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Technological advancements in the field of mobile devices and wear-
able sensors have helped overcome obstacles in the delivery of care, making
it possible to deliver behavioral treatments anytime and anywhere. Here, we
discuss our work on the design of a mobile health smoking cessation interven-
tion study with the goal of assessing whether reminders, delivered at times of
stress, result in a reduction/prevention of stress in the near-term and whether
this effect changes with time in study. Multiple statistical challenges arose
in this effort, leading to the development of the stratified micro-randomized
trial design. In these designs each individual is randomized to treatment re-
peatedly at times determined by predictions of risk. These risk times may be
impacted by prior treatment. We describe the statistical challenges and detail
how they can be met.

1. Introduction. The rise of wearable technologies has generated increased scientific
interest in the use and development of mobile interventions. Such mobile technology holds
promise in providing accessible support to individuals in need. Mobile interventions to main-
tain adherence to HIV medication and smoking cessation, for example, have shown sufficient
effectiveness to be recommended for inclusion in health services (Free et al. (2013)). Sci-
entists are increasingly interested in understanding whether it is useful to trigger delivery of
treatments at risk times, such as when the individual is stressed (Hovsepian et al. (2015)),
anxious or disengaging. Because treatments delivered by phone or wearable can be perceived
as intrusive and burdensome, a further goal is to assess if treatment effects change through
time.

This paper focuses on applied experimental trial design in the new area of mobile health.
In particular, we discuss and illustrate the stratified micro-randomized trial (sMRT) design.
This is motivated by our work on the design of multiple sMRTs. This paper’s main focus
is Sense2Stop, a mobile health smoking cessation study that is currently underway. In this
study participants are trained in stress reduction exercises prior to their smoking quit date.
Apps that can be used to guide the participant through the exercises are installed on study-
provided phone. These apps can be accessed at any time by a participant. However, a common
problem is that, at the very times at which practicing these exercises might be most useful,
participants do not do so. The scientific team is most interested in understanding whether
reminders to practice stress-reduction exercises will be useful in reducing/preventing future
stress if the reminders are delivered at times the participant is classified as stressed. Thus,
some reminders are to occur at these stress times and the remaining at times the participant
is not classified as stressed. A primary goal of this study is to assess whether the reminders,
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delivered at stress times, result in a reduction/prevention of stress over the subsequent hour
and whether this effect changes with time.

The design of this sMRT as well as others present a number of challenges:

1. Expressing the primary scientific hypothesis in terms of a causal effect is nontrivial.
2. The primary hypothesis test procedure (e.g., test statistic and rejection region) should

balance small sample bias and power when the alternative hypothesis is true.
3. We aim to construct a primary hypothesis test procedure (e.g., test statistic and rejection

region) that avoids introducing causal bias.
4. Sometimes the primary hypothesis concerns the distribution of a response that should

accrue over a time period in which there is no subsequent treatment, but, in the study,
subsequent treatment can occur during this time period.

5. A generative model is needed to calculate the required number of participants:

• Only small, observational data from participants wearing the same sensor suite are usu-
ally available.

• The sample size calculator should be robust to plausible deviations from the baseline
generative model.

In the following we first discuss the smoking cessation study in greater detail. Next, we
introduce the stratified micro-randomized trial (sMRT). We then define the causal treatment
effect addressing challenge 1. Next, we construct a test statistic and associated theory that
accommodate challenges 2–4. Subsequently, we develop a simulation-based method for de-
termining the sample size that accommodates challenge 5.

2. Sense2Stop smoking cessation study. To focus on the experimental design and as-
sociated statistical challenges, we consider a simplified version of the smoking cessation
study, Sense2Stop, in which we are involved through the Mobile Data to Knowledge Center
(https://md2k.org/).1 Sense2Stop is a 10 day mobile health intervention study beginning on
each participant’s smoking quit day. Participants wear both an AutoSense chest band (Ertin
et al. (2011)) as well as bands on each wrist for 10 hours per day. An online pattern-mining
algorithm uses the resulting sensor data to construct a binary time-varying stress classifica-
tion (see Section 7 for an overview of how this algorithm uses episodes of time to construct
the stress classifications) at each minute of sensor wearing throughout the entire day.

Each participant’s smartphone contains a number of guided stress-reduction exercises that
can be accessed 24/7. Participants are trained in the use of these exercises prior to their quit
date. The treatment is a smartphone notification to remind the participant to access the app
and to practice the stress-reduction exercises. Theoretically, a treatment can be delivered at
any minute during the 10 hour day. Practically, treatment delivery is constrained by consid-
erations of attendant burden and to times at which online stress classification is possible.

The trial design should enable us to address the scientific questions:
Is there an effect of the reminder treatment on near-term, proximal stress if the individual is
currently experiencing stress? Does the effect of the reminder treatments vary with time in

study?

3. Stratified micro-randomized trial. In general, the stratified microrandomized trial
(sMRT) consists of a sequence of within-person decision times t = 1, . . . , T , for example,
occasions at which treatment may be randomized. In Sense2Stop there is a decision time

1Simplified version refers to omission of study details that obscure the core health and statistical science consid-
erations (e.g., self-report protocol, methods used to reduce data loss due to technical failures and initial confusion
in language).

https://md2k.org/
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each minute; that is, T = 600 × 10 decision times. sMRTs are a generalization of the micro-
randomized trial (Liao et al. (2016), Dempsey et al. (2015), Klasnja et al. (2015), Bidargaddi
et al. (2018)) to accommodate stratification. The decision times are divided into strata, and the
randomization occurs separately by strata. This ensures sufficient treatment and no treatment
occurrences within each strata.

In Sense2Stop the stratification is motivated by our goal of collecting data to address the
questions posed in the prior section. There are two strata, minutes at which a participant is
classified as stressed and minutes at which the participant is not classified as stressed. Prior
data indicated that participants are likely to experience many fewer minutes of stress than
nonstress minutes per day, thus motivating the stratification.

In contrast to micro-randomized trials, in an sMRT, the stratification requires online moni-
toring of a time-varying stratification variable (e.g., minute-by-minute stress classification in
Sense2Stop) as well as the development of randomization probabilities that, for each partic-
ipant, depend on that participant’s prior data. As a result sample size calculations are more
complex than in the micro-randomized trial further complicating the fifth challenge listed in
Section 1.

To describe the sMRT, and in particular the Sense2Stop sMRT, we use the following defi-
nitions:

Availability. At decision time t the mobile app assesses if the participant is unavailable for
randomization. That is, at some time points it is inappropriate to provide treatment due to eth-
ical, feasibility or burden considerations. In Sense2Stop if a participant receives a treatment
reminder, then for the next 60 minutes the participant is unavailable for further treatment.
This was done to limit burden and intrusiveness of smartphone notifications.

Feasibility constraints often are due to current sensing technology along with restrictions
imposed by the goal of real time detection of the stratification variable. In Sense2Stop, for
example, the classification algorithm only makes a real time classification of stress at minutes
at which sufficient evidence of recent stress has accumulated. In particular, the Sense2Stop
classification algorithm produces a smoothed probability of physiological stress across the
minutes with an episodic pattern—the minute-by-minute probability increases then decreases
then increases and so on. An episode is defined by the beginning of a positive-trend interval
and peaks at the end of a positive-trend interval followed by the start of a negative-trend
interval. To ensure the required sensitivity and specificity, the algorithm only makes a classi-
fication in the minute after the peak of an episode (see Figure 1). Only at these peak minutes
is a participant considered available (provided no treatment has been delivered in the past 60
minutes). At all other times the participant is considered unavailable. For greater detail see
the discussion in Section 7. The indicator It = 1 means that the participant is available at
decision time t and It = 0 otherwise.

Stratification variable. The stratification variable is denoted Xt . In Sense2Stop there are
two strata; Xt = 1 indicates t is within an episode which, at the peak of this episode, the
participant was classified as stressed and Xt = 0 otherwise. As depicted in Figure 1, Xt is
only observed in real time if t is the minute following the peak. This is also the one minute
during the episode at which the participant is available as discussed above. In general, Xt

may be categorical.
Treatment. At available decision times treatment, At , is randomized. In Sense2Stop At is

binary with At = 1, if at minute t , the participant is randomized to receive a reminder to
practice stress-reduction exercises and At = 0 otherwise.

Proximal response. Usually treatments are designed to have a proximal, near-term effect on
a response variable. This proximal response, denoted here by Yt,�, is assumed to be a known
function of the participant’s data within a subsequent window of length �. In Sense2Stop the
proximal outcome is the fraction of time classified as stressed over the subsequent � = 60
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FIG. 1. Illustrative example of the episodic pattern of smoothed Sense2Stop stress probabilities and its associ-
ated online classification algorithm. In the minute following t�, a stress classification is made. Subsequently, all
minutes from the episode beginning to episode end are given the same classification. A participant can only be
available in the minute following t�.

minutes. Note, as discussed above, the real time stress classification is made at the peak of an
episode (see Figure 1). Once a classification is made, then prior minutes in the same episode
receive the same classification. This means that Xt is defined at all minutes t and thus can be
used to form a proximal outcome. In particular,

Yt,� = �−1
�∑

s=1

1Xt+s=1.

