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We consider the scientifically challenging and policy-relevant task of un-
derstanding the past and projecting the future dynamics of the Antarctic ice
sheet. The Antarctic ice sheet has shown a highly nonlinear threshold re-
sponse to past climate forcings. Triggering such a threshold response through
anthropogenic greenhouse gas emissions would drive drastic and potentially
fast sea level rise with important implications for coastal flood risks. Previous
studies have combined information from ice sheet models and observations to
calibrate model parameters. These studies have broken important new ground
but have either adopted simple ice sheet models or have limited the number
of parameters to allow for the use of more complex models. These limita-
tions are largely due to the computational challenges posed by calibration
as models become more computationally intensive or when the number of
parameters increases.

Here, we propose a method to alleviate this problem: a fast sequential
Monte Carlo method that takes advantage of the massive parallelization af-
forded by modern high-performance computing systems. We use simulated
examples to demonstrate how our sample-based approach provides accurate
approximations to the posterior distributions of the calibrated parameters. The
drastic reduction in computational times enables us to provide new insights
into important scientific questions, for example, the impact of Pliocene era
data and prior parameter information on sea level projections. These studies
would be computationally prohibitive with other computational approaches
for calibration such as Markov chain Monte Carlo or emulation-based meth-
ods. We also find considerable differences in the distributions of sea level pro-
jections when we account for a larger number of uncertain parameters. For
example, based on the same ice sheet model and data set, the 99th percentile
of the Antarctic ice sheet contribution to sea level rise in 2300 increases from
6.5 m to 13.1 m when we increase the number of calibrated parameters from
three to 11. With previous calibration methods, it would be challenging to go
beyond five parameters. This work provides an important next step toward
improving the uncertainty quantification of complex, computationally inten-
sive and decision-relevant models.

1. Introduction. How much will the Antarctic ice sheet contribute to future sea level
rise? The geological records suggest that ice sheets can quickly contribute considerable
amounts to global sea level rise (Deschamps et al. (2012)), in some cases up to 58 m (Fretwell
et al. (2012)). Projections of future sea level rise depend on deeply uncertain projections of the
Antarctic ice sheet’s (AIS) mass loss (Le Bars, Drijfhout and de Vries (2017), Wong, Bakker
and Keller (2017), Le Cozannet, Manceau and Rohmer (2017)). Close to eight percent of the
current global population is threatened by a five meter rise in sea level (Nicholls, Tol and
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Vafeidis (2008)), and 13 percent of the global urban population is threatened by a 10 meter
sea level rise (McGranahan, Balk and Anderson (2007)). Quantifying and characterizing the
long-term behavior of the Antarctic ice sheet is hence a key input to the design of coastal
risk-management strategies (cf. Garner and Keller (2018), Sriver et al. (2018), Oppenheimer
and Alley (2016)).

Ice sheet models rely on poorly constrained parameters, and recent studies show that uncer-
tainty in model parameters results in highly uncertain projections of sea level change (Stone
et al. (2010), Applegate et al. (2012), Fitzgerald et al. (2012), Collins (2007)), thereby affect-
ing climate risk decision-making (O’Neill et al. (2006), Hannart et al. (2013)). Recent studies
have addressed parametric uncertainty via calibration studies using modern observations, but
these are either limited to simple ice sheet models (Ruckert et al. (2017), Fuller, Wong and
Keller (2017)) or a small number of model parameters (Chang et al. (2016b), Edwards et al.
(2019), Schlegel et al. (2018)). Numeric solvers have been used to infer the field of basal
sliding parameters from satellite observations (Isaac, Stadler and Ghattas (2015), Isaac et al.
(2015)).

Ice-sheet models vary in complexity, and the key drivers of computational cost are the
spatial and temporal resolutions. Simpler models (cf. Bakker, Applegate and Keller (2016),
Shaffer (2014)) have short computer model run times on the order of a few seconds, but they
may oversimplify or even exclude important physical processes. More complex models (cf.
DeConto and Pollard (2016), Larour et al. (2012), Greve (1997), Rutt et al. (2009)) can better
represent key ice dynamics and typically run at higher spatiotemporal resolutions. However,
they require longer model run times. Here, we use a relatively complex ice-sheet model,
the Pennsylvania State University 3D ice-sheet model (PSU3D-ICE) (Pollard and DeConto
(2012)), but with considerably coarser resolution than in previous work, so that each set of
simulations for this study takes on the order of 10 to 15 minutes of wall time.

Past studies calibrate simpler models with many model parameters using Markov chain
Monte Carlo (MCMC) (cf. Ruckert et al. (2017), Bakker, Applegate and Keller (2016), Petra
et al. (2014)); these approaches are effective in the context of computationally inexpensive
models (model run times of a few seconds) and, hence, do not extend to the kind of models
we consider in this manuscript. Some studies have employed emulation-calibration methods
(Sansó, Forest and Zantedeschi (2008), Liu, Bayarri and Berger (2009), Bhat et al. (2010)) to
calibrate computer models with long run times, but these approaches are applicable to only
a small number of parameters. For computer models with longer run times and a large num-
ber of model parameters, emulation-calibration can be computationally prohibitive because
building an accurate emulator requires a very large set of training data (Bastos and O’Hagan
(2009), Maniyar, Cornford and Boukouvalas (2007)).

