=1 p(gi)/q(gi)

and propose to use a Monte Carlo estimate of qN below a certain threshold as a criterion for
convergence. A low value of qn can be interpreted as a situation in which a sufficiently large
number of samples have been collected (large denominator) to counterbalance the effect of
possible “outliers” that are sampled (large numerator). Computing a Monte Carlo estimate is
computationally expensive and, hence, in this work we simply compute a single running QN

and combine it with the other metrics described. Note that, since we restrict our attention to
p uniform discrete, the normalizing constant cancels out in both QN and cv2; so it is possible
to compute these two diagnostics.

3.1. Sampling trees compatible with a perfect phylogeny. To generate a tree topology
g ∈ Gn,C compatible with the observed data T , we proceed sequentially from tips to the root
in both T and g: one coalescence in g and one node in T at a time. In every step we keep
an active set of nodes of T in which we can sample particles to coalesce. Initially, this set
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includes all nodes with at least two particles. We then randomly select an active node in T
and randomly select two particles from the selected node to coalesce in g. At this time, the
two selected particles are replaced by a new particle in the selected node in T . If a node in
T has a single particle, the node is removed and its particle is transferred to its parent node.
The algorithm ends when T has a single node with a single particle and when a complete
genealogy is generated. All particles in one node must coalesce with each other before they
can coalesce with any other particle.

We propose two new algorithms that share the steps just described: one for sampling
ranked labeled trees (Kingman trees) and one for sampling ranked tree shapes (Tajima trees).
A simple combinatorial argument allows extending the outputs of these two algorithms to
their respective unranked counterparts. This extension should be considered by all means a
byproduct of the Kingman and Tajima algorithms. It is of interest because we can obtain
estimates for two other resolutions at almost no additional computational cost.

We start with some notations. We use V to denote the set of nodes of the perfect phylogeny
T and L ⊂ V to denote the set of active nodes, that is, nodes with at least two particles; v is
an element of V , and pa(v) denotes the parent node of v (if v is not the root). We use the word
particle to refer to individual singletons, elements of a partition of [n] or vintages. Each node
in T has either no particles or a given number of particles assigned (labeled or not). Given
n individuals, the n − 1 iterations required to sample a tree topology are indexed in reverse
order, that is, from n − 1 to 1, to be consistent with the notations used in the jump chains of
the n-coalescent. This notation allows us to keep track of how many individuals have yet to
coalesce.

We saw that Kingman n-coalescent jump chain induces a uniform distribution with support
GK

n . Given that our target distribution for the Kingman topology is uniform on GK
n,C , we

mimic within each node the transition probability of the underlying coalescent jump chain.
The active node is sampled with probability proportional to the number of assigned particles.
Although Tajima’s jump chain does not induce a uniform distribution on GT

n , it is quite close
to being uniform: it is uniform across ranked tree shapes with the same number of cherries.

3.1.1. Data constrained Kingman coalescent. To sample a ranked labeled tree gK =
{ci}i=n:1 of n individuals compatible with the observed perfect phylogeny T K , we start at
cn = {{1}, . . . , {n}}. Each leaf node of T K defines a partition of cn, and we use cv

n to denote
the set of particles in node v. An exception occurs when an edge with no mutations subtends a
leaf; in this case the parent node gets assigned the particles of the leaf and the leaf is removed.

The first step is to define the set L as the set of nodes with at least two particles. If a
node has a single particle (|cv

n| = 1), we transfer the particle to its parent node. Then for
each iteration i = n − 1, . . . ,1, we sample a node in L with probability proportional to the
number of particles in that node: at iteration i, the probability of choosing node vi ∈ L is
q(vi) = |cvi

i+1|/
∑

j∈L |cj
i+1|. The transition from c

vi

i+1 to c
vi

i consists in joining two particles
of c

vi

i uniformly at random. If a node is not sampled, we assume cv
i = cv

i+1. This choice
mimics the jump chain of a Kingman n-coalescent; the difference is that the Markov chain
moves one step on a constrained state space: c

vi

i in lieu of ci ; that is, the coalescent event in
node vi has probability

(3.4) q
(
c
vi

i | cvi

i+1

) =

⎧⎪⎪⎨
⎪⎪⎩

(∣∣cvi

i+1

∣∣
2

)−1

if c
vi

i ≺ c
vi

i+1,

0 otherwise.

Note that at every iteration ci = ⋃
v cv

i . The two probabilities q(vi) and q(c
vi

i | c
vi

i+1) are all
we need to compute the transition probability

q(ci | ci+1) = q(vi)q
(
c
vi

i | cvi

i+1

)
,



736 L. CAPPELLO AND J. A. PALACIOS

Algorithm 1 Sequential sampling on a constrained Kingman tree topology

Inputs: T K with cv
n subsets of singletons at all nodes with particles and cv

n = ∅ at all
remaining nodes.
Outputs: gK , q(gK)

1. If a node v is such that |cv
n| = 1, then we let c

pa(v)
n = c

pa(v)
n ∪ cv

n and cv
n = ∅.

2. Define L as the list of nodes such that |cv
n| > 1

3. Initialize q = 1
4. for i = n − 1 to 1 do

(a) Sample node vi in L with probability q(vi).
(b) Choose particles in vi to coalesce with probability q(ci | ci+1).
(c) Update c

vi

i and define cv
i = cv

i+1 for all the other nodes.

(d) If |cvi

i | = 1, we let c
pa(vi )
i = c

pa(vi )
i ∪ c

vi

i and c
vi

i−1 =∅.
(e) Update q = q × q(vi) × q(ci | ci+1)

(f) Update L as the list of nodes such that |cv
i | > 1

5. end for

where ci = ci+1 \ cv
i+1 ∪ cv

i can be constructed recursively. The last iteration happens at
the root node of T K and q(gT ) is computed as the product of the transition probabilities
as in (3.3). We outline our sampling algorithm with the following example and provide the
pseudocode in Algorithm 1.