This choice of proximal response led to challenge 4.
Longitudinal data. The ordering of a participant’s longitudinal data for use in the primary

analysis is ({X1,U1, I1},A1, {Y2,X2,U2, I2},A2, . . . ,AT −1, {XT ,UT , IT }),
where Ut ∈ {0,1,2} indicates the episode phase at decision time t (i.e., “pre-peak,” “peak”
and “post-peak”). Let Ht = ({{Xs,Us, Is},As}t−1

s=1, {Xt,Ut , It }) denote the observed data at
time t prior to randomization. In general, as in Sense2Stop, Xt , Ut and It may be impacted
by prior treatment.

Randomization formula. At an available decision time t , the randomization probability,
pr(At = 1|Ht), is a known function of Ht , denoted by pt(1|Ht); else if It = 0 then At = 0
and pt(1|Ht) is set to 0. Note that pt(·|Ht) need only be defined and is only used in the
experiment, if t is an available decision time. Section F of the supplementary material
(Dempsey et al. (2020)) provides a simplified version of the formula, used in Sense2Stop,
for pt(a|ht ), t = 1, . . . , T for any value of observed history.

The randomization probability is set to ensure an average number of treatments within a
given time duration (e.g., within a day or a week). It is our experience that these constraints
are almost always due to concerns about the intrusiveness and attendant burden. In designing
Sense2Stop the team felt that an average of 1.5 treatment reminders per day within each
strata would be well tolerated. The need for stratification and the average constraint of 1.5
treatment reminders per strata per day resulted in a randomization probability that depended
on the entire observed history. This fact contributes to challenges 3 and 5.

REMARK 3.1 (Designing an sMRT). Appendices A, B and C are included to aid scien-
tists interested in designing a sMRT.
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4. Proximal effect of treatment. The primary question of interest is whether the treat-
ment has a proximal effect, that is, whether there is an effect of treatment at decision time t on
the mean proximal response Yt,�. Below we use potential outcomes (Robins (1986), Rubin
(1978)) to make this question precise and, in particular, operationalize the questions relevant
to Sense2Stop posed at the end of Section 2. Note, we are only interested in treatment effects
conditional on availability (It = 1). We consider two types of effects: an effect that is defined
conditionally on the value of the stratification variable Xt and It = 1 or an effect that is con-
ditional only on It = 1, so marginal with respect to the distribution of Xt . For expositional
simplicity we focus on the test for the conditional treatment effect in the remainder of this
paper. Section I of the supplementary materials provides a parallel discussion in the case of
the marginal treatment effect.

4.1. Proximal treatment effect, potential outcomes and reference distribution. As stated
above, we use potential outcomes (Robins (1986), Rubin (1978)) to define the condi-
tional proximal effect. The overbar is used to denote a sequence through a specified treat-
ment occasion, āt = (a1, . . . , at ), for instance, denotes the sequence of realized actions
up to and including decision time t . The potential observations at decision time t are
{Xt(āt−1),Ut (āt−1), It (āt−1)}āt−1∈{0,1}t−1 . For example, at time 2 the potential observations
are {X2(a1),U2(a1), I2(a1)}a1∈{0,1}. In the case of Sense2Stop, availability is defined as

It (āt−1) =

⎧⎪⎪⎨
⎪⎪⎩

1 if
�∑

s=1

at−s = 0 and Ut(āt−1) = 1,

0 otherwise.

The potential outcomes for the proximal response at time t are
{Yt,�(āt+�−1)}āt+�−1∈{0,1}t+�−1 . Each individual has 2t+�−1 potential outcomes at
time t .

At the individual level the effect of providing treatment versus not providing treatment at
time t is a difference in potential outcomes for the proximal response and is given by

(1) Yt,�(āt−1,1, at+1, . . . , at+�−1) − Yt,�(āt−1,0, at+1, . . . , at+�−1).

In general, there are 2t+�−2 treatment differences for each individual, each corresponding
to a treatment pattern for (āt−1, at+1, . . . , at+�−1). However, participants’ availability con-
strains the number of possible treatment patterns. In particular, our hypotheses only con-
cern differences of potential outcomes corresponding to treatment at available times. In the
Sense2Stop study, for instance, we are interested in treatment differences between potential
outcomes for which if at = 1, then (at+1, . . . , at+�) is equal to 0̄, since following treatment,
the participant is unavailable for further treatment for the next � = 60 minutes.

Recall that the “fundamental problem of causal inference” (Imbens and Rubin (2015),
Pearl (2009)) is that we cannot observe any one of these individual differences. Thus, we
consider averages of potential outcomes in defining treatment effects. In addition, to define
the treatment effect, we specify a reference distribution,2 that is, the distribution of treatments
prior to time t , āt−1. Moreover, if � > 1, then we must also define a second reference distri-
bution over treatments after time t , (at+1, . . . , at+�−1). Overall, the treatment effect at time
t will be an average of the differences in (1) both over the distribution across individual’s
potential outcomes as well as over the reference distributions for the treatments and respect-
ing the constraints imposed by availability. To define the proximal treatment effect, we must
select these reference distributions.

2Here reference distribution is unrelated to the notion of reference sets in randomization inference; see
Rosenberger, Uschner and Wang (2019).
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The question is, “Which reference distributions should be used?” The choice of which
distribution to use for (at+1, . . . , at+�−1) might differ by the type of inference desired. For
example, in Sense2Stop we further operationalize the questions posed at the end of Section 2
by setting the treatments at+1, . . . , at+�−1 to 0. In this case the treatment effect is:
The effect on the fraction of time stressed in the next hour of (a) providing a notification at

time t to practice stress-reduction exercises and no notifications within the next hour versus
(b) no notification at time t and no notifications within the next hour.

In this paper we set treatment at the subsequent � − 1 times equal to 0 as described
above. In order to select the reference distribution for āt−1, we follow common practice in
observational mobile health studies; here, longitudinal methods such as GEEs and random
effects models (Liang and Zeger (1986)) might be used to model how a time-varying variable,
such as physical activity, varies with current mood. In this case the mean model in these
analyses is marginal over the past distribution of mood. A similar strategy in the randomized
setting is to use the past treatment randomization probabilities as the reference distribution.

With the reference distribution set to the randomization probabilities for past treatment and
set to no treatment for the subsequent � − 1 times, the average causal effect at time t can be
viewed as an excursion. That is, participants get to time t under treatment according to the
randomization probabilities, then at time t (if available) the effect is the contrast between two
opposing excursions into the future. In one excursion we treat at time t and then do not treat
for � − 1 further times; in the opposing excursion we do not treat at time t nor do we treat
for � − 1 subsequent times.

Using the above reference distribution, the conditional, proximal treatment effect at time
t , β(t;x), is (

E

[∑
āt−1

(
t−1∏
j=1

pj

(
aj |Hj(āj−1)

))(
Yt,�(āt−1,1, 0̄)

− Yt,�(āt−1,0, 0̄)
)
It (āt−1)1Xt (āt−1)=x

])

/(
E

[∑
āt−1

(
t−1∏
j=1

pj

(
aj |Hj(āj−1)

))
It (āt−1)1Xt (āt−1)=x

])
,

where the expectation, E, is over the distribution of the potential outcomes and 0̄ is a row
vector of length � − 1.

Beyond scientific considerations a further statistical consideration in selecting a reference
distribution is that if the reference distribution is far from the randomization distribution,
then treatment effects may be very difficult to estimate; see Section B in the supplementary
material for a discussion. For the reminder of this paper, the proximal effects are defined
using the randomization distribution for past treatments (āt−1) and (at+1, . . . , at+�−1) are
set to 0 (no treatment).

4.2. Proximal effect of treatment and observable data. The following three assumptions
are used to express the causal treatment effect, β(t;x), in terms of the observable data.

ASSUMPTION 4.1. We assume consistency, positivity and sequential ignorability
(Robins (1986)):

• Consistency: For each t ≤ T + �, {Xt(Āt−1), It (Āt−1)} = {Xt, It }. That is, the observed
values equal the corresponding potential outcomes.
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• Positivity: If the joint density {Ht = h,At = a} is greater than zero, then pr(At = at |Ht =
ht ) > 0.

• Sequential ignorability: For each t ≤ T , the potential outcomes, {X2(a1), I2(a1), . . . ,

XT +�(āT +�−1)}āT +�−1∈{0,1}T +�−1 , are independent of At conditional on the history Ht .