We propose calibrating an ice sheet model which: (1) accounts for important physical pro-
cesses, (2) includes several key parameters to analyze and quantify parametric uncertainty
and (3) expands the calibration dataset to the Pliocene. For this study, the Antarctic ice sheet
model runs at a spatial resolution of 80 km and temporal resolution of eight years, which is
a compromise between preserving reasonable accuracy of physical simulations vs. maintain-
ing a feasible model run time. We estimate that current rigorous methods for calibrating this
model via MCMC would take roughly on the order of years of wall time. We investigate meth-
ods for calibration that are amenable to heavy parallelization and computationally efficient,
thereby reducing the computational wall time from years to hours. We find that these meth-
ods are broadly applicable to computer models with a moderate model run time (six seconds
to 15 minutes) and a moderate number of model parameters (five to 20), based on available
computing resources. While this does not cover more complex models or larger number of
parameters, our methods are applicable to many scientifically important and policy-relevant
computer models.
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Studying the Antarctic ice sheet’s future behavior motivates the need for a computationally
efficient approach for computer model calibration. We turn to sequential Monte Carlo meth-
ods (cf. Doucet, Godsill and Andrieu (2000), Del Moral, Doucet and Jasra (2006), Chopin
(2002)), building upon particle-based methods for computer model calibration (Higdon et al.
(2008), Kalyanaraman et al. (2016)). Our approach builds upon an adaptive tempering sched-
ule and an adaptive mutation stage (Jasra et al. (2011)) which have been used for Bayesian
variable selection (Schäfer and Chopin (2013)), Bayesian model comparison (Zhou, Johansen
and Aston (2016)) and estimating initial conditions of the Navier–Stokes system of equations
(Kantas, Beskos and Jasra (2014), Llopis et al. (2018)).

By using massive parallelization in a high-performance computing environment, we ob-
tain a dramatic speed-up over current MCMC-based calibration methods, roughly reducing
wall time by a factor of 3000. We also limit expensive computer model runs by imposing
stopping rules and adaptive sampling techniques. We provide practical guidelines designed
to: (1) reduce total wall time, (2) limit the number of expensive computer model runs and (3)
simplify implementation for the user. Our computationally efficient calibration approach is
readily applicable to many computer models for which rigorous calibration may be currently
infeasible.

We note that we focus on a “static” system where all observations are available at once;
hence, there is only one posterior distribution of interest, which we approximate using our
particle-based approach. The PSU3D-ICE model is dissipative where it evolves to a sin-
gle constant steady state for a given set of parameter values and external forcing (Willems
(1972)). Unlike choatic systems, such as global weather models, “microscopic” changes in
the initial states do not change the results; in other words, there is no “butterfly effect”
(Lorenz (1972)). We use our approach to calibrate the PSU3D-ICE model (DeConto and
Pollard (2016)) using paleoclimate data and modern observational records. Previous work
focuses on calibrating the PSU3D-ICE model using fewer parameters (Chang et al. (2016b),
Edwards et al. (2019)) or surrogate models using limited training data (Chang et al. (2016a)).
Using our new method, we show that the information regarding the extent of the Antarctic
ice sheet in the Pliocene era strongly influences parametric and projection uncertainty. We
find that using improved geological data and analysis to characterize the Antarctic ice sheet’s
contribution to sea level rise in the Pliocene can bring about considerably sharper sea level
projections for future centuries.

The paper is structured as follows. In Section 2 we provide an overview of the ice-sheet
model (PSU3D-ICE). In Section 3 we describe the model calibration framework and discuss
challenges with current calibration methods. We propose our fast particle-based approach for
computer model calibration in Section 4. In Section 5 we demonstrate the application of our
method to a simulated example. In Section 6 we apply our method to the PSU3D-ICE model
and report our scientific conclusions. We end with caveats and directions for future research
in Section 7.

2. Computer model description and observations. In this section we provide back-
ground information for the PSU3D-ICE Antarctic ice-sheet model (DeConto and Pollard
(2016)) as well as the paleoclimate records and modern observations used to calibrate the
model.

2.1. The PSU3D-ICE model. The PSU3D-ICE model simulates the long-term dynam-
ics of continental ice sheets. It has previously been applied to past and future variations
of the Antarctic ice sheet (Pollard and DeConto (2009, 2012), Pollard, DeConto and Alley
(2015), Pollard et al. (2016), Pollard, Gomez and Deconto (2017)). Slow ice deformation
under its own weight is modeled by scaled dynamical equations for internal shear, horizontal
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stretching and basal sliding. Other variables and processes include internal ice temperatures,
bedrock deformation beneath the ice load, surface snowfall and melting, oceanic melting be-
neath floating ice shelves and calving of ice into the ocean (Pollard and DeConto (2012)).
A recently proposed mechanism called marine ice-cliff instability (MICI) that can drastically
attack ice in marine basins, involving hydrofracturing due to surface liquid water and struc-
tural failure of tall ice cliffs, is included here (Pollard, DeConto and Alley (2015), DeConto
and Pollard (2016)). Note that this mechanism has recently been questioned (Edwards et al.
(2019), Golledge et al. (2019)).

For the simulations in this study, a polar stereographic grid spanning Antarctica is used
with a horizontal resolution of 80 kilometers (km) which yields a model run time of approx-
imately 10 to 15 minutes for each set of past and future simulations described below. This is
a considerably coarser spatial resolution than previous continental-scale applications which
have used resolutions of 10 to 40 km. However, sensitivity tests with the model show reason-
able independence of results with model resolution, due to the grid-independent parameteri-
zation of important subgrid processes, such as grounding-line flux and cliff failure (Pollard,
DeConto and Alley (2015)). Those tests and the reasonable agreement in additional limited
offline tests at 80 km vs. finer resolutions indicate that the coarser resolution is adequate for
this study.