EXAMPLE 1. Consider the perfect phylogeny T K in Figure 6(a). To avoid confusion
between the nodes’ sampling order (vn−1, . . . , v1) and node labels, we label the root node
j0 and the leaf nodes j1, j2 and j3. Figure 6 gives a graphical representation of a single
run of the algorithm, where one particle is assigned to j1, one to j2 and four to j3. We
start with c

j1
6 = {a}, c

j2
6 = {b}, c

j4
6 = {{c}, {d}, {e}, {f }} and c

j0
6 = ∅. Now, both j1 and j2

have a single particle: we transfer their particles to the root node and update c
j0
n = {{a}, {b}}

(Figure 6(a–b)). The set of active nodes is L = {j0, j3}. At iteration i = 5 (first iteration)
suppose we sample node v5 = j3, this happens with probability 4/6; then d and f coalesce
with probability 1/6 (Figure 6(b)). We update c

j3
5 = {{c}, {e}, {d,f }}. The set of active sam-

ple nodes remains L = {j0, j3}. Figure 6(c–f) shows the remaining iterations. The sequence
of sampled nodes is {v5 = j3, v4 = j3, v3 = j0, v2 = j3, v1 = j0} with sampling probabil-

FIG. 6. Example 1: Sequential sampling of a Kingman tree topology with constraints. First row describes the
steps in the perfect phylogeny; second row describes how gK is sequentially sampled. We start with a perfect
phylogeny (a); in (b) we assign the singletons to their parent node. In this case {a} and {b} are assigned to j0. At
each iteration (b)–(f) we select a node and coalesce a pair from the selected node. The algorithm terminates when
a single tree topology of size n is generated.
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ities (4/6,3/5,1/2,1,1). The coalescent events probabilities are (1/6,1/3,1,1,1). Thus,
q(gK) = 1/90.

3.1.2. Data constrained Tajima coalescent. To sample a ranked tree shape gT =
{(αi, βi)}i=n:1 of n individuals compatible with the observed perfect phylogeny T T (Fig-
ure 4(c)), we start at (n,∅), and each leaf node in the perfect phylogeny T T is assigned a
vector (αv

n,βv
n). Again, an exception occurs when an edge with no mutations subtends a leaf.

In this case we assign the particles to their parent node and remove the leaf node. Recall that
αv

n denotes the number of singletons and βv
n denotes the set of vintages associated to node

v. Initially, each leaf node (possibly also some internal nodes when the no-mutations case
occurs) in the perfect phylogeny contains the number of singleton particles

∑
v∈V αv

n = n and
no vintages, that is, βv

n = ∅ for all v ∈ V . At any given iteration i, the number of particles
associated to a node v is αv

i + |βv
i |.

Tajima’s sampler follows the rationale used to build the Kingman sampler. We define the
set L as in the Kingman’s sampler (nodes with at least two particles). Then for n−1 iterations,
we first sample a node v ∈ L with probability q(vi) = (αv

i + |βv
i |)/∑

j∈L(α
j
i + |βj

i |); then,
we sample a pair of particles in the selected node to coalesce. Our proposal probability is

(3.5)

q
[(

α
vi

i , β
vi

i

)|(αvi

i+1, β
vi

i+1

)]

=

⎧⎪⎪⎨
⎪⎪⎩

(
α

vi

i+1

α
vi

i+1 − α
vi

i

)(
α

vi

i+1 + ∣∣βvi

i+1

∣∣
2

)−1

if
(
α

vi

i , β
vi

i

) ≺ (
α

vi

i+1, β
vi

i+1

)
,

0 otherwise.

Analogously to the Kingman sampler, each iteration ends by updating (α
vi

i , β
vi

i ) and
L. The pseudocode is presented in Algorithm 2. Note that, as opposed to the Kingman
sampler, q(vi) and q[(αvi

i , β
vi

i )|(αvi

i+1, β
vi

i+1)] in Tajima sampling do not fully determine
q[(αi, βi)|(αi+1, βi+1)], where (αi, βi) is the ith state independent of which node is se-
lected; it can be computed as (αi, βi) = (

∑
v∈V αv

i ,
⋃

v∈V βv
i ). A transition from (αi+1, βi+1)

to (αi, βi) can be obtained by sampling different nodes in the active set, possibly with differ-
ent sampling probabilities. For example, suppose we are joining two singletons: any v ∈ L

with at least two singletons allows this type of transition. This issue was not relevant in the
Kingman sampler because individuals were labeled. Therefore, the output of the sampling
algorithm after n − 1 iterations is {(αi, βi)}i=n:1 = gT along with the sequence of sampling
nodes v = (vn−1, . . . , v1). It is possible to sample the same gT with different v and v′. These
two outputs of the algorithm, which we denote by (gT ,v) and (gT ,v′), may also have dif-
ferent sampling probabilities q(gT ,v) and q(gT ,v′). We illustrate this situation with the
following example.

EXAMPLE 2. Consider the perfect phylogeny in Figure 7(a). Figure 7(b)–(c) show
two ranked tree shapes, gT and g∗T , that can be sampled with our algorithm. Let us

FIG. 7. Example 2: two ranked tree shapes compatible with a given perfect phylogeny. (a) perfect phylogeny
(b)–(c) two possible ranked tree shapes compatible with T T . Tree (b) can be sampled through two node or-
derings v = {j1, j2, j0, j3, j3, j3, j0} and v′ = {j2, j1, j0, j3, j3, j3, j0}, tree (c) through four orderings v, v′,
v′′ = {j3, j3, j3, j1, j2, j0, j0} and v′′′ = {j3, j3, j3, j2, j1, j0, j0}.
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first consider gT in Figure 7(b). A possible sequence of sampling nodes in T T is v =
{j1, j2, j0, j3, j3, j3, j0}. In this case the output of Algorithm 2 would be (gT ,v). Although,
the sequence v′ = {j2, j1, j0, j3, j3, j3, j0} leads also to the same gT . The two node order-
ings v and v′ can be easily identified in T T since nodes j1 and j2 are indistinguishable
by being siblings of the same size. Let us now turn to g∗T in Figure 7(c). In this case
there are four possible sampling nodes orderings: v, v′, v′′ = {j3, j3, j3, j1, j2, j0, j0} and
v′′′ = {j3, j3, j3, j2, j1, j0, j0}.