Sequential ignorability and, assuming all of the randomization probabilities are bounded
away from zero and one, positivity are guaranteed for an sMRT by design. Consistency is a
necessary assumption for linking the potential outcomes as defined here to the data. When
an individual’s outcomes may be influenced by the treatments provided to other individuals,
consistency may not hold. In such instances a group-based conceptualization of potential out-
comes is used (Hong and Raudenbush (2006), VanderWeele et al. (2013)). In particular, if the
mobile intervention includes treatments that aim to produce social ties between participants,
then consistency as stated above will not hold. For simplicity, we do not consider such mobile
interventions here.

LEMMA 4.2. Under Assumption 4.1, the conditional treatment effect satisfies

β(t;x) = Ep

[
Ep

[
t+�−1∏
j=t+1

1Aj=0

pj (Aj |Hj)
Yt,�|At = 1,Ht

]∣∣∣∣Xt = x, It = 1

]

−Ep

[
Ep

[
t+�−1∏
j=t+1

1Aj=0

pj (Aj |Hj)
Yt,�|At = 0,Ht

]∣∣∣∣Xt = x, It = 1

](2)

for all x ∈ {0, . . . , k} where each expectation is with respect to the distribution of the data
collected using the randomization probabilities specified in the design of the sMRT (indicated
by the subscript p on the expectations).

Note that the above products, for example,
∏t+�−1

j=t+1
1Aj =0

pj (Aj |Hj )
, are set to 1 if � = 1. Proof

of Lemma 4.2 can be found in the Section G of the supplementary material (Dempsey et al.
(2020)). We now focus on designing an sMRT where the primary purpose is testing whether
the treatment effect at any time point differs from 0.

5. Test statistic. Our main objective is the development of a sample size formula that
will ensure sufficient power to detect alternatives to the null hypothesis of no proximal treat-
ment effect. For the conditional proximal effect the null hypothesis is H0 : β(t;x) = 0, t =
1, . . . , T and x ∈ {0, . . . , k}.

The proposed sample size formulas are simulation-based and will follow from considera-
tion of the distribution of test statistics under alternatives to the above null hypothesis. The
sample size will be denoted by N . Our test statistic will generalize the test statistics de-
veloped by Boruvka et al. (2018) to accommodate stratification as well as the fact that the
response Yt,� covers a time interval during which subsequent treatment may be delivered (in
Boruvka et al. (2018), � = 1 throughout). Moreover, sample size calculations are informed
by the novel conceptual insight that these estimators can be interpreted as L2 projections (see
Remark 4 in Section 5.1).

In the following we describe L2 projections and provide the test statistics. First,
in the conditional setting, the test statistic is based on an empirical projection of
{β(t;x)}t=1,...,T ;x∈{0,...,k} on the space spanned by a qc by 1 vector of features involving t

and x, denoted by ft (x). We denote the projection by ft (x)′βc. The βc weights in this pro-
jection are given by

β�
c = arg min

βc

Ep

[
T∑

t=1

It p̃t (1|Xt)
(
1 − p̃t (1|Xt)

)(
β(t;Xt) − ft (Xt)

′βc

)2

]
,
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where {p̃t (1|x)}t=1,...,T ;x∈{0,...,k} are prespecified probabilities used to define the weighting
across time and stratification distribution in the projection. The expectation Ep is taken with
respect to the joint distribution of {(Xt , It )}Tt=1 generated using the randomization probabili-
ties in the sMRT design. If desired, one can set p̃t (1|x) = 1/2 for all t, x. See Section 6.1 for
further comments on the choice of the p̃t (1|x)’s and ft (x).

In some settings there will be sufficient a priori information (e.g., data on individuals from
a similar population) that will permit the test statistic to use control variables. These variables
are used to help reduce the variance of the estimators with the goal that the resulting test
statistic is more powerful in detecting particular alternatives to the null hypothesis. See Sec-
tion 6.1 for further discussion on the choice of control variables. For example, in Sense2Stop
a natural control variable would be the fraction of time stressed in the hour prior to time t

as this pretime t variable is likely highly correlated with the fraction of time stressed in the
hour subsequent to time t , Yt,60. Given a q ′ by 1 vector of “control variables” gt (Ht), define
gt (Ht)

′α�
c as an L2 projection of Ep[wct (Ht+�−1)Yt,�|It = 1,Ht+�−1]; in particular,

α�
c = arg min

α
Ep

[
T∑

t=1

Itwct (Ht+�−1)
(
Yt,� − gt (Ht )

′αc

)2

]
,

where wct (Ht+�−1) = p̃t (At |Xt )
∏�−1

s=1 1[At+s=0]∏�−1
s=0 pt+s (At+s |Ht+s )

. Note, one can choose gt (Ht) equal to the

scalar, 1. This use of control variables to reduce variance in the response is used to address
challenge 2 listed in the Section 1.

Recall, the proposed test statistic is based on an estimator of β�
c . Here, we consider an

estimator of β�
c which is the minimizer of the following weighted-centered least-squares cri-

terion, minimized over (αc, βc):

(3) Pn

[
T∑

t=1

Itwct (Ht+�−1)
(
Yt,� − gt (Ht)

′αc − (
At − p̃t (1|Xt)

)
ft (Xt)

′βc

)2

]
,

where Pn[φ(Ht+�−1)] is defined as the average of a function, φ(Ht+�−1), over the sample.
The centering refers to the centering of the treatment indicator At in the above weighted least-
squares criterion. The centering idea is from Boruvka et al. (2018), Liao et al. (2016) (unlike
here, Boruvka et al. (2018) aimed to consistently model the treatment effect). Here, we aim to
estimate the projection for use in the test statistic; the centering allows us to simultaneously
consistently estimate the cofficients in each of the two projections. The consistent estimation
of β�

c addresses challenge 2 listed in Section 1. Centering in the construction of the test statis-
tic preserves the null and avoids introducing causal bias which addresses challenge 3 listed
in Section 1. Indeed, preserving the null is difficult because both the stratification variable x
and the randomization probabilities may be influenced by prior treatment.

Under finite moment and invertibility assumptions, the minimizers (α̂c, β̂c), are consistent,
asymptotically normal estimators of (α�

c , β
�
c ). The limiting variance of

√
N(β̂c −β�

c ) is given
by Q−1

c WcQ
−1
c where

Wc = Ep

[
T∑

t=1

Itwct (Ht+�−1)εct

(
At − p̃t (1|Xt)

)
ft (Xt)

×
T∑

t=1

Itwct (Ht+�−1)εct

(
At − p̃t (1|Xt)

)
ft (Xt)

′
]
,

εct = Yt,� − gt (Ht)
′α�

c − (
At − p̃t (1|Xt)

)
ft (Xt)

′β�
c and

Qc =
T∑

t=1

Ep
[
It p̃t (1|Xt)

(
1 − p̃t (1|Xt)

)
)ft (Xt)ft (Xt)

′].
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See Section G.2 in the supplementary material (Dempsey et al. (2020)) for technical de-
tails.

The proposed sample size formula is based on the test statistic

(4) TcN = Nβ̂ ′
cQ̂cŴ

−1
c Q̂cβ̂c,

where N is the sample size, Ŵc and Q̂c are empirical estimators of Wc and Qc (i.e., replace
Ep with Pn) and ε̂ct = Yt,� −gt (Ht)

′α̂c −(At − p̃t (1|Xt))ft (Xt)
′β̂c. Here, we have implicitly

assumed that Ŵc is invertible. The following lemma provides the distribution of TcN :

LEMMA 5.1 (Asymptotic distribution of TcN ). Under finite moment and invertibility as-
sumptions,

N
(
β̂c − β�

c

)′
Q̂cŴ

−1
c Q̂c

(
β̂c − β�

c

) −→d χ2
qc

.

The above lemma implies that the distribution of the test statistic TcN is approximately a
noncentral chi-squared distribution with noncentrality parameter λ = Nγc where

γc = (
β�

c

)′
QcWc

−1Qcβ
�
c .(5)

However, from a technical perspective, TcN is very similar to the quadratic form test statis-
tics based on weighted regression used in generalized estimating equations (GEEs) method
(Liang and Zeger (1986), Diggle et al. (2002)). In this field much work has been done on how
to best adjust these test statistics and their distribution when the sample size N might be small
(Liao et al. (2016), Mancl and DeRouen (2001)). The adjustments are based on the intuition
that the quadratic form is akin to the multivariate T-test statistic used to test whether a vector
of means is equal to 0 and thus Hotelling’s T-squared distribution is used to approximate the
distribution when N may be small.