We evaluate the PSU3D-ICE model over three separate time periods. As in previous en-
semble work with this model (Chang et al. (2016a, 2016b), Pollard et al. (2016), DeConto
and Pollard (2016)), the time periods are selected to include major ice-sheet variations that
stringently test the model and have at least some paleo data to provide useful quantitative
constraints. The three time periods are: (1) a single episode of high sea level rise during the
warm mid-Pliocene (which extended roughly from 3.2 to 2.6 million years before present);
(2) the last interglacial period around 125,000 to 115,000 years ago, at the start of the last
Pleistocene glacial-interglacial cycle when global climate was slightly warmer than today,
the major Northern Hemispheric ice sheets were most recently absent prior to the modern
interglacial period, Greenland was smaller and the West Antarctic ice sheet may have under-
gone major collapse; and (3) the last deglacial period from the Last Glacial Maximum about
20,000 years ago to the present and then 5000 years into a warmer future. In Figure 1 we
present 1500 model simulations from the PSU3D-ICE model for all three time periods as
well as projections until year 2500. We describe the three model simulations below.

To represent a single high sea level episode during the warm mid-Pliocene era (roughly 3.2
to 2.6 million years before present), we initialize the ice-sheet model to modern conditions
and run the model forward for 5000 years. As described in previous Pliocene applications
(Pollard, DeConto and Alley (2015), Pollard, Gomez and Deconto (2017)), atmospheric cli-
matic forcing is provided by the RegCM3 regional climate model (Pal et al. (2007)) adapted
for polar regions and driven by the GENESIS v3 global climate model (Alder et al. (2011)).
The atmospheric carbon dioxide concentration is set to at 400 parts per million by volume
(ppmv), and a warm austral summer orbit is specified. We use oceanic temperatures from the
modern World Ocean Atlas database (Levitus et al. (2012)), with a +2◦C uniform perturba-
tion added to represent mid-Pliocene ocean warming. Atmospheric monthly cycles of surface
air temperature and precipitation are used to compute melting and annual mass balance on the
ice-sheet surface, and oceanic temperatures are used to compute basal melting under floating
ice shelves (Pollard, DeConto and Alley (2015)).

For the Last Interglacial (LIG) we initialize the ice-sheet model to modern conditions
and run the model from 130,000 to 120,000 years before present (130 ka to 120 ka). As
described in DeConto and Pollard (2016), LIG climates are specified as uniform perturbations
to modern climatology (Le Brocq, Payne and Vieli (2010) for atmosphere and Levitus et al.
(2012) for ocean). The atmospheric and ocean temperature perturbations vary stepwise in
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FIG. 1. Time series of 1500 simulated model output from the PSU3D-ICE model where each model run corre-
sponds to a line. Data are generated using 1500 parameter sets from the prior distribution. The y-axis denotes
the Antarctic ice sheet’s contribution to sea level change in meters (m). We approximate the present as year 1950.
Model simulations that have a non-zero likelihood are denoted by black lines and runs that have a zero likelihood
are displayed in light gray. (Top left) Model output for the Pliocene era model run where the x-axis denotes years
after initialization. (Top right) Model output for the last interglacial age where the x-axis denotes years before
the present. (Bottom left) Model output for the Last Glacial Maximum where the x-axis denotes years before the
present. (Bottom right) Model projections for 2000–2500 where the x-axis represents the year.

time. From 130 ka to 125 ka, they are +1.97◦C and +1.70◦C, respectively. From 125 ka to
120 ka, they are +1.41◦C and +1.51◦C, respectively.

The Last Glacial Maximum, modern, and future eras are simulated in one continuous run,
over the last 40,000 years through the last deglacial period to modern, and extended 5000
years into the future. As described in Pollard et al. (2016), the model is initialized appropri-
ately at 40 ka (40,000 years before present, or BP, relative to 1950 AD) from a previous long-
term run. Atmospheric forcing is supplied using a modern climatological Antarctic dataset
(Le Brocq, Payne and Vieli (2010)) with uniform cooling perturbations applied proportional
to a deep sea-core δ18O record (Pollard and DeConto (2009, 2012)). Oceanic forcing is sup-
plied from a coupled atmosphere-ocean general circulation model (AOGCM) simulation of
the last 20,000 years (Liu et al. (2009)). After reaching present day, each run is extended for
5000 years with atmospheric and oceanic forcing as described in DeConto and Pollard (2016),
for the Representative Concentration Pathway (RCP) 8.5 scenario of future greenhouse gas
emissions and concentrations (Meinshausen et al. (2011)), often called “business as usual.”
Atmospheric temperatures and precipitation are obtained by appropriately weighting previ-
ously saved simulations of the RegCM3 regional climate model for particular carbon dioxide
levels, and oceanic temperatures are supplied from an archived transient NCAR global model
simulation (Shields and Kiehl (2016)).

After each model run we extract the pertinent model output, specifically, the Antarc-
tic ice sheet’s contribution to sea level change (m), total ice volume (km3) and total
grounded ice area (km2). We then compare this to the corresponding paleo- or modern
observational records. In this study we examine 11 model parameters considered to be
important in modeling the behavior of the Antarctic ice sheet—OCFACMULT, OCFAC-
MULTASE, CRHSHELF, CRHFAC, ENHANCESHEET, ENHANCESHELF, FACEME-
LTRATE, TAUASTH, CLIFFVMAX, CALVLIQ and CALVNICK. Detailed descriptions of
each parameter are provided in the Supplementary Material (Lee et al. (2020)).

We note that this is a much larger number of parameters than typically considered for mod-
els with such detailed dynamics. The ice-sheet model has many more parameters than the 11
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chosen here. The values for many of them are reasonably well established in the glaciolog-
ical literature, resulting from published work over the last several decades applying similar
models to the Antarctic ice sheet. Those parameters mostly involve terrestrial processes (i.e.,
where ice is grounded on bedrock) that are constrained directly or indirectly by observational
data of the modern ice sheet, and/or laboratory ice physics, such as the rheology of ice, ice
streaming vs. shearing flow, basal sliding coefficients and modern ice distribution and thick-
nesses. The 11 parameters chosen here can have large effects on the results, but are not well
constrained by modern observations because they apply to processes: (1) that have occurred
in the past and expected in the future, but are not active today, or (2) are undergoing rapid
change in recent decades. Examples of (1) are basal sliding coefficients for bedrock in modern
ocean regions where grounded ice advanced during past glacial maxima and the timescale of
bedrock rebound under varying ice loads. Examples of (2) are coefficients for oceanic melt-
ing at the base of floating ice shelves and oceanic melting at vertical ice fronts. A subset of
these parameters have been used in more limited ensembles with this model (Chang et al.
(2016b, 2016a), Pollard et al. (2016), Pollard, Gomez and Deconto (2017)), but here the 11
parameters constitute the bulk of important yet relatively unconstrained parameters in the
model.