We now introduce some notation to distinguish between the output of our sampling algo-
rithm and the elements needed in the sequential importance sampling estimation of |GT

n,c|.

DEFINITION 3. Let YT
n,C be the set of all possible outcomes (gT ,v) of the Tajima al-

gorithm (Algorithm 2) conditionally on a given perfect phylogeny T T . We call two outputs
of the algorithm: (gT ,v) and (gT ,v′) equivalent if they have the same ranked tree shape
gT . Define cT (gT ) as the size of the equivalence class, that is, the number of possible pairs
(gT ,v′) ∈ YT

n,C equivalent to (gT ,v).

It is still possible to use sequential importance sampling despite the fact that our proposal q

has support YT
n,C instead of GT

n,C . We discuss two alternative ways. The first one is to generate
a sample (gT ,v) ∈ YT

n,C with sampling probability q(gT ,v) computed as the product of all
transition probabilities (Algorithm 2). We then call a backtracking algorithm that lists all
possible sequence of nodes v′ that would give rise to the same gT and compute

(3.6) q
(
gT ) = ∑

v′:(gT ,v′)∈YT
n,C

q
(
gT ,v′).

Finally, we estimate the cardinality of our constrained space by the Monte Carlo approxi-
mation to the following:

EYT
n,C

[
1

q(gT )

]
= ∑

(gT ,v)∈YT
n,C

q(gT ,v)

q(gT )
= ∑

gT ∈GT
n,C

1

q(gT )

∑
v:(gT ,v)∈YT

n,C

q
(
gT ,v

)

= ∑
gT ∈GT

n,C

q(gT )

q(gT )
= ∣∣GT

n,C

∣∣.
(3.7)

Note that the backtracking algorithm adds a computational burden to the procedure. The
complexity cannot be uniquely determined and, as it is known in the backtracking literature,
may vary largely from problem to problem (Knuth (2018)). Since the complexity depends
both on the data T T and gT , an analytical expression is not available. We will study this
computational burden through simulations in Section 4.

An alternative to the backtracking step is desirable but currently still an open problem.
A potential alternative is inspired by a similar situation discussed in Blitzstein and Diaconis
(2010) in the context of sampling graphs with a given degree sequence. The cardinality is
estimated by the Monte Carlo approximation to the following:

EYT
n,C

[
1

cT (gT )q(gT ,v)

]
= ∑

(gT ,v)∈YT
n,C

q(gT ,v)

cT (gT )q(gT ,v)

= ∑
gT ∈GT

n,C

1

cT (gT )

∑
v:(gT ,v)∈YT

n,C

1 = ∣∣GT
n,C

∣∣,
(3.8)
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Algorithm 2 Sampling on the constrained Tajima Space

Inputs: T T , with αv
n number of singletons at all leaf nodes (plus the parent node if the leaf

subtends from a branch with no mutations), and βv
n = ∅ for all v ∈ V .

Outputs: gT , q(gT )

1. If a node v is such that αv
n = 1, then let α

pa(v)
n = α

pa(v)
n + 1, αv

n = 0.
2. Define L as the list of nodes with αv

n > 1.
3. for i = n − 1 to 1 do:

(a) Sample node vi with probability q(vi).
(b) Choose particles to coalesce with probability q[(αvi

i , β
vi

i )|(αvi

i+1, β
vi

i+1)]
(c) Update (α

vi

i , β
vi

i ) and define (α
vi

i , β
vi

i ) = (α
vi

i+1, β
vi

i+1) for all other nodes

(d) If α
vi

i + |βvi

i | = 1, then let α
pa(vi )
i = α

pa(vi )
i + α

vi

i , α
vi

i = 0, and β
pa(vi )
i = β

pa(vi )
i ∪

β
vi

i , β
vi

i =∅

(e) Update q = q × q(vi) × q[(αvi

i , β
vi

i )|(αvi

i+1, β
vi

i+1)]
(f) Update L as the list of nodes such that αv

i + |βv
i | > 1.

4. end for
5. Compute all possible node paths v that lead to gT (backtracking algorithm).
6. Compute q(gT ) as in (3.6).

where cT (gT ) is the size of the equivalence class cT (gT ) = #{v′ : (gT ,v′) ∈ YT
n,C} as in

Definition 3. Given a pair (gT ,v), we can calculate cT (gT ) by finding equivalence classes of
certain subtrees in gT relative to T T . Although a practical implementation is computationally
prohibitive, we introduce this idea because in the next section we use it to obtain unranked
tree topologies (labeled trees and tree shapes) algorithms as a byproduct of the Kingman and
Tajima algorithms.

3.1.3. Labeled trees and tree shapes. We now turn to the unranked versions, labeled
trees and tree shapes. As before, we define equivalence relations that partitions the spaces
GK

n,C and GT
n,C into equivalence classes that ignore rankings. We show two simple formulas

to compute the size of these classes. As opposed to ranked tree shapes, these formulas are
easy to implement and allow to build a SIS procedure to estimate |GLT

n,C | and |GTS
n,C | using

outputs from the Kingman and Tajima algorithms (Algorithm 1 and 2). First, we define the
following two equivalence relations and their cardinalities:

DEFINITION 4. For any element gK ∈ GK
n,C , let LT(gK) denote the corresponding un-

ranked labeled tree gLT ∈ GLT
n,C , obtained by removing the rankings from internal nodes of

gK . We call gK and g′K equivalent if LT(gK) = LT(g′K), and we denote the size of the
equivalence class by cLT(gK).