To develop the sample size formula, we follow the lead of the well-developed GEE lit-
erature and use a noncentral Hotelling’s T-squared distribution with degrees of freedom
(d1 = qc, d2 = N − (q ′ + qc)) to approximate the distribution of TcN . Recall, q ′ is the di-
mension of αc and qc is the dimension of βc. See Section G in the supplementary ma-
terial (Dempsey et al. (2020)) for a discussion of how for large N , we recover the chi-
squared distribution given in Lemma 5.1. Recall that if a random variable X has noncen-
tral Hotelling’s T-squared distribution with degrees of freedom (d1, d2) and noncentrality
parameter λ, then d2

d1(d1+d2−1)
X has noncentral F-distribution with the same degrees of free-

dom and noncentrality parameter (Hotelling (1931)). Thus, the rejection region for the test
H0 : β(t;x) = 0, t = 1, . . . , T and x ∈ {0, . . . , k} can be written as

(6)
{
TcN >

qc(N − (q ′ + 1))

N − (q ′ + qc)
F−1

qc,N−(q ′+qc);0(1 − α0)

}

with α0 a specified significance level. For details regarding further small sample size adjust-
ments used when analyzing the data, see Section J in the supplementary material (Dempsey
et al. (2020)).

5.1. Remarks. Next, we discuss components of the proposed test statistic.

1. Specification of the weights. The weight wct (Ht+�−1) plays multiple roles:

• First, the term p̃t (At |Xt)/pt (At |Ht) is similar to the inverse probability of treatment
weighting in causal inference (Robins (1986)) in that it facilitates estimation of a
marginal effect, marginal over the history Ht given strata Xt = x and availability It = 1.
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• Second, choice of the numerator of the user-defined weight p̃t (At |Xt) determines the
L2 projection of the treatment effect if β(t;x) is not equal to a linear combination
of ft (x). In these settings the numerator of the weight determines the β�

c coefficients
in the projection. See below for further comments regarding the L2 projection. These
user-defined weights are distinct from randomization probabilities in the sMRT. Note,
however, that if the randomization probabilities in the sMRT pt(1|Ht) only depend on
t and Xt then we can set p̃t (At |Xt) = pt(1|Ht).

• Third, the remaining terms
∏�−1

s=0 [1[At+1 = 0]/pt+s(At+s |Ht+s)] adjust for the fact
that the reference distribution at the subsequent �− 1 times is different from the sMRT
randomization protocol.

2. No use of a nonindependence working correlation matrix. As discussed, the estimating
equation underlying the test statistic is similar to a generalized estimating equation (GEEs)
(Liang and Zeger (1986), Diggle et al. (2002)). While this might motivate inclusion of
nonindependence working correlation matrix to further reduce the variance of estimator
and thus increase the power of the test (Mancl and Leroux (1996)), the inclusion of a
nonindependence working correlation matrix generally introduces causal bias (Boruvka
et al. (2018), Liao et al. (2016)). Similar biases occur with the use of nonindependence
working correlation matrices in the inverse probability of treatment weighting literature
(Vansteelandt (2007), Tchetgen Tchetgen et al. (2012)) or in GEEs where a time-varying
response is modeled by time-varying covariates (Pepe and Anderson (1994)).

3. Use of sandwich estimator of the variance. The test statistic accounts for the within person
correlation in the longitudinal response via use of a sandwich estimator (i.e., Q̂cŴ

−1
c Q̂c)

for the covariance matrix. Unfortunately, the power of the test will depend on the within-
person correlation in responses, thus the simulation-based sample size formula developed
below requires modeling the correlation. Under the null hypothesis that β(t;x) = 0, t =
1, . . . , T and x ∈ {0, . . . , k}, the test statistic and associated rejection region has the desired
asymptotic type I error rate regardless of the underlying true within-person correlation
(assuming Wc is invertible).

4. Use of a L2-projection to form the test statistic. Recall that if under the alternative hy-
pothesis β(t;x) is not equal to a linear combination of ft (x), then the L2-projection of
β(t;x) depends on the feature vector, the pattern of availability across time and the dis-
tribution of the stratification variable across time. Figure 2 provides a visualization. Here,
consider different uses of the feature dt denoting the day in study. The red line is the com-
plex, true treatment effect β(t;x). The black line is the projected effect onto feature vector
ft = (1, dt ) when there is a quadratic pattern across time in availability (E[It |Xt = x]) and
the stratification distribution P(Xt = x) is constant through time. Similar interpretations
hold for the blue, dotted blue and dotted black lines as indicated in Figure 2. The four
projections are distinct in the top graph in Figure 2, illustrating how the joint distribution
of availability and the stratification variable affects the L2-projection.

None of the four projections fully reflect the true alternative β(t;x), but all four roughly
pick up the departure of the true β(t;x) from the null hypothesis. While it is tempting to
consider higher dimensional and more flexible feature spaces so as to more fully reflect
the variety of possible alternatives to the null hypothesis, these come at a cost in the
additional degrees of freedom in the F statistic. This may lead to an increase in sample
size for a given desired power. This tradeoff is discussed at length in Section H in the
supplementary material (Dempsey et al. (2020)); we suggest sizing a study for primary
hypothesis tests using the least complex alternative possible. In the case of Sense2Stop,
we decided to use a projection onto ft = (1, dt , d

2
t ). The dotted black line in Figure 2

captures most of the variation in β(t;x) under plausible time patterns in the distribution
of availability and the stratification variable. The test statistic targets this low dimensional
alternative so as to address challenge 2 listed in Section 1.
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FIG. 2. Illustration of the L2-projection of β(t;x) onto feature vector ft . The reference distribution p̃t (1|x) is
constant in (t, x). The feature vector is nonparametric in binary x and set within each strata to ft = (1, dt ) or
ft = (1, dt , d

2
t ) where dt is equal to the number days in study; expected availability given Xt = x is constant in

t time or is quadratic in t with the same average. The distribution of Xt is constant in t or is quadratic in t with
the same average.

6. Sample size formulae. To plan the sMRT, we need to determine the sample size, N ,
needed to detect a specific alternative with a given power (1 − β0) at a given significance
level (α0). The sample size is the smallest value N such that

(7) 1 − Fqc,N−(q ′+qc);Nγc

(
F−1

qc,N−(q ′+qc);0(1 − α0)
) ≥ 1 − β0.

Fd1,d2;λ and F−1
d1,d2;λ denote the cumulative and inverse distribution functions, respectively,

for the noncentral F -distribution with degrees of freedom (d1, d2) and noncentrality parame-
ter λ. Calculation of the sample size N is nontrivial due to the unknown form of the noncen-
trality parameter, Nγc (where γc is defined in (5)). This is in contrast to micro-randomized
trials where, under nonstochastic randomization probabilities and certain working assump-
tions, Liao et al. (2016) were able to find an analytic form for the noncentrality parameter
Nγc.

We outline a simulation-based sample size calculation, starting with general overview and
comments in Section 6.1 and employ this calculator to design the smoking cessation study in
Section 7.

6.1. Simulation-based sample size calculation. As discussed above, explicit calculation
of the sample size N is nontrivial due to the unknown form of the noncentrality parameter.
Here, we propose a three-step simulation-based sample size calculator.

In the first step equation (5) and information elicited from the scientist is used to calculate,
via Monte-Carlo integration, γc in the noncentrality parameter. The resulting value, γ̂c, is
plugged in to equation (7) to solve for an initial sample size N̂0. In the second step we use a
binary search algorithm to search over a neighborhood of N̂0; in our simulations we found the
binary search quickly resulted in a solution. For each sample size N required by the binary
search algorithm, K samples each of N simulated participants are run. Within each simulation
the rejection region for the test is given by equation (6) at the specified significance level. The
average number of rejected null hypotheses across the K simulations is the estimated power
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for the sample size N . The sample size is the minimal N with estimated power above the
prespecified threshold 1 − β0.

In the last, third, step we conduct a variety of simulations to assess the robustness of the
sample size calculator to any assumptions and to make adjustments to ensure robustness. See
our use of these simulations to test robustness for Sense2Stop in Section 7.

The sample size calculator uses the following information for t = 1, . . . , T ;x ∈ {0, . . . , k}:
1. Desired type 1 and type 2 error rates,
2. Targeted alternative β(t;x),
3. Selected probabilities {p̃t (1|x)},
4. Selected “control variables” gt (Ht),
5. The randomization formula used to determine pt(1|h) given a history h, and
6. A generative model for {Ht }t=1,...,T .

We provide general comments concerning the choice of the above items and then build the
sample size calculator for the Sense2Stop study of Section 7.