2.2. Paleoclimate records and modern observations. For the paleoclimate records we
use the Antarctic ice sheet’s contribution to sea level change in the following eras: Pliocene
(~2.6–3.2 million years before present), the Last Interglacial Age (~125,000 to 115,000 years
before present), and the Last Glacial Maximum (~20,000 years before present). We specify
the Antarctic ice sheet’s contribution to sea level change in terms of global mean sea level
equivalents (SLE) relative to the modern ice sheet, thereby correctly allowing for marine ice
grounded below sea level. The base units are meters (m). We adopt the following ranges for
the paleoclimate records which account for considerable uncertainty in published estimates
(cf. Kopp et al. (2009), Dutton et al. (2015)): (1) 5 m to 25 m for the Pliocene (Naish et al.
(2009), Rovere et al. (2014), Cook et al. (2013)); (2) 3.5 m to 7.5 m for the Last Interglacial
Age (Fuller, Wong and Keller (2017), DeConto and Pollard (2016)); and (3) −5 m to −15 m
for the Last Glacial Maximum (Ruckert et al. (2017), Pollard et al. (2016)).

Modern observations include total volume and grounded area of the Antarctic ice sheet
as well as 10 spatial locations that currently have ice present. Units for total volume and
total grounded ice area are cubic kilometers (km3) and square kilometers (km2), respectively.
Observations come from the Bedmap2 dataset (Fretwell et al. (2012)) which provide the
most recent gridded maps of ice surface elevation, bedrock elevation and ice thickness. The
Bedmap2 maps are generated using multiple sources, including satellite altimetry, airborne
and ground radar surveys and seismic sounding.

3. Model calibration framework. In this section we describe the general computer
model calibration framework. In computer model calibration key computer model param-
eters are estimated by comparing the computer model output and observational data (cf.
Chang et al. (2016a), Kennedy and O’Hagan (2001), Bayarri et al. (2007), Bhat et al. (2010)).
Calibration methods also account for key sources of uncertainty, such as model-observation
discrepancy and observational error (Kennedy and O’Hagan (2001), Bayarri et al. (2007),
Brynjarsdóttir and O’Hagan (2014)). We describe a model for output in the form of spatial
data as this directly relates to our simulated data example in Section 5; a time series version
of this applies to the PSU3D-ICE model in Section 6.

Let Y(s, θ) be the computer model output at the spatial location s ∈ S ⊆ R
2 and the pa-

rameter setting θ ∈ � ⊆ R
d . S is the spatial domain of the process, and � is the param-

eter space of the computer model with integer d being the number of input parameters.
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Y = (Y (s1, θi), . . . , Y (sn, θi))
T is the computer model output at parameter setting θi and

spatial locations (s1, . . . , sn). Z = (Z(s1), . . . ,Z(sn))
T is the observed spatial process at lo-

cations (s1, . . . , sn).
We model the observational data Z as follows

(1) Z = Y(θ) + δ + ε,

where ε ∼ N(0, σ 2
ε ) is independently and identically distributed observational error and δ

is a systemic data-model discrepancy term. The discrepancy δ is modeled as a zero-mean
Gaussian process, where δ ∼ N(0,�δ(ξδ)). This discrepancy term is essential for parameter
calibration (Bhat et al. (2010), Bayarri et al. (2007)) and ignoring it may yield biased and
overconfident estimates and projections (Brynjarsdóttir and O’Hagan (2014)). �δ(ξδ) is the
spatial covariance matrix between spatial points s1, . . . , sn with covariance parameters ξδ . We
set standard prior distributions for the model parameters, θ , and observational error variance,
σ 2

ε . On the other hand, informative priors are necessary for the discrepancy term’s covari-
ance parameters ξδ . Then, we infer θ , σ 2 and ξδ by sampling from the posterior distribution,
π(θ, σ 2

ε , ξδ|Z), via Markov chain Monte Carlo (MCMC).

Challenges with computer model calibration. We focus on a specific class of computer
models, characterized by: (1) a moderate run time (six seconds to 15 minutes), and (2) mod-
erately large parameter space (five to 20 parameters). The modified PSU3D-ICE Antarctic ice
sheet model (Section 2) fits the specifications for this class of computer models. Several other
important models that can potentially be modified to fit within this class are single column
atmospheric models (Bony and Emanuel (2001), Dal Gesso and Neggers (2018), Gettelman
et al. (2019)), simplified earth systems models (Monier et al. (2013)), hydrological soil mois-
ture models (Sorooshian, Duan and Gupta (1993), Liang et al. (1994)) and integrated multi-
sector models for human and earth dynamics (Kim et al. (2006)).

The calibration framework requires running the computer model once for each iteration
of the MCMC algorithm. Subject to overall calibration wall times, MCMC-based calibra-
tion methods are well suited to computer models that run very quickly, typically under six
seconds per model run. The PSU3D-ICE model takes approximately 10 to 15 minutes per
run on a single 2.3-GHz Intel Xeon E5-2697V4 (Broadwell) processor. We estimate that a
standard MCMC-based calibration approach for this would take on the order of 2.9 years to
approximate the posterior distribution π(θ |Z).