PROPOSITION 1. Let gK ∈ GK
n,C , and let gK

i,1 and gK
i,2 be the two subtrees (or clades) that

merge at the ith coalescent event for i = 1, . . . , n − 1. Then,

cLT(
gK) =

n−1∏
i=1

(|gK
i,1| + |gK

i,2| − 2)!
(|gK

i,1| − 1)!(|gK
i,2| − 1)! ,

where |gK
i,j | denotes the number of leaf nodes of gK

i,j .

PROOF. Note that |gK
i,j | − 1 is the number of coalescent events in subtree gK

i,j . For each

fixed i, we are computing the number of possible permutations of (|gK
i,1| + |gK

i,2| − 2) coa-
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lescent events of elements of two groups with |gK
i,1| − 1 and |gK

i,2| − 1 elements, respectively.
The product accounts for all possible orderings. �

DEFINITION 5. For any element gT ∈ GT
n,C , let TS(gT ) denote the corresponding (un-

ranked) tree shape gTS ∈ GTS
n,C , obtained by removing the rankings from internal nodes of gT .

We call gT and g′T equivalent if TS(gT ) = TS(g′T ), and we denote the size of the equiva-
lence class by cTS(gT ).

PROPOSITION 2. Let gT ∈ GT
n,C , and let gT

i,1 and gT
i,2 be the two subtrees (or clades) that

merge at the ith coalescent event, then

cTS(
gT ) =

n−1∏
i=1

(|gT
i,1| + |gT

i,2| − 2)!
(|gT

i,1| − 1)!(|gT
i,2| − 1)!

(
1

2

)1{gT
i,1=gT

i,2}
,

where |gT
i,j | denotes the number of leaf nodes of gT

i,j .

PROOF. Again, the formula is a product of permutations with repetitions. If the two
subtrees that merge at the ith coalescence are equal, we need to divide by two since the
same rankings in the two subtrees are indistinguishable. �

Given cLT(gK) and cTS(gT ), we can easily compute q(gLT) = cLT(gK)q(gK) and
q(gTS) = cTS(gT )q(gT ). These two distributions constitute our sampling proposal in SIS
procedure to estimate |GLT

n,C | and |GTS
n,C |.

4. Simulations. We rely on simulations to assess the convergence, empirical accuracy
and computational performance of the proposed algorithms. We discuss a range of scenarios
designed to capture a variety of settings encountered in applications and to highlight the key
properties of the algorithms. All the algorithms are implemented in the R package phylo-
dyn which is available for download at https://github.com/JuliaPalacios/phylodyn. The four
tree topologies analyzed are: GK

n,C : Kingman ranked labeled trees, GT
n,C : Tajima ranked tree

shapes, GTS
n,C : tree shapes and GLT

n,C : unranked labeled trees. All of which are compatible with
the simulated dataset.

We encode our simulated molecular data as an n × m incidence matrix Y of n sequences
at m polymorphic sites. Y is generated in three steps: we first simulate a Kingman genealogy
of n individuals; then, we draw m mutations from a Poisson distribution and, finally, we
uniformly allocate the m mutations along the branches of the genealogy, that is,(

gK, t
) ∼ Kingman n-coalescent,

m ∼ Poisson(μL), L =
n∑

k=2

ktk,

x1, . . . , xm ∼ Uniform
(
gK)

,

where μ denotes the mutation parameter, L the tree length, t is the (n − 1)-vector of coa-
lescent times and x1, . . . , xm are the allocations of the mutations along gK . Coalescent times
are exponentially distributed with rate

(k
2

)
(assuming constant population size). We simu-

late Kingman genealogies with the open source implementation R-ape:rcoal() (Paradis,
Claude and Strimmer (2004)). The m mutations are then placed uniformly at random along
the branches of the timed genealogy (gK, t) and labeled 1, . . . ,m. The matrix Y is constructed
by setting the (i, j)th entry equal to 1 if the branch path from leaf i to the root has labeled

https://github.com/JuliaPalacios/phylodyn
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FIG. 8. Simulations: Sequential importance sampling count estimates. Rows show the estimated cardinality of
the four tree topologies: ranked tree shapes (|GT

n,C |), ranked labeled trees (|GK
n,C |), unranked tree shapes (|GTS

n,C |)
and labeled trees (|GLT

n,C |) (top to bottom rows); the first two columns correspond to simulations based on n = 10
samples and the last two columns on n = 20 samples. The first and third columns correspond to mutation rate
μ = 5 and second and fourth to μ = 20. Grey lines correspond to each of the 20 independent estimates from
the 20 repetitions of the SIS algorithm computed at N ∈ (100,500,1000,3000,5000,10,000,15,000) iterations.
Black lines show the mean estimate of the 20 repetitions.

mutation xj . This part of the simulation algorithm corresponds to the infinite-sites mutation
model. Finally, Y is summarized by its unique set of haplotypes (rows) with corresponding
frequencies (incidence matrix in Figure 4). The corresponding perfect phylogeny T (Fig-
ure 4(a)) is constructed via Gusfield (1991) algorithm; the Kingman’s perfect phylogeny T K

and the Tajima’s perfect phylogeny T T are constructed from T as described in Section 2.2.
To assess convergence of our algorithms at various sample sizes and with different

combinatorial constraints (defined by the patterns of mutations), we simulate incidence
matrices under four scenarios, with sample sizes n ∈ (10,20) and two mutation regimes
μ ∈ (5,20). We computed SIS estimates and diagnostics after N number of iterations with
N ∈ (100,500,1000,3000,5000,10,000,15,000) from 20 repetitions of each of the four
simulation scenarios.