First, we elicit information from the scientist to construct a specific alternative form
for β(t;x). A simple approach is to consider linear alternatives, {β(t;x) =
ft (x)′β�

c }t=1,...,T ;x∈{0,...,k}, so that the L2 projection and the alternative coincide. Stratifi-
cation variables are often categorical (X is categorical); as a result, we model the alternative
separately for each value of X = x;x ∈ {0, . . . , k}. Furthermore, if we suspect that the effect
will be generally decreasing (with study time) due to habituation, then we might consider a
vector feature, ft that represents a linear in time t trend. Or we might believe that the effect
of the treatments might be low at the beginning of the study and then increase as participants
learn how to use the treatment and then decrease due to habituation; here, we might con-
sider a vector feature ft that results in a quadratic trend. Both quadratic and linear trends are
presented in Figure 2.

The less complex the projection (smaller qc) of the alternative β(t;x), the smaller the
required sample size N becomes. On the other hand, the use of a simple projection for the
alternative may not reflect the true alternative β(t;x) very well (see Section H in the sup-
plementary material (Dempsey et al. (2020)) for a discussion of this tradeoff). This led to
the suggestion in Section 5.1 for sizing a study for primary hypothesis tests using the least
complex alternative possible.

To select the probabilities {p̃t (1|x)}t=1,...,T ;x∈{0,...,k}, recall that these probabilities define
the weighting across time and across the stratification distribution of the alternative when
operationalized as an L2 projection. To see this, suppose we decide to target a constant-
across-time alternative and select ft (Xt) = (1Xt=1,1Xt=2, . . . ,1Xt=k)

′. If we set the refer-
ence probabilities to be constant in t and x then β�

c = (β�
c,1, β

�
c,2, . . . , βc,k) where

β�
c,x =

[
T∑

t=1

E[It1Xt=x]
]−1[

T∑
t=1

E[It1Xt=x]β(t;x)

]
.

In this case βc,x is an average treatment effect across time weighted by the fraction of time
the participant is available and in stratification level x. In our work we usually set p̃t (1|x) to
be constant in (t, x) so as to more easily discuss the targeted alternative with collaborators.

Next, a decision should be made about which control variables gt (Ht) should be included
in the construction of the test statistic. One might want to include in the q ′ by 1 vector
gt (Ht) many variables so as to maximally reduce variance and thus increase the size of the
noncentrality parameter in (5); indeed, for fixed q ′, the larger the noncentrality parameter, the
smaller the sample size N . However, from equation (7) we see that fixing all other quantities,
the sample size N increases with increasing q ′. So intuitively, there is a tradeoff between
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increasing the size of the noncentrality parameter by including more variables in gt (Ht) with
the resulting reduction in degrees of freedom in the denominator of the F test caused by
increasing q ′, the number of variables in gt (Ht ). See Section H in the supplementary material
(Dempsey et al. (2020)) for further discussion. This tradeoff is directly related to balancing
between small sample bias and power, challenge 2 from Section 1. Below, for Sense2Stop,
we calculate the sample size with the vector of control variables gt (Ht ) set equal to ft (Xt);
this maintains a hierarchical regression yet keeps q ′ as small as possible. Incidentally, this
simplifies the development of the generative model as additional time-varying variables are
not included.

Generally, the randomization formula has been determined by considerations of treatment
burden, availability and whether it is critical for the scientific question that the randomization
depend on a time-varying stratification variable such as a prediction of risk. Treatment burden
considerations might impose a constraint, such as on average around n treatments per strata
should occur over a specified time period (e.g., an average of n treatments per day); also,
the randomization formula might be developed so as to limit the variance in the number of
treatments in the specified time period. In the Sense2Stop study the randomization probability
pt(1|Ht) is set to limit treatment to an average of 1.5 treatments per day when classified as
stressed and when not classified as stressed.

The sample size formula requires the specification of a generative model for the history
Ht which achieves the specified alternative treatment effect. However, existing datasets that
include the use of the required sensor suites and thus can be used to guide the form of the
generative model are often small and do not include treatment. In Sense2Stop, for example,
we require a generative model for the multivariate distribution of {Xt,Ut , It ,At }Tt=1 of which
only the distribution of At given (Ht , It = 1) is known (e.g., pt(1|Ht)). We have access
to a small, observational, no-treatment data set that included the required sensor suites and
thus can be used to guide the form of the generative model. Because the dataset is small, in
Section 7 we construct a low-dimensional Markovian generative model. Here, and in general,
the prior data does not include treatments. Thus, we use the prior data to develop a generative
model under no treatment.

The relatively simple generative model allows us to use only a few summary statistics
from this small noisy dataset. This, of course, may lead to bias (i.e., the simple generative
model may not adequately reflect the true data generating mechanism). This bias would be
problematic if the bias results in sample sizes for which the power to detect the desired effect
is below the specified power. Thus, we also use the small dataset to guide our assessment
of robustness of the sample size calculator. In Section 7.4.3 a complex generative model is
proposed by exploratory data analysis.

We follow the three steps outlined at the beginning of this subsection to provide a sam-
ple size N . Our calculator also provides standardized effect sizes. Table 6 in Section K of
the supplementary material (Dempsey et al. (2020)) provides standardized treatment effect
sizes, defined as, d(t;x) = β(t;x)/σ̄x . The average conditional variance, σ̄ 2

x = (1/T ) ×∑T
t=1 E[Var(Yt,�|It = 1,At ,Ht)|It = 1,Xt = x], is calculated using the alternative effect

β(t;x) and the generative model.

7. Sense2Stop. In the following we take the general three-step procedure and walk
through how to adapt it to the specifics of the Sense2Stop study and form the sample size
calculator. Recall, the last step involves a variety of simulations to assess robustness to the
assumption underlying the generative model; this step is provided in Section 7.4.

As noted previously, Sense2Stop is a 10 day study; the first day is the “quit day,” the day
the participant quits smoking. Recall that participants wear the AutoSense sensor suite (Ertin
et al. (2011)) which provides a variety of physiological data streams. During the conduct of
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the study, the stratification variable, Xt , is constructed online. Xt = 1 if at minute t there
is “sufficient evidence” that the participant is in a stress episode; otherwise Xt = 0. That is,
until there is sufficient evidence whether that the participant is in a stress episode, Xt remains
unknown. Further information on these episodes follows. First, every minute, a support vector
machine (SVM) algorithm is applied to a number of ECG and respiration features constructed
from the prior one minute stream of sensor data. The output of the SVM is then transformed
to obtain a stress “likelihood” in (0,1); see Hovsepian et al. (2015) for details. This output (in
(0,1)) across the minute intervals is further smoothed to obtain a smoother stress likelihood
time series. Next, a Moving Average Convergence Divergence approach is used to identify
minutes at which the trend in the stress likelihood is going up and when it is going down;
see Sarker et al. (2016) for details. The beginning of an episode is marked by the start of a
positive-trend interval in the stress “likelihood.” Recall, the peak of an episode is the end of a
positive-trend interval followed by the start of a negative-trend interval. If the area under the
curve from the beginning of the episode to the minute that the peak of the episode is detected
exceeds a threshold, then at this time the individual is classified as stressed for all minutes t

in the episode (i.e., Xt = 1). At all other times the participant belongs to the not classified as
stressed strata (i.e., Xt = 0). Figure 1 visualizes this episodic pattern. The threshold is based
on prior data from lab experiments and was evaluated on independent test datasets (from both
lab and field) in terms of the F1 score (a combination of sensitivity and specificity (Wikipedia
(2017))) for use in detecting physiological stress.

Next, we build the simulation-based calculator assuming the primary hypothesis is H0 :
β(t;x) = 0; t = 1, . . . , T ;x ∈ {0,1} and the test statistic is as given in (4). Small sample
corrections are used in constructing the test statistic as discussed in Section 5; see Section J
in the supplementary material (Dempsey et al. (2020)) for additional details.

7.1. Simulation-based calculator. We start by choosing inputs for the sample size for-
mula as outlined in Section 6.1. We set the desired type 1 and type 2 error rates to be 0.05 and
0.20 respectively. We next specify the targeted alternative β(t;x) = ft (x)′β�

c for β�
c ∈ R

qc .
The scientific team suspected that if there is an effect of the mindfulness reminders, then this
effect might increase as participants begin to practice the mindfulness exercises and then the
effect may decrease due to habituation. Thus, we select ft (Xt)

′ = (f ′
t · 1Xt=0, f

′
t · 1Xt=1)

where f ′
t = (1, � t−1

600 	, � t−1
600 	2). This leads to a nonparametric treatment effect model in the

stratification variable Xt and a piecewise constant treatment effect model in time given Xt =
x that is quadratic as a function of “day in study.” In this case the dimension of the L2 projec-
tion is qc = 3 · 2 = 6, β�

c = (β�
c,0, β

�
c,1) ∈ R

6 and the targeted alternative is β(t;x) = f ′
t β

�
c,x

for x = 0,1. Next, to elicit enough information from the scientist to specify β�
c , we ask sci-

entists to specify for each level of X, (1) an initial conditional effect, (2) the day of maximal
effect (t�x ) and (3) the average conditional treatment effect β̄c,x = T −1 ∑T

t=1 β(t;x). This set
of conditions uniquely identifies the subvector β�

c,x ; therefore, the conditions over each level
of X combine to uniquely identify the vector β�

c = (β�
c,0, β

�
c,1) as desired. For Sense2Stop

we will target the same alternative for both levels of the stratification variable Xt ; thus,
β�

c,0 = β�
c,1. To set this common alternative, we use the following values: the day of max-

imal effect is day 6 and the initial conditional effect is 0. We consider three possible common
values of β̄c,0 = β̄c,1 denoted β̄ in Table 2.