Surrogate methods such as Gaussian process-based emulators are well suited to computer
models with long run times. A good design is important for building accurate surrogates.
Dense sampling schemes, such as full factorial or fractional factorial designs, capture higher
order interactions; however, running the computer model at each of the design points is
costly. Space-filling designs, such as the Latin Hypercube Design (McKay, Beckman and
Conover (2000), Steinberg and Lin (2006), Stein (1987)), or adaptive experimental designs
(Chang et al. (2016a), Gramacy and Apley (2015), Urban and Fricker (2010), Queipo et al.
(2005)) use fewer design points but may possibly generate low-fidelity surrogate models by
ignoring higher order interactions among inputs (Liu and Guillas (2017)). Since the PSU3D-
ICE model exhibits nonlinear dependencies among input parameters (Pollard and DeConto
(2012)), we would be limited to six or fewer parameters using standard emulation-calibration
techniques (with our available computing resources).

4. Fast particle-based calibration. In this section we present a fast particle-based
method to calibrate computers models with moderate model run time (six seconds to 15 min-
utes) and a moderate number of model parameters (five to 20). We begin with a description
of a sequential sampling-importance-resampling algorithm. Then, we present modifications
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to the algorithm designed to improve computational efficiency. We examine advantages and
limitations of our approach. Finally, we discuss tuning mechanisms for our method and pro-
vide practical guidelines.

4.1. Sequential sampling-importance-resampling with mutation. We propose a series of
sampling-importance-resampling with mutation operations which includes evolving impor-
tance and target distributions. The objective is to efficiently approximate a target distribution
using a swarm of evolving particles. Our approach falls under the umbrella of sequential
Monte Carlo algorithms (Del Moral, Doucet and Jasra (2006), Doucet, Godsill and Andrieu
(2000), Liu and West (2001)) which have gained wide practical use (cf. Kantas et al. (2015),
Papaioannou, Papadimitriou and Straub (2016), Kalyanaraman et al. (2016), Jeremiah et al.
(2011), Morzfeld et al. (2018)). In particular, we build upon the iterated batch importance
sampling (IBIS) (Chopin (2002), Crisan and Doucet (2000)) method.

Sampling-importance-resampling. Sampling-importance-resampling (Gordon, Salmond
and Smith (1993), Doucet, de Freitas and Gordon (2001)) is a sampling method used to
approximate a target distribution π(θ) using samples from an importance distribution q(θ).
Suppose we want to estimate μ = Eπ [g(θ)]. Given q(θ) > 0 whenever g(θ)π(θ) > 0,∀θ ∈
�, we observe that Eπ [g(θ)] = Eq[g(θ)w(θ)], where w(θ) = π(θ)

q(θ)
is the importance weight

and
∑N

i=1 w(θi) = 1. The importance sampling estimator is μ̂n = 1
n

∑N
i=1 g(θi)w(θi) and

μ̂n → μ with probability 1 by the strong law of large numbers. For target distributions with
an unknown normalizing constant, such as the posterior distribution of the model calibration
parameters π(θ |Z), the importance weights w(θi), must be normalized.

An extension of importance sampling is sampling-importance-resampling, which provides
an approximation of a target distribution via samples from an importance distribution and
corresponding importance weights (Gordon, Salmond and Smith (1993)). The target distri-
bution π(θ), is approximated by the empirical distribution of the samples π̂(θ) and their
corresponding normalized weights w̃(θi)’s,

π(θ) ≈ π̂(θ) =
N∑

i=1

w̃(θi)δ(θi),

where δ(θi) is the Dirac measure that puts unit mass at θi and
∑N

i=1 w̃(θi) = 1.
Poor choices of importance distributions may yield inaccurate approximations of the tar-

get distribution (Doucet, Godsill and Andrieu (2000)) due to weight degeneracy and sample
impoverishment. As a result, the bulk of the resampled particles, θi , do not reside in the
high-probability regions of π(θ). Weight degeneracy occurs when almost all of the samples
drawn the importance function have near-zero importance weights, leaving just a few sam-
ples with any significant weights. Multinomial resampling using the normalized importance
weights w̃(θi) can combat weight degeneracy by eliminating the particles with very small
important weights and replicating those with higher weights (Gordon, Salmond and Smith
(1993), Doucet, Godsill and Andrieu (2000)). After resampling, we reset all of the impor-
tance weights w(θi) to 1/N and replace the weighted empirical distribution π̂(θ) with an
unweighted empirical distribution π̈(θ),

π̈(θ) = 1

N

N∑

i=1

Niδ(θi),

where Ni is the number of replicates corresponding to particle θi and
∑N

i=1 Ni = N .
Weight degeneracy can lead to sample impoverishment where a small subset of particles

θi’s are heavily replicated in the resampling step; hence, few unique particle remain. The
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unweighted/resampled empirical distribution π̈(θ) may poorly approximate the true target
distribution π(θ). To alleviate sample impoverishment, mixture approximations (Gordon,
Salmond and Smith (1993)) or kernel smoothing methods (Liu and West (2001)) can mu-
tate or rejuvenate the replicated particles. However, these methods may not scale well to
high-dimensional target distributions (Doucet, Godsill and Andrieu (2000)).

An alternative method mutates the replicated particles with samples from K(θ
(t−1)
i ), the

Metropolis–Hastings transition kernel (Gilks and Berzuini (2001)), whose stationary distri-
bution is also the target distribution π(θ). Here we run J Metropolis–Hastings updates for
each particle θi , for i = 1, . . . ,N . Other mutation schemes use genetic algorithms (Zhu et al.
(2018)) or different transition kernels, K(·) (Papaioannou, Papadimitriou and Straub (2016),
Murray, Lee and Jacob (2016)). The length of the Markov chain, J , will be short and de-
pendent on computing resources. We set the j th sample drawn via MCMC as the mutated
particle θ̃i . Since θ̃i ∼ π(θ), the resulting empirical distribution π̃(θ) approximates the target
distribution π(θ):

π(θ) ≈ π̃(θ) =
N∑

i=1

θ̃iδ(θ̃i).