Figure 8 shows the estimated cardinalities (grey lines) of the four topological spaces (rows)
and for the four combinations of n and μ (columns). Black lines depict the mean estimates.
Figure 9 plots the ratio of the standard error to the estimated counts (relative SE, rSE) aver-
aged over the 20 SIS runs for each coalescent resolution (distinct line types) and the four sim-
ulation scenarios (distinct panels). The relevant information in Figure 9 is not the decay of the
lines, which is expected, but rather the order of magnitude of the rSE values when comparing
the values across the four algorithms (a lower value means a better empirical performance).
Table 1 reports the cv2 values for the four algorithms (rows) and the four combinations of μ

and n (columns).
Figure 8 provides a visual inspection of the number of MC samples required for conver-

gence. The four algorithms estimates stabilize around the mean in the four simulation sce-
narios after N = 5000. The variable degrees at which the grey lines are relatively scattered
around the mean hints at how the empirical convergence rates deteriorate for larger sample
sizes and unranked topologies. Both rSE (Figure 9) and cv2 (Table 1) confirm and quantify
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TABLE 1
Simulations: cv2 of estimated cardinalities for the four resolutions. Mean cv2 over 20 realizations for N in

{5000,10,000,15,000}. The four simulated incidence matrices are fixed per each combination of n in {10,20}
and μ in {5,20}

n = 10 n = 20

μ = 5 μ = 20 μ = 5 μ = 20

Tajima algorithm 0.716 0.532 3.674 4.554
Kingman algorithm 0.906 0.698 4.085 3.844
Tree shapes algorithm 1.345 0.532 9.068 5.499
Labeled trees algorithm 4.074 1.096 23.821 26.815

this observation. In Figure 9 we observe an increase of rSE with sample size (two to four
times higher when increasing n from 10 to 20). Similarly, the rSEs of unranked counts (dot-
ted and dot-dashed lines) are one to four times higher than the ranked counterparts (solid and
dashed lines). Similarly, the cv2 values in Table 1 increase for larger sample sizes (four to 20
times higher) and for unranked algorithms (one to eight times higher than the cv2 values for
ranked algorithms).

These two trends are expected and have a clear explanation. The effect of a sample size
increase is twofold: first, the state space (not conditioning on the data) becomes larger; sec-
ond, the expected number of mutations increases. A higher number of mutations is likely to
impose more constraints in the spaces of genealogies and, consequently, undermine the al-
gorithm performance by having proposals q that “move away” from the uniform distribution
(we will elaborate on this point below). The poor performance of both unranked algorithms is
due to the fact that we are not sampling from proposal distributions designed to be close to the
uniform discrete on the underlying spaces, but, instead, the estimates are obtained by correct-
ing the ranked estimates through the equivalence classes coefficients defined in Propositions
1 and 2 (Section 3.1.3).

A second result is the superior performance of the tree shape algorithm (dotted line in
Figure 9 and third row in Table 1) when compared to the labeled tree algorithm (dot-dashed
line in Figure 9 and last row in Table 1). The observed result suggests that the tree shape
sampling distribution has a better proposal distribution. We hypothesize that this result is a
consequence of the fact that the equivalence classes in the unranked spaces are, for most

FIG. 9. Simulations: ratio of standard error to approximate count. The lines correspond to the four topolo-
gies: ranked tree shapes (solid), ranked labeled trees (dashed), unranked tree shapes (dotted) and labeled trees
(dot-dashed) respectively. The first two columns correspond to simulations based on n = 10 samples and the last
two columns on n = 20 samples. The first and third columns correspond to mutation rate μ = 5 and second and
fourth correspond to μ = 20. Lines plot the ratio of the standard error to the average estimated count over the 20
repetitions of the SIS algorithms computed at N ∈ (100,500,1000,3000,5000,10,000,15,000) iterations. Note
that solid and dashed lines practically overlap.
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cases, smaller than in the labeled spaces, that is, cTS(gT ) < cLT(gK), that is, we are sampling
in a space that is more similar to the correct one. In contrast, we note that neither cv2 (Table 1)
nor rSE (black and blue lines in Figure 9) provides evidence of different performance between
the two ranked algorithms (solid and dashed lines in Figure 9 overlap).

Table 1 highlights a very poor performance of the unranked methods for n = 20, especially
for labeled trees. A cv2 close to 20 raises serious concerns on the reliability of the unranked
algorithms in this context, suggesting the risk of a variance explosion (cv2 is a rescaled vari-
ance) and low efficiency (ESS is about 5% of the chosen N ). Similar cv2 has been achieved
by modern algorithms in real network applications (Chen and Chen (2018)). Lastly, although
we do not show plots of Chatterjee and Diaconis (2018)’s qN and QN , these statistics exhibit
similar relative performance and identical patterns as those highlighted for rSE and cv2.

This first simulation study does not assess the variance and scalability of our proposals for
different data sets; in particular, it does not assess how the quality of the proposals depends on
the perfect phylogeny T . To study this question, we simulate 20 incidence matrices with fixed
sample size n = 15 and for each μ in {1,4,7,10,13} (100 matrices in total). SIS estimated
cardinality and diagnostics are computed at N = 5000. In Figure 10(a) we show the cv2 of
the estimated cardinality of ranked tree shapes (Tajima algorithm) as a function of the total
number of nodes and the total number of leaf nodes of T T . We do not plot the cv2 values
of the other three resolutions; however, the other resolutions mirror observed values for the
Tajima algorithm. In Figure 10(b) we plot the total computing time (in minutes) to obtain the
five statistics: count estimates, cv2, rSE, ESS and QN , for all topologies. In both panels of
Figure 10, each dot corresponds to one incidence matrix. The mutation parameter μ is not
displayed; it is varied solely to have diverse incidence matrices.