Here, we set the control variables to gt (Ht ) = ft (Xt). Furthermore, suppose the formula
for randomization probability depends only on past values of the time-varying variable Xt ,
availability It and treatments At . We use the formula for pt(a|ht ) provided in Section F of
the supplementary material (Dempsey et al. (2020)). One of the inputs to the randomization
formula at an available decision point t is the expected number of episodes during the re-
maining part of the day that will be classified as stressed (X = 1) and the expected number of
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episodes during the remaining day that will not be classified as stressed (X = 0). The genera-
tive model developed below is used to provide this input. See Section F in the supplementary
material (Dempsey et al. (2020)) for further details and the specification of other inputs to
this randomization formula.

7.1.1. Generative model. We briefly overview the procedure for constructing the genera-
tive model. We then move on to the specifics, highlighting the rationale behind each decision.
First, the stratification variable process Xt is a state-space stochastic process. A natural can-
didate for such processes with small, finite state spaces are Markov chains. These are com-
putationally tractable and easy to discuss with the scientific team. Second, availability is tied
to the episodic nature of the stress classifier as decribed at the beginning of Section 7 with
pre-peak, peak and post-peak phases to each episode. To handle this, we specify a “struc-
tured Markov chain” (Xt ,Ut ) where t is at the minute level, Xt denotes the episode type
(“Stress,” “Nonstress”) and Ut denotes the current episode phase (“pre-peak,” “peak” and
“post-peak”). The episodic nature of the data is due to the complexities of the underlying
physiology of stress and the particulars of the stress classifier.

We now use a subset of the data collected in an observational, no treatment, smoking
cessation study of 61 cigarette smokers (here on called the “Minnesota dataset”) (Saleheen
et al. (2015)) to inform the generative model of longitudinal trajectory {Xt, It }Tt=1. Of the 61
participants 50 had sufficiently high-quality electrocardiogram data to construct the episodes
and infer the stress classification. This subset is reported in Sarker et al. (2017). From this
data, we calculate the sample moments:

1. For each episode type (i.e., x ∈ {0,1}), the probability that the next episode will be a
stress episode, that is, a 2 by 1 vector W̄ ;

2. For each episode type (i.e., x ∈ {0,1}), the average episode length, that is, a 2 by 1
vector Z̄.

The sample moments are W̄ = (0.067,0.519) and Z̄ = (10.9,12.0).
Using these sample moments, we construct a no-treatment transition matrix for the joint

process Vt = (Xt ,Ut ), t = 1, . . . ,600. Each episode ends in state Vt = (x,2) for x ∈ {0,1}
and transitions to the beginning of the next episode, Vt+1 = (x′,0) for x′ ∈ {0,1}. We restrict
the transition matrix such that for x ∈ {0,1}:
• (x,0) can only transition to states (x,0) or (x,1) (i.e., stay in state “pre-peak” or transition

to state “peak”) from one minute to the next minute.
• (x,1) transitions immediately to (x,2) with probability one (i.e., pr(Vt+1 = (x,2)|Vt =

(x,1)) = 1); in other words, the process inhabits the “peak” state for only one minute.
• (x,2) can only transition to states (x,2), (0,0) or (1,0) (i.e., stay in state “post-peak” or

end the episode and begin a new one).

We label each episode depending on the value x. We use the approximation, Ut 
= 1 implies
It = 0. In this minute the episode is classified as stressed or not classified as stressed. Define
Z̃(x,u) to be the length of the phase u in an episode of type x after the chain enters state (x, u).
Then Z̃(x,1) = 0 for each x because as soon as the chain enters the peak (u = 1) of an episode,
the chain departs. Otherwise, set Z̃(x,u) = (Z̄x − 3)/2 for u = 0 and u = 23.

We set the no-treatment transition probability matrix to

P
(0)
(x,u),(x,u) = Z̃x,u/(Z̃x,u + 1) and P

(0)
(x,1),(x,2) = 1.0

3We subtract three as we are guaranteed one pre-peak, one peak and one post-peak minute in each episode.
Dividing by two splits the remaining average time evenly between pre-peak and post-peak phases of an episode.
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TABLE 1
P (0): Transition Matrix for the Markov chain, Vt , under No Treatment

Nonstress Stress

Pre-peak Peak Post-peak Pre-peak Peak Post-peak

Nonstress Pre-peak 0.80 0.20 0.00 0.00 0.00 0.00
Peak 0.00 0.00 1.00 0.00 0.00 0.00
Post-peak 0.19 0.00 0.80 0.01 0.00 0.00

Stress Pre-peak 0.00 0.00 0.00 0.82 0.18 0.00
Peak 0.00 0.00 0.00 0.00 0.00 1.00
Post-peak 0.09 0.00 0.00 0.09 0.00 0.82

for x ∈ {0,1} and u ∈ {0,2}, and then set

P
(0)
(x,2),(0,0) = (1 − W̄x)(1 − P(x,2),(x,2)) and P

(0)
(x,2),(1,0) = W̄x(1 − P(x,2),(x,2))

for x ∈ {0,1} (recall that W̄x is the estimated probability that the next episode will be a stress
episode). All other entries of P (0) are set to zero. Thus P (0) is a deterministic function of the
moments W̄ and Z̄. See Table 1 for the transition matrix P (0).

The transition matrix P (0) specified in Table 1 has stationary distribution (π(0,0) = 0.394,

π(0,1) = 0.080, π(0,2) = 0.394, π(1,0) = 0.061, π(1,1) = 0.011, π(1,2) = 0.061).

7.2. Generative model under treatment. Next, we form the generative model under treat-
ment. We make the simplifying assumption that following treatment (i.e., At = 1), Vt+j

evolves as a discrete-time Markov chain but with respect to a different transition matrix
P

(1)
t for each of the subsequent j = 1, . . . ,60 minutes. After the hour, assuming a subse-

quent treatment notification is not provided, the time-varying stratification variable returns to
evolution as a Markov chain with transition matrix P (0). Thus,

pr
(
Vt = (x, u)|Vt−1 = (

x′, u′),Ht−1
)

=
{[

P (0)]
(x′,u′),(x,u) if At−s = 0, s = 1, . . . ,60,[

P
(1)
t

]
(x′,u′),(x,u) otherwise.

Because the alternative β(t;x) is constant within each day, we will construct a transition
matrix, P

(1)
t , that will only depend on t through the day of decision t . Thus, we use the

notation P
(1)
d(t) instead of P

(1)
t where d(t) is the day of decision time t .

Recall the treatment effect is the effect of providing a notification at time t to practice
stress-reduction exercises and no more notifications within the next hour versus no notifica-
tion at time t and no notifications over the next hour on the percent of time stressed in the
next hour. Thus, the reference policy sets the treatments at+1, . . . , at+�−1 to 0 and the ex-
pected proximal response under the reference policy can be computed analytically for any
combination of x and a (� = 60). See Section K.1 of the supplementary material (Dempsey
et al. (2020)) for derivations of the below analytic forms. When a = 1, under the proposed
generative model the above expectation is equal to �−1 ∑�

s=1
∑

u∈{0,1,2}[(P (1)
d(t))

s](x,1),(1,u).
When a = 0, the expectation is equal to the fraction of time stressed within the next hour
under the reference policy of no actions for that hour

�−1
�∑

s=1

∑
u∈{0,1,2}

[(
P 0)s]

(x,1),(1,u).
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Given the alternative β(t;x) for a particular day, we set P
(1)
d(t) equal to

arg min
Q∈P

∑
x∈{0,1}

(
�−1

�∑
s=1

∑
u∈{0,1,2}

([
Qs]

((x,1),(1,u)) − [(
P (0))s]

((x,1),(1,u))

) − β(t;x)

)2

,

where P denotes the set of transition matrices which satisfy the constraints discussed above.
The set P can be parameterized in order to use general-purpose, box-constrained optimization
methods to calculate P

(1)
d(t) efficiently. For all calculations we initialize with inputs equivalent

to the transition matrix P (0). Using this procedure, the maximum squared distance across all
alternatives β(t;x) considered in this paper is 2.71 × 10−11 (i.e., low approximation error).