Even with the mutation step, sampling-importance-resampling may incur large computa-
tional costs. Poor choices of importance distributions may result in extreme sample impover-
ishment, due to the large discrepancy between the importance and target distribution. Here,
the mutation stage typically requires very long (and costly) chains of the Metropolis–Hastings
algorithm to move the particles into the high-probability regions of the target distribution (Li
et al. (2014)).

Sequential sampling-importance-resampling. Our fast particle-based approach addresses
the limitations noted above. We propose a series of intermediate posterior distributions
πt(θ |Z), for t = 1, . . . , T which will act as importance and target distributions. Existing
methods use intermediate posterior distributions for parameter estimation of static systems
(Chopin (2002), Papaioannou, Papadimitriou and Straub (2016), Nguyen (2014)), uncer-
tainty quantification for chemical processes (Kalyanaraman et al. (2016)) and calculating
maximum-likelihood estimates for hierarchical systems (Lele, Dennis and Lutscher (2007)).

Intermediate posterior distributions can be generated using likelihood tempering (Chopin
(2002), Neal (2001), Liang and Wong (2001)). For each intermediate posterior distribution
πt(θ |Z), the likelihood component is a fractional power of the original likelihood p(Z|θ).
The t th intermediate posterior distribution, πt(θ), is generated as follows:

(2) πt(θ |Z) ∝ p(Z|θ)γt p(θ),

where γt ’s are determined according to a schedule where γ0 = 0 < γ1 < · · · < γT = 1.
For cycle t = 1, we set the importance distribution to be the prior distribution, p(θ), and

the target distribution to be the first intermediate posterior distribution, π1(θ |Z). For cycle t

the importance distribution is πt−1(θ |Z), and the target distribution is πt(θ |Z). Note that the
likelihood incorporation schedule need not be uniform. For instance, more of the likelihood
can be incorporated into the earlier intermediate posterior distributions.

Finally, we mutate the particles via short runs of the Metropolis–Hastings algorithm where
the stationary distribution is πt(θ), the t th intermediate posterior distribution. Note that the
importance and target distributions are consecutive (t th and t + 1th) intermediate posterior
distributions, so there is considerable overlap between the high-probability regions of the two
distributions. Convergence results for this family of Sequential Monte Carlo algorithms are
provided in Crisan and Doucet (2000), Beskos et al. (2016) and Giraud and Del Moral (2017).
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4.2. Stopping criterion. We present a stopping rule that controls the number of
Metropolis–Hastings updates within the mutation step. This provides an automatic heuristic
determining when to stop the mutation stage, and it can also eliminate unnecessary com-
puter model runs. The stopping rule is based on the Bhattacharyya distance (Bhattacharyya
(1946)), DB(p,q), which measures the similarity between two distributions, p(θ) and q(θ).
We first evaluate the stopping criterion after 2k Metropolis–Hastings updates; if the criterion
is not met, then we reevaluate after k subsequent updates.

Consider θ
i,k
t , the ith particle, or parameter setting, after the kth mutation step of the

Metropolis–Hastings algorithm during cycle number t . Let θk
t = {θ1,k

t , . . . , θ
n,k
t } denote the

set of parameters θ
i,k
t ’s. Let h(θ

i,k
t ) be the target metric of interest evaluated at parameter

setting θ
i,k
t , in this case, the Antarctic ice sheet contribution to sea level change in 2100. Let

h(θk
t ) = {h(θ

1,k
t ), . . . , h(θ

n,k
t )} denote the set of target metrics h(θ

i,k
t )’s.

At mutation update 2k we partition the range spanned by two sets of target metric
samples—h(θk

t ) and h(θ2k
t )—into m nonoverlapping blocks of equal width. Then, we com-

pute the real-valued Bhattacharyya distance DB(h(θk
t ),h(θ2k

t )) = − ln(
∑n

i=1
√

piqi) where
pi and qi are the proportion of samples, from h(θk

t ) and h(θ2k
t ), respectively, that lie within

the ith partition. The mutation step proceeds until DB(h(θk), h(θ2k)) < εB , the stopping crite-
rion. If the stopping criterion is not fulfilled, we run k additional Metropolis–Hastings updates
and evaluate the stopping criterion at iterations 3k and 2k. We repeat this until the stopping
criterion is met. We obtain the threshold εBD through a Monte Carlo simulation run prior to
the calibration study. Section 4.4 discusses tuning for k, εB , and m.

4.3. Adaptive incorporation schedule. In equation 2 we introduce a standard incorpo-
ration schedule γ = (γ0, . . . , γT ). In the standard implementation the user must select the
total number of sampling-importance-resampling cycles (T) and the likelihood incorporation
increments γt for t = (0, . . . , T ). Past research proposed novel methods to adaptive choose
the incorporation schedule, γt , yet maintain a constant number of cycles, T (Nguyen (2014),
Kalyanaraman et al. (2016)). Here, we introduce an adaptive incorporation schedule that
automatically determines both the total number of sampling-importance-resampling cycles,
T , and incorporation schedule, γ . Introducing the adaptive incorporation schedule into the
particle-based calibration framework provides computational and practical benefits by: (1)
reducing the number of computer model evaluations, (2) decreasing the overall calibration
wall times and (3) simplifying implementation for the user.