Figure 10 (a) shows a nonlinear relationship between the cv2 and both the number of nodes
and leaf nodes. As expected, when the number of nodes (leaf or total) is low, the cv2 values are
always low. In this case our SIS proposal distributions are close to the Kingman and Tajima
jump chains which are uniform and close to uniform distributions, respectively, on the space
of trees. As the number of nodes increases, the cv2 values exhibit a large variation across data
sets. In this case the quality of our proposal deteriorates for a few datasets substantially. Our

FIG. 10. Simulations: cv2 of the Tajima algorithm (a) and total (all topological spaces) computing time (b).
Panel (a) plots the cv2 of that Tajima algorithm as a function of the number of nodes (# nodes) and the number of
leaf nodes (# leaf nodes) in the perfect phylogeny T T . Panel (b) reports the computing time to obtain the estimate
counts for the four topologies and the convergence diagnostics (rSE, ESS, qN , cv2). Each dot corresponds to an
algorithm run (N = 5000) for each of the 100 incidence matrices simulated with fixed sample size n = 15 and μ

in {1,4,7,10,13}. Dots with different gray scale intensities represent the numerical value of cv2 (Panel (a)) and
total time in minutes (Panel (b)) as represented by the vertical bars to the left of the plots.
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interpretation is that more mutation constraints move our proposal distributions further away
from the uniform distribution.

A second result of the simulation study is that the Kingman algorithm has a better perfor-
mance, on average, than the Tajima algorithm. The mean of the cv2 values across different
data sets is 1.02 for the Tajima algorithm and 0.72 for the Kingman algorithm. This is coher-
ent with the construction of our SIS proposals and the fact that the Kingman jump chain is
exactly uniform.

Lastly, the computing time (Figure 10(b)) exhibits exactly the same observed patterns as
cv2 (Figure 10(a)). Longer computing times are driven mostly by the backtracking algorithm.
Trivially, the more nodes in T T , the more nodes ordering v the backtracking algorithm may
need to explore. However, we note that the computing time remains low for most data sets,
even for data sets with large number of nodes.

5. Case studies.

5.1. Case study 1: Multiresolution simulation study. As discussed in the Introduction,
there is a growing interest in population genetics to use more efficient lower resolution co-
alescent models for inferring evolutionary parameters from molecular data (Palacios et al.
(2019+), Sainudiin, Stadler and Véber (2015), Sainudiin and Véber (2018)). However, no
work has been done to quantify the “real” gains of working with different coalescent reso-
lutions to real data. It is important to address this question before this research direction is
further explored. This case study addresses this question through simulations.

Data. We simulate 50 incidence matrices for each of 24 possible pairings of n in
(5,10,15,20) and μ in (2,5,10,20,50,75). For each simulated dataset we estimate the
cardinality of the four constrained topological spaces. Based on the results observed in the
previous section, we set N = 5000 for n ∈ (5,10), N = 10,000 for n = 15, and N = 15,000
for n = 20.

Results. In the first row of Figure 11, we show the log ratio of the estimated cardinalities
of Kingman topologies to Tajima topologies, and, in the second row, we show the log ratio
of the estimated cardinalities of labeled trees to tree shapes. Table 2 summarizes the results
for a single iteration picked at random from the 50 replicates. We note that an average over
the 50 replicates is not insightful given the high variability of the incidence matrices sampled
(which can be observed by the length of the boxplots in Figure 11).

Figure 11 shows that the cardinality of the space of Kingman trees is always larger than
the cardinality of the space of Tajima trees (first row), and the cardinality of the space of
labeled trees is always larger than the cardinality of the space of tree shapes (second row).
As mentioned in the Introduction, this is relevant for population genetic studies that aim to
estimate evolutionary parameters by integrating over the space of trees. When analyzing how
much effective reduction in the tree space is gained by assuming the infinite sites model alone,
we note that a high mutation rate will, in general, constrain the tree sample space more than a
low mutation rate. This reduction is accentuated for Kingman’s trees under every simulation
scenario. For example, for n = 20 there are 5.64 × 1029 (exact) unconstrained Kingman’s
trees (using formula from Section 2). This number drops to 5.67 × 1010 ± 2.08 × 109 (SIS
estimate) for a simulated dataset with μ = 20. The (exact) unconstrained number of ranked
tree shapes is 2.9 × 1013 which drops to 4.63 × 1010 ± 1.47 × 108 (SIS estimate) for a
simulated dataset with μ = 20. A similar pattern is observed for unranked tree shapes.

For a fixed sample size, we observe that the difference between Kingman and Tajima car-
dinalities decays exponentially from low mutation regimes to high mutation regimes (moving
along x axes in the plots of the first row in Figure 11). The same trend is observed between
labeled topologies and tree shapes (moving along x axes in the plots of the second row of



MULTIRESOLUTION KINGMAN–TAJIMA COALESCENT COUNTING 745

FIG. 11. Case study 1. Multiresolution simulation study: Log ratio of estimated counts for varying n and μ.
Rows correspond to the log ratio of cardinalities between Kingman and Tajima topologies (first row) and the log
ratio of cardinalities between labeled trees and tree shapes (second row). Columns represent different sample sizes
n and boxplots within each plot show results under different mutation rates. Boxplots are generated from 50 inde-
pendent simulations. Dots represent the SIS count estimates computed for N = 5000 (for n = 5,10), N = 10,000
(for n = 15), and N = 15,000 (for n = 20). Dots are spread over the box width for ease of visualization.

Figure 11). For example, keeping n = 20 fixed, the Tajima space is on average approximately
2 × 1011 smaller than the Kingman space for μ = 2, 6900 times smaller for μ = 10, and only
seven times smaller for μ = 75.

For a fixed mutation regime, the respective differences between labeled topologies counts
and unlabeled topologies counts (Kingman vs. Tajima, labeled trees vs tree shapes) becomes
more pronounced as we increase the sample size (columns in Figure 11.) For example, keep-
ing μ = 10 fixed, the Tajima space is on average approximately 1.7 times smaller than the
Kingman space for n = 5, 225 times smaller for n = 10 and only 6900 times smaller for
n = 20.