7.3. Generating the simulated data. The prior section yields the no-treatment and treat-
ment transition matrices (i.e., P (0) and {P (1)

d }10
d=1)), given the specified alternative {β(t;x)}.

We briefly show how to use this information along with the randomization probability for-
mula to generate synthetic data arising from a stratified micro-randomized trial. First, we
generate data for each day independently. On a given day at time t , we first generate Vt using
the transition equation in Section 7.2. We then assess availability, It , which is a deterministic
function of the current value of Vt and the past 60 minute history of actions {At−s}s=1,...,60.
That is, It = 1[∑60

s=1 At−s = 0] × 1[Ut = 1]. We adjust availability in the first hour of each
day to be only a function of whether an intervention was already provided that day. Given
It = 1, we take the history Ht and generate the action at time t , At , using the given ran-
domization probability formula pt(1|Ht) found in Section F of the supplementary material
(Dempsey et al. (2020)). In order to compute the proximal response Yt,� for every minute
over the 10 hour day (i.e., t = 1, . . . ,600), we simulate an additional eleventh hour during
which participants cannot receive treatment (i.e., participants are unavailable). The above
procedure generates synthetic data for one participant in a stratified micro-randomized trial.

7.3.1. The test statistic. The above provides the generative model for use in the
simulation-based sample size calculator. Next, consider the choice of the test statistic for
use in calculating the sample size. In the test statistic (4) we set the time t reference prob-
ability p̃t (1|x) equal to

∑
x=0,1 π(x,1)(1.5/[(600 − 1.5 · 60)π(x,1)]) = 5.88 × 10−3. Recall

that the numerator of the weight, wct , in (3) is p̃t (At |x)
∏�−1

s=1 1[At+s = 0]. The probability,
p̃t (1|x) is equal to the daily average number of treatments while in state x divided by the
daily average number of times the participant is available and in state x, marginalized over
the state x. In the denominator the term 1.5 · 60 is subtracted off the total number of decision
points due to the availability constraints following treatment.

The test statistic (4) with the above choice of reference probabilities, and the above gen-
erative model are used to generate the sample sizes in Table 2. The column labeled “Sample
Size” in this table provides the estimated sample size to detect a specified alternative for the
conditional proximal effect given power of 80% and significance level 5% for the Sense2Stop
study. Recall that our input for the day of maximal effect is day 5 and the input for the initial

TABLE 2
Estimated sample size, N , achieved power, and achieved type I error

Sample size Power Type I error

β̄ = 0.030 50 80.6% 5.1%
β̄ = 0.025 67 80.7 4.4
β̄ = 0.020 127 80.6 5.6
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conditional effect is 0 for both levels of the time-varying variable Xt . The average treatment
effects {β̄x = T −1 ∑T

t=1 β(t;x)}x=0,1 are assumed equal across levels X and set to β̄; in the
tables below three values of β̄ are considered. Achieved significance levels under the null are
included.

7.4. Evaluation of simulation calculator for the smoking cessation study. Recall that the
relatively simple generative model allowed us to use only a very few statistics from the Min-
nesota dataset described in Section 7.1.1. There are two concerns: (1) whether or not the par-
ticipants in the Minnesota study are representative of the future participants in Sense2Stop,
and (2) whether or not the generative model built upon a few sample moments adequately
captures the variation in the unknown longitudinal distribution (Xt ,Ut , It )

T
t=1 under no treat-

ment. If (1) does not hold, then the sample moments may be biased (scenario A). If (1) holds
and (2) does not, it may be that prior scientific knowledge can suggest potential deviations
that are difficult to estimate given the small size of prior data (scenario B). If (1) holds and
(2) does not, alternatively, it may be that we can account for additional variation via fitting
more complex models to the Minnesota dataset (scenario C). Any of these scenarios may
problematic if it results in sample sizes for which the power to detect the desired effect is
below the specified power. Therefore, we construct a feasible set of alternative generative
models to which the sample size calculator should be robust. Note, this is not an exhaustive
list, but highlights three important scenarios we expect to occur in practice.

7.4.1. Misspecification of transition matrix P (0). For scenario A, we consider situations
where the generative model for the future Sense2Stop participants can be constructed in the
same manner; however, the correct moment inputs for Sense2Stop are deviations from the
sampled moments of the Minnesota study. Let B(ε,ε′) denote an (ε, ε′)-ball around the inputs
(W̄ , Z̄); that is,

B(ε,ε′) = {
(W,Z)|‖W − W̄‖∞ ≤ ε and ‖Z − Z̄‖∞ ≤ ε′}.

For each (W,Z) ∈ B(ε,ε′), we wish to compute the achieved power under the alternative
generative model where Vt under no treatment evolves as a Markov chain with transition
matrix P constructed from inputs W and Z; however, this is computationally prohibitive.
Simulation suggests power to be a smooth, nonincreasing function of both ε and ε′, so instead
we focus on computing power for the following subset of B(ε,ε′):

(ε,ε′) = {(W,Z)|W ∈ W̄ ± {
(ε,−ε), (ε, ε)

}
and Z ∈ Z̄ ± {(

ε′,−ε′), (
ε′, ε′)}.

For each pair (W,Z) ∈ (ε,ε′) we compute the associated transition matrix P ; then we com-

pute the sequence of transition matrices P
(1)
d(t) which maintain the correct alternative treatment

effect. We define the power for B(ε,ε′) to be the minimum power across (W,Z) ∈ (ε,ε′).
Selection of (ε, ε′) is driven by observed variation in the Minnesota dataset. For selec-

tion of ε′, we note the standard deviation of nonstress and stress episode durations in the
Minnesota dataset is 6.89 and 6.48, respectively. Moreover, the standard errors in the sample
moment Z̄ were only 0.12 and 0.28, respectively. Thus, we chose ε′ ∈ {2,4}. To select ε, we
observe the standard error for the moment estimates W̄ are 0.005 and 0.03 for nonstress and
stress episodes, respectively. Thus, we set ε ∈ {0.01,0.02}.

Table 3 presents achieved power under the previously calculated sample sizes for (0.02,4)

and (0.01,2), respectively. For both (ε, ε′) = (0.01,2) and (ε, ε′) = (0.02,4), the achieved
power is significantly below the prespecified 80% level for all three choices of the average
treatment effect β̄ .
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TABLE 3
Misspecification of transition matrix P (0): minimum

achieved power over set of matrices in ε,ε′

(ε, ε′) =
(0.02,4) (0.01,2)

β̄ = 0.030 57.5% 61.5%
β̄ = 0.025 43.9 52.2
β̄ = 0.020 40.4 65.6

7.4.2. Deviations from a time-homogenous transition matrix under no treatment. For
scenario B we consider a deviation suggested by prior knowledge, namely, that stress dynam-
ics are different over the weekend from the weekday. Given the prior Minnesota study was
small, this proposed deviation is not data driven but scientifically motivated. This suggests a
different type of misspecification of the transition matrix P (0), that of time-inhomogeneity; as
before the treatment effect is still correctly specified. In particular, suppose that the assumed
transition matrix, P (0), is correct for weekdays but not for weekends; in particular, suppose
in reality that the transition matrix under no treatment on the weekend is P

(0)
weekend 
= P (0).

The weekend is defined as d(t) = 6 and 7 (i.e., all participants enter the study on a Monday).
We specify P

(0)
weekend via inputs (W̄weekend, Z̄weekend) which we set to two possible values,(

(0.04,0.45), (10.9,12.0)
)︸ ︷︷ ︸

weekend inputs (1)

or
(
(0.10,0.60), (10.9,12.0)

)︸ ︷︷ ︸
weekend inputs (2)

.

Using the inputs, we construct two alternate versions of what the true transition matrix
P

(0)
weekend might be. For input (1) the individual is less likely to enter a stress episode over

the weekend; for input (2) the individual is more likely to enter a stress episode over the
weekend. In both cases the average episode lengths are assumed equal to W̄ .

Table 4 presents achieved power under these alternative generative models. We see that
the achieved power is below the prespecified 80% threshold in each case except for β̄ =
0.020 under weekend input 1. If the scientist thought such deviations feasible, then the above
analysis suggests for Sense2Stop that the sample size be set to ensure a least 80% power
over a set of feasible choices for time-inhomogeneous choices for the no-treatment transition
matrix.