The adaptive incorporation schedule proceeds as follows. On initialization we set the ini-
tial incorporation increment γ0 to 0. We draw the initial set of particles θ0 from π0(θ |Z) ∝
L(θ |Z)0p(θ) = p(θ), the prior distribution of model parameters. For cycle t = 1,2,3, . . .,
we calculate the full likelihood L(θ

(i)
t−1|Z) for i = 1, . . . ,N where θ

(i)
t−1 denotes the pa-

rameter samples from the previous cycle t − 1. For computational efficiency, we reuse
the likelihood evaluations from the previous cycle. Next, we find the optimal γt that re-
turns an effective sample size (ESS) of ESSthresh or a sample size closest to ESSthresh:
γt = argminγ {(ESSγ −ESSthresh)

2}, where γ ∈ (γmin,1 − γt−1), γmin is a previously set

minimum incorporation value, ESSγ = ∑N
i=1

1
w

(i)2
t

and w
(i)
t ∝ L(θ

(i)
t |Z)γ . Note that we can

lower computational costs by evaluating the full likelihood L(θ
(i)
0 |Z) only once before the

optimization.
We stop the scheduling algorithm when

∑t
i=1 γt = 1. This occurs when the entire like-

lihood has been incorporated, and the target distribution has evolved to the full posterior
distribution π(θ |Z). Note at each cycle t , we set the incorporation increment (γt ) to be be-
tween γmin and 1−∑t

i=1 γt . In Section 4.4 we describe how to set the minimum incorporation
increment γmin and the threshold effective sample size, ESSthresh.
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Adaptive likelihood incorporation schedule:

1. Initialization: At t = 0, set γ0 = 0.
2. When t > 0 and

∑t−1
i=1 γi < 1:

• Compute L(θ
(i)
t−1|Z) for i = 1, . . . ,N

• Set γt = argminγ {(ESSγ −ESSthresh)
2}, where ESSγ = ∑N

i=1
1

w
(i)2
t

, w
(i)
t ∝ L(θ

(i)
t |Z)γ ,

and γ ∈ (γmin,1 − γt−1).
• γmin is a predetermined minimum incorporation value

3. When t > 0 and
∑t−1

i=1 γi = 1: Stop calibration

4.4. Tuning the algorithm. Much of Algorithm 1 is automated. However, the user needs
to choose: (1) the total number of particles, N , (2) the number of Metropolis–Hastings up-
dates run before checking the stopping criterion, K , (3) the minimum incorporation γmin
and (4) the effective sample size threshold ESSthresh. (1) and (2) should be set based on
the amount of available computational resources, but our simulation study results favor hav-
ing more particles N than longer Metropolis–Hastings updates K . We chose 2015 particles,
which requires 56 nodes with 36 processors per node; thereby leaving one processor to exe-
cute master tasks. We set the reference length k for the Metropolis–Hastings updates to be 7.
Based on simulation experiments, the empirical distribution of particles stabilize after 10 to
15 updates. In this study we set the floor for the incorporation increment, γmin, to be 0.1, so
that at each cycle the weights for the importance sampling step is at least L(θ |Z)0.1.

The automated likelihood tempering schedule (Section 4.3) ensures that the effective sam-
ple size (ESS) of the final particles does not fall below a predetermined threshold ESSthresh.
For moderate-dimensional parameter spaces (five to 20), the effective sample size is impor-
tant as it is an indicator of the discrepancy between the true target distribution and the particle-
based empirical distribution (cf. Doucet, de Freitas and Gordon (2001), Gordon, Salmond and
Smith (1993)). A low ESS suggests that only a few particles have any significant weight, and
it is often indicative of weight degeneracy and a poor approximation of the target distribu-
tion (Kong (1992)). A suitable ESS can be obtained by minimizing ρ, the second moment of
the Radon–Nikodym derivative between the target and the proposal distribution (Whiteley,
Lee and Heine (2016), Kong (1992)), generating more sophisticated proposal distributions
via implicit sampling (Morzfeld et al. (2015)) and examining distances between target and
proposal distributions within an intrinsic dimension (Agapiou et al. (2017)). Other research
(Martino, Elvira and Louzada (2017)) points to alternative definitions of the ESS than the
traditional method based on the variance of the weights (Liu and Chen (1998)). In this study
we utilize the common definition of ESS (Kong (1992)), which is based on the variance of the
importance weights, and we set ESSthresh = N

2 , which is the typical threshold used by many
sequential Monte Carlo methods (Del Moral, Doucet and Jasra (2006)) prior to resampling.

We obtain εBD as follows. Prior to running Algorithm 1, we obtained samples of a
target metric (Antarctic Ice Sheet contribution to sea level rise in 2100) from an initial
survey of computer model runs. Let μ and σ 2 denote the sample mean and variance of
the target metric mentioned above. We generate a collection of B samples of size n, de-
noted as x = {x1, . . . , xB}. Here, xb ∼ N (μ,σ 2), with μ and σ 2 previously defined. Let
xbase ∼ N (μ,σ 2) be a baseline sample for calculating the Bhattacharrya distance. We cal-
culate DB(xb, xbase) for b = 1, . . . ,B and set εBD to be the 0.975 quantile. In this study we
chose B = 1000 and the number of partitions m = 200.

We calibrate the PSU3D-ICE model using Cheyenne (Computational and Information Sys-
tems Laboratory (2017)), a 5.34-petaflops high-performance computer operated by the Na-
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Algorithm 1: Fast particle-based calibration
Data: Z

Initialization:
Draw θ

(i)
0 ∼ p(θ) for particles i = 1, . . . ,N .