The case study suggests that modeling with lower resolution coalescent models (unlabeled)
could be advantageous when applied to organisms with low mutation rates such as humans
or mammals. However, the advantages are less pronounced for rapidly evolving organisms
such as pathogens and viruses.

5.2. Case study 2: Human mitochondrial and nuclear DNA data. Present day molecular
data at a nonrecombining segment (or locus) from a sample of individuals inform about past
population history and other evolutionary parameters (Tavaré (2004)). Multiple independent
loci, perhaps loci at different chromosomes or loci from distant locations across the genome,
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TABLE 2
Case study 1. Multiresolution simulation study: SIS counts for varying sample size (n) and mutation rate (μ). n denotes sample size, μ mutations rate, |Jleaf| denotes the number of

leaf nodes in T , |J | denotes the number of nodes in T . Counts are reported for the four resolutions plus/minus the standard error

n μ |J | |Jleaf| Tajima trees Kingman trees Labeled trees Tree shapes

5 2 7 5 4.979±0.02536 30.05±0.2057 14.97±0.1832 2.629±0.02622
5 8 5 2.993±0.005794 8.988±0.01735 2.996±0.005785 0.9976±0.001931

10 8 5 2.999±0.005778 8.99±0.01735 2.997±0.005784 0.9996±0.001926
20 9 5 3.01±0.01414 3.024±0.01414 1.008±0.004713 1.003±0.004714
50 9 5 3.016±0.01414 3.025±0.01414 1.008±0.004713 1.005±0.004714
75 9 5 3.018±0.01414 2.976±0.01414 0.9919±0.004713 1.006±0.004714

10 2 14 9 499.9±7.26 5350±91.37 21.72±0.6739 1.565±0.03521
5 14 9 509.3±7.354 5367±91.69 21.94±0.6798 1.561±0.03405

10 15 9 499.7±8.79 1765±35.78 7.134±0.2438 1.471±0.03291
20 16 9 430.7±5.871 1235±17.07 2.94±0.04064 1.026±0.01398
50 16 9 422.8±5.822 1235±17.07 2.94±0.04064 1.007±0.01386
75 18 10 418±5.724 1249±17.35 2.974±0.04131 0.9952±0.01363

15 2 15 11 3,474,000±53,560 1.112e+10±141,400,000 1,087,000±46,170 65.74±1.95
5 20 12 297,200±6108 3,318,000±68,620 603.1±36.96 3.962±0.1131

10 21 12 60,630±1475 650,800±14,850 434.2±13.6 1.902±0.05244
20 22 12 60,330±1386 226,000±5297 147.4±4.842 1.838±0.04675
50 24 13 45,240±961.4 141,600±3048 45.3±0.9987 1.004±0.02134
75 26 14 43,410±894.5 141,100±3036 45.1±0.9922 0.9637±0.01986

20 2 20 15 8.05e+11±1.571e+10 1.731e+17±2.699e+15 1.588e+10±4.211e+09 2084±86.73
5 23 14 8.429e+09±209,800,000 6.869e+11±1.56e+10 32250±1846 16.58±0.6664

10 23 13 4.339e+09±83,760,000 1.189e+11±2.274e+09 5485±300.7 5.19±0.1093
20 28 16 4.344e+09±95,910,000 2.757e+10±621,200,000 1237±85.72 5.102±0.1238
50 28 15 437,600,000±9,594,000 2.816e+09±6,4850,000 335.4±9.758 0.9448±0.02071
75 32 17 458,700,000±10,720,000 2.754e+09±60,920,000 335.7±9.126 0.9904±0.02315
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provide multiple independent realizations of the same coalescent process with shared pop-
ulation history. In this case study we show that, under the infinite sites model, independent
chromosomal regions can impose a completely different set of constraints on their local tree
topology. We provide quantitative evidence of this effect. We note that these constraints do
not arise employing alternative mutation models, for example, Jukes–Cantor. We apply our
method to mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) data. mtDNA is known
to have a much higher mutation rate than nDNA (Song et al. (2005)), and, thus, we expect a
larger reduction in the state space. In addition, we explore how these constraints vary across
resolutions.

Data. We analyze n = 30 samples of mitochondrial DNA (mtDNA) selected uniformly
at random from the 107 Yoruban individuals available in the 1000 Genomes Project phase
3 (1000 Genomes Project Consortium (2015)). We retained the coding region: 576–16,024
according to the rCRS reference of Human Mitochondrial DNA (Anderson et al. (1981),
Andrews et al. (1999)) and removed 38 indels (insertions and deletions are not modeled in
our approach). Of the 260 polymorphic sites, we only retained 240 sites compatible with
the infinite sites mutation model. Ancestral states (0s in the incidence matrix) were obtained
from the RSRS root sequence (Behar et al. (2012)). For nDNA we analyze 2320 sites of the β-
globin gene in chromosome 11 from n = 30 Melanesian individuals subsampled from a larger
incidence matrix (n = 57) analyzed in Griffiths and Tavaré (1999). It was already part of a
larger dataset described in Harding et al. (1997). Figure 12 plots the Tajima perfect phylogeny
for the two datasets. The mtDNA comprises 29 haplotypes, and the nDNA comprises four
haplotypes.

Results. We estimated the cardinalities of the four constrained topologies at N = 35,000.
The number of iterations N is chosen by the criteria discussed in the simulation section.