7.4.3. Deviations from a Markovian generative model. For scenario C we fit a semi-
Markov generative model to the small, observational Minnesota study. This accounts for
additional variation in the prior study, but the resulting generative model may not represent

TABLE 4
Estimated power under generative model with

time-inhomogeneous Markov chain

Estimated power

Weekend Input 1 Weekend Input 2

β̄ = 0.030 79.2 69.8
β̄ = 0.025 72.5 66.0
β̄ = 0.020 81.5 76.4
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TABLE 5
Parameter estimates for the logistic regression. Response is indicator of current episode being a stress episode

Parameter Estimate Std. Error 95% LCL 95% LCL

Intercept −2.83 0.10 −3.03 −2.63
1L Stress Ep. 2.75 0.20 2.37 3.14
2L Stress Ep. 0.71 0.22 0.27 1.14

behavior for future Sense2Stop participants. That is, the model may overfit the Minnesota
study data and not generalize well to the future Sense2Stop participants. After presenting
data analysis for the semiMarkovian deviation, we then assess robustness of the sample size
calculator to this data-driven deviation.

We start by considering the episodic transition rule. The Markovian model assumes that
the episode transitions only depend on the prior episode classification. We test this by fitting
a logistic regression with episode classification as the response variable and lagged values of
episode classification as well as additional summaries of past history, including prior episode
durations and time of day as covariates. Analysis suggests that neither time of day nor prior
episode duration were statistically significant. We used forward selection to determine the
number of lagged values of episode classification, leading to inclusion of two lags. Table 5
presents the estimates of the logistic regression along with robust standard errors and confi-
dence intervals.

This model leads to slightly distinct behavior of the transition rules. For example, given
the prior episode was a stress episode, the probability of the next episode being a stress
episode ranges from 0.480 (two-lagged prior episode was nonstress) to 0.652 (two-lagged
prior episode was stress). Given the prior episode was a nonstress episode, the probability of
the next episode being a stress episode ranges from 0.056 (two-lagged prior episode was non-
stress) to 0.107 (two-lagged prior episode was stress). Table 5 leads to a different Markovian
model in which the state is (Xt ,Ut ,L

(1)
t ) where L

(1)
t denotes the classification of the prior

episode.
We next examine the pre- and post-peak durations. Figure 3 shows histograms of the pre

and postpeak durations in the analyzed subset of data along with empirical Bayes estimates

FIG. 3. Histograms of duration for pre/post-peak durations for Minnesota study. Empirical bayes pdfs for ex-
ponential (red) and Weibull (black) densities are overlayed.
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TABLE 6
Parameter estimates for each Weibull survival regression

Pre-peak Post-peak

Parameter Estimate Std. Error p-value Estimate Std. Error p-value

Intercept 1.78 0.016 0.000 1.59 0.02 0.000
0L Stress Ep. −0.20 0.037 0.000 0.45 0.07 0.000
1L Stress Ep. – – – −0.21 0.058 0.004
2L Stress Ep. – – – −0.16 0.07 0.020
Log(scale) −0.24 0.015 0.000 −0.31 0.05 0.000

of the probability density functions under both exponential and Weibull distribution specifi-
cations. We recognize the durations are discrete and the above distributions are continuous.
These are fit for simplicity. When generating the episode duration, we generate a random
variable from the continuous distribution and take the integer part of that random variable. It
is evident from the figures that the Weibull distribution is more appropriate.

Table 6 presents the parameter estimates for this over-fit model to the duration data assum-
ing a Weibull distribution.4 Like the episodic transition rules, the post and pre-peak durations
now depend on the current episode classification as well as the prior episode classifications.
The exploratory data analysis suggests a semiMarkovian model in which the pre-/post-peak
durations are Weibull distributed, and the state is given by (Xt ,Ut ,L

(1)
t ,L

(2)
t ) where L

(i)
t

denotes the classification of the ith prior episode. For the pre-peak model, the one and two-
lagged indicators of a stress episode (“1L” and “2L Stress Ep.” in Table 6) were insignificant
and thus excluded from the model.

Next, we test robustness of the sample size calculator to the semiMarkovian deviations
described above. To test the calculator, we generate data using the no-treatment semiMarkov
model specified in Section L in the supplementary material (Dempsey et al. (2020)). The data
is simulated so that the treatment effect used by the calculator is correct. See Section L in the
supplementary material (Dempsey et al. (2020)) for a discussion of how this was achieved.
Table 7 presents achieved power under these alternative generative models. We see that the
achieved power is well above the prespecified 80% threshold in each case. Therefore, the
sample size calculator is robust to such complex deviations from the Markovian generative
model. For the given alternative β(t;x) and semiMarkov generative model, we calculate
the standardized effects. These are provided in Table 7 in Section K of the supplementary
material (Dempsey et al. (2020)).

7.5. Adjustments to the simulation-based calculator. In Section 7.4 we evaluated the
simulation calculator built in Section 7.1. Here, we make adjustments to the simulation calcu-

TABLE 7
Estimated power under semiMarkov generative

Estimated power

β̄ = 0.030 93.6
β̄ = 0.025 88.0
β̄ = 0.020 93.6

4Models are fit to duration minus one as pre- and post-peak durations are guaranteed to be greater than one.
Thus, we are modeling the duration in the state above the minimum value of one.
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TABLE 8
Estimated sample size, N , and computed

power under ε = 2 and ε′ = 0.01

Sample size Minimum power

β̄ = 0.030 69 81.9%
β̄ = 0.025 107 80.4
β̄ = 0.020 208 80.5

lator to ensure robustness. First, we note that the simulation calculator is robust to the poten-
tial semiMarkovian deviation discussed in Section 7.4.3. Next, we make the decision that we
are not concerned with lack of robustness to deviations from a time-homogenous transition
matrix as discussed in Section 7.4.2. Therefore, we focus on making the simulation calculator
robust to misspecification of Markov transition matrix as discussed in Section 7.4.1.

Analysis in Section 7.4.1 suggests for Sense2Stop that the sample size should be set to
ensure at least 80% power over a set of feasible choices for the transition matrix P (0). We
fix (ε, ε′) = (0.01,2) to be our tolerance to misspecification of the inputs. For each set of
inputs (W,Z) ∈ 0.01,2, we compute a sample size using the simulation calculator built in
Section 7.1. The maximum of this set of computed sample sizes is chosen to ensure toler-
ance to misspecification of the transition matrix. Table 8 presents the sample size under this
procedure as well as the achieved minimum power over the set ε,ε′ .

We have now used the three-step procedure to form a sample size calculator for the smok-
ing cessation study example. For illustration suppose we wish to detect an average condi-
tional treatment effect β̄ equal to 0.025. Based on the above discussion a sample size N of
107 would be recommended to ensure power above the prespecified 80% threshold across a
set of feasible deviations from the assumed generative model.

8. Conclusion. In this paper we introduced the stratified micro-randomized trial (sMRT)
and provided a definition and discussion of proximal treatment effects along with the depen-
dence of this definition on a reference distribution. We proposed a simulation-based approach
for determining sample size and used this approach to determine the sample size for a simpli-
fied version of the MD2K smoking cessation study. We expect that similar trial designs would
be applicable in areas such as marketing and advertising in which each client is tracked and
provided incentives, for example, treatments repeated over time, and it is of interest to deter-
mine in which contexts particular treatments are most effective.

An alternative test to our projection-based method is a randomization-based test. In Bojinov
and Shephard (2019), exact randomization based p-values are constructed for testing causal
effects in single time series experiments. The approach relies solely on random assignment
of treatment paths rather than the distribution of the test statistic for the validity of the test
(Rosenberger, Uschner and Wang (2019)). Randomization inference, however, targets a sharp
null that the treatment has no effect on the distribution of all the time-varying endogenous
variables (i.e., in our setting across availability It , phase Ut , stratification Xt and response
Yt,� variables). Our inferential target is more restrictive; our goal is to assess if the conditional
mean for a specific outcome Yt,� given availability (i.e., It = 1) and stratification variable
(i.e., Xt = x) is equal to zero jointly across time t = 1, . . . , T and strata x = 0,1. The authors
would be very interested in future work that extends the randomization test framework to our
inferential target.

While the focus here is sample size considerations, stratified micro-randomized studies
yield data for a variety of interesting secondary data analyses. For example, understanding
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predictors of future availability is of general interest as keeping participants engaged in the
mobile health intervention is often of high concern. Moreover, there is interest in using the
data in constructing “dynamic treatment regimes” (e.g., just-in-time adaptive interventions
(Spruijt-Metz and Nilsen (2014))). The stratified micro-randomized trial improves such anal-
yses by reducing causal confounding.

SUPPLEMENTARY MATERIAL

Supplementary material for “The stratified micro-randomized trial design: Sam-
ple size considerations for testing nested causal effects of time-varying treatments”
(DOI: 10.1214/19-AOAS1293SUPP; .pdf). This supplement provides important details on
the Sense2Stop stratified micro-randomized trial design, additional comments on sMRT de-
sign choices, proofs and technical derivations, and sample size calculations for the marginal
proximal effect.
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