FIG. 12. Case study 2: Tajima perfect phylogenies of Yoruban mitochondrial data (left) and Melanesian
β-globin locus data (right). Left panel: T T of n = 30 sequences of mtDNA sampled at random from 107 Yoruban
individuals available from the 1000 Genomes Project phase 3 (1000 Genomes Project Consortium (2015)). Right
panel: T T of n = 30 sequences of DNA from the β-globin locus sampled at random from 57 Melanesian individ-
uals available in Fullerton et al. (1994). Grey nodes represent the leaf nodes. The number within a node is the
number of individuals assigned to that node.
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TABLE 3
Case Study 2: Estimated counts and cv2 for the mtDNA and nDNA datasets. Unconstrained refers to the size of
the underlying tree space (rows) cardinalities when we are not conditioning on the data. Estimates are obtained

with N = 35,000; ± adds or subtracts the standard error

Yoruban mtDNA β-globin locus nDNA

Dataset (n = 30) Unconstrained Estimate cv2 Estimate cv2

Tajima 2.31 × 1025 1.05 × 1020 ±6.19 × 1018 69.2 3.10 × 1023 ±2.21 × 1021 1.78
Kingman 4.37 × 1054 7.17 × 1023 ±3.01 × 1022 36.9 1.07 × 1040 ±4.68 × 1037 0.66
Tree shapes 1.41 × 109 1.33 × 103 ±1.18 × 102 165.9 3.10 × 106 ±2.81 × 105 343.6
Labeled trees 4.95 × 1038 1.17 × 1012 ±2.10 × 1011 674.1 4.65 × 1027 ±1.49 × 1027 372.6

Table 3 shows the size of the unconstrained spaces, along with our SIS estimates and cv2

values.
First, the spaces of trees compatible with the β-globin dataset are many orders of mag-

nitude larger than the spaces of trees compatible with the mtDNA dataset. Following Case
Study 1, this effect could have been predicted by the lower number of segregating sites. Sec-
ond, results in Table 3 gives a different perspective on the computational limits of coalescent
based inference: under Kingman coalescent (still the dominant model in the field of pop-
ulation genetics), the sample space of trees for the mtDNA is massively smaller than the
unconstrained space; it drops from 4.37 × 1054 to 7.17 × 1023 ± 3.01 × 1022. Whereas, when
the presence of a reduction was known, such a reduction had never been quantified.

With respect to the performance of our algorithms, we confirm that the variance of the
Kingman and the Tajima algorithms (ranked tree topologies) are mostly determined by the
perfect phylogeny structure rather than the sample size: the cv2 for mtDNA is larger than
the cv2 for nDNA (first and second rows of Table 3); in particular, the nDNA data (four
leaf nodes) exhibits very low cv2 (second row in Table 3). The large cv2 values obtained
with the unranked algorithms (third and fourth rows) questions the validity of our estimated
counts. We note that the order of magnitude of the estimate is more meaningful than the point
estimate itself; the reductions in cardinality with respect to the unconstrained size are all
consistent with theoretical expectations and the simulation studies. Similarly, the reductions
in cardinalities across resolutions are more extreme in the mtDNA dataset than in the β-
globin dataset. Surely, this case study displays a situation where a sequential importance
sampler experiences variance explosion.

6. Discussion. In this article we propose a set of algorithms to sequentially sample tree
topologies compatible with the observed data. We use our sampling algorithms to estimate
the cardinality of the sample space of tree topologies with importance sampling. We assume
that our sampled locus is nonrecombining and that the infinite sites assumption holds. In the
infinite sites mutation model, each site in the locus can mutate only once. While in practice it
is possible to observe sites that are not compatible with this mutation model, the percentage of
these cases is usually marginal for some organisms, such as humans and other primates. The
major implication of the infinite sites mutation model is that observed data impose constraints
on the space of compatible trees. We analyze the cardinality of the following constrained
tree spaces: ranked labeled trees (Kingman), ranked tree shapes (Tajima), unranked labeled
trees and tree shapes. These sample tree spaces correspond to different resolutions of the
n-coalescent process.

Our proposed algorithms sample a tree topology in a bottom-up fashion: given a sample
of n individuals, we sequentially build the trees in n − 1 steps. We employ a graphical repre-
sentation of the data called perfect phylogeny that allows us to account for the combinatorial
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constraints imposed by the data. The perfect phylogeny “groups” individuals in different
nodes; in our algorithms coalescent events are allowed solely among individuals assigned to
the same node. Within each node the choice of which individuals coalesce is regulated by the
underlying jump chain of the coalescent process we are modeling.

The research question tackled in this paper was motivated by the challenging inference
problem of coalescent methods used in population genetics. There is a growing interest in
exploring different resolutions of the n-coalescent process for inference of evolutionary pa-
rameters from molecular sequence data in order to gain computational tractability. Indeed,
the size of the hidden state-space of trees in the standard Kingman coalescent grows superex-
ponentially with the sample size. Despite the a priori reduction in the cardinality of the state
space obtained by using coarser modeling resolutions, for example, Tajima n-coalescent, a
quantification of this reduction conditionally on the data was unknown. Given the amount
of work and software available tailored to the Kingman n-coalescent, it was in our opinion
fundamental to quantify the benefits of modeling with different resolutions before any more
work is carried out.

From our empirical analyses, it emerges that the benefits of using a coarser resolution de-
pend largely on the data considered. The advantages are striking as the sample size increases,
especially in regimes of low mutation rate such as in nuclear human DNA variation. In gen-
eral, the greater the number of observed mutations is, the less are the benefits of employing
coarser resolutions. This is consistent with theoretical predictions, under the infinite sites as-
sumption, mutations induce some labeling and individuals can be distinguished according to
private mutations. In this case the benefits of employing an unlabeled tree are less evident.
This observation applies to both ranked and unranked trees. In applications where the number
of mutations is low, the benefits of coarser resolutions remain clear.

In the context of recombination, the perfect phylogeny is no longer a single tree but a set of
trees called perfect phylogeny forest (Gusfield (2014)), and we believe that our methodology
can be extended in this context. Indeed, many new interesting research questions open up; for
example, the number of trees in the forest, that is, the number of recombination events which
is itself a challenging problem known as the minimum perfect phylogenetic forest problem.
In this case the target is not a space of tree genealogy but a space of networks known as the
ancestral recombination graph (Griffiths and Marjoram (1997)) and a future area of research.
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