Set w
(i)
0 = 1/N , γ0 = 0, and K ;

for cycles t = 1, . . . , T do
1. Compute full likelihood:
Calculate L(θ

(i)
t−1|Z) for i = 1, . . . ,N ;

2. Select optimal likelihood incorporation increment γt :
Set γt = argminγ {(ESSγt −ESSthresh)

2}, where γ ∈ (γmin,1 − ∑t−1
i=1 γt−1)

Note: ESSγt = ∑N
i=1

1
w

(i)2
t

and w
(i)
t ∝ L(θ

(i)
t |Z)γt ;

3. Compute importance weights:
w

(i)
t ∝ w

(i)
t−1 × L(θ

(i)
t |Z)γt ;

4. Resample particles:
Draw θ

(i)
t from {θ(1)

t−1, . . . , θ
(N)
t−1} with probabilities ∝ {w(1)

t , . . . ,w
(N)
t };

5. Set intermediate posterior distribution:
Set πt(θ |Z) ∝ L(θi |Z)γ̃ π(θ), where γ̃ = ∑t

j=1 γj ;
6. Mutation:
Using each particle (θ

(1)
t , . . . , θ

(N)
t ) as the initial value, run N chains of an MCMC

algorithm with target distribution πt(θ |Z) for 2K iterations;
7. Check stopping criterion:
Compute δB = DB(h(θK

t ), h(θ2K
t ));

if δB < εB , then
Set θ

(i)
t = θ

(i),2K
t ;

else
Run K additional updates and re-evaluate stopping criterion
Continue until stopping criterion is met

8. Stop when full likelihood is incorporated;
if

∑N
i=1 γt = 1, then

End Algorithm
else

Reset weights: w
(i)
t = 1/N for particles i = 1, . . . ,N ;

Set t = t + 1, and return to Step 1.

tional Center for Atmospheric Research (NCAR). Parallelized operations, such as calculat-
ing importance weights and mutation, proceed via message passing interface (MPI). To limit
communication costs, we build the ice sheet model and load the relevant datasets separately
on each processor.

4.5. Computational advantages and limitations. We take advantage of the embarrass-
ingly parallel nature of the importance sampling and mutation steps to reduce wall time. In
our approach, the Metropolis–Hastings updates in the mutation stage are the primary drivers
of computational cost. To address this cost, we propose an automated stopping rule for the
mutation stage. We also introduce an adaptive likelihood incorporation schedule that automat-
ically selects an efficient number of sampling-importance-resampling cycles. The stopping
rule and adaptive likelihood incorporation schedule simplifies implementation for the user
(due to automation) and reduces the number of computer model runs needed for calibration.
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Our approach is a viable alternative to existing calibration methods which may be com-
putationally infeasible. MCMC-based calibration methods using the computer model is
computationally prohibitive due to the sequential nature of MCMC algorithms. Emulation-
calibration methods, while efficient for expensive computer models, do not easily scale to
problems with many parameters (say more than five or six for this model). Also, multiple-
try MCMC methods (Liu, Liang and Wong (2000)), a mixture of importance sampling and
MCMC, may incur large costs because several parallel processes must be initialized and ter-
minated at each iteration of the MCMC chain. Multiple-try MCMC may experience slow
mixing, especially when the Markov chain moves to the low-probability regions of the target
distribution distribution (Martino (2018)).

While our method has many computational advantages, we note that the heavy paralleliza-
tion in our approach requires access to and the ability to work with high performance comput-
ing resources. Given our current computing resources, our method is ideally suited to models
that run between six seconds and 15 minutes. For models with longer run times, the computa-
tional costs remain prohibitive. MCMC algorithms may be feasible and simpler to implement
for models with shorter run times. As is the case with parallel computing methods, commu-
nication costs must be small relative to the computer model run times; otherwise, we would
not reap the benefits of our approach.

5. Simulated example and results. In this section we calibrate a simple computer
model using three different methods. We simulate a data set of size n = 300 where the spatial
locations si for i = 1, . . . , n are in the unit domain [0,1]2. We generate the data via a modi-
fied version of the computer model presented in Bayarri et al. (2007). We construct a simple
computer model as follows:

Y(si, θ) = 5 × exp
{−θ(lati × loni )

}
,

where Y(si, θ) is a real-valued computer model output at model parameter setting θ and at a
spatial location specified by lati and loni which represent the latitude and longitude of the ith
location. The true process includes a data-model discrepancy term δ(si) which is defined as
δ(si) = −1.5× (lati × loni ) and i.i.d. observational error εi ∼ N (0, σ 2

ε ). For this example we
set θ = 1.7 and σ 2

ε = 0.5. To generate the observational data, Z(si), we combine the computer
model output Y(si, θ), the data-model discrepancy, δ(si) and the observational error, εi , as
follows:

Z(si) = Y(si, θ) + δ(si) + εi.

We model the observations as

Z(si) = 5 × exp
{−θ(lati × loni)

} + δ(si) + εi,

where εi ∼ N (0, σ 2
ε ) are the i.i.d. observational errors. Since the actual form of the discrep-

ancy term is unknown, we model the discrepancy, δ(si), as a zero-mean Gaussian process,
δ(s) ∼ GP(0,�δ(ξδ)), where ξδ is a vector containing the covariance parameters. To allow
for some roughness of the process between spatial locations, we choose an exponential co-
variance function �δ(ξδ) = σ 2

δ exp(−|si−sj |
φδ

) with ξδ = (φδ, σ
2
δ ). To complete the Bayesian

framework, we use the prior distributions θ ∼ N (0,100), σ 2
ε ∼ IG(2,2), φδ ∼ U(0.01,1.5)

and σ 2
δ ∼ IG(2,2).

We compare results from three calibration methods: (1) MCMC-based, (2) standard
particle-based and (3) adaptive particle-based. In the MCMC-based method, we generated
100,000 samples from π(θ,φδ, σ

2
δ , σ 2

ε |Z) via the Metropolis–Hastings algorithm. Next, the
standard and adaptive particle-based calibration methods use N = 2000 particles to approx-
imate π(θ,φδ, σ

2
δ , σ 2

ε |Z). For the standard particle-based method, we set the total num-
ber of cycles to be 10 and establish a uniform likelihood incorporation γ = (γ1, . . . , γ10),
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TABLE 1
Simulated example calibration results for three calibration approaches: (1) Adaptive particle-based; (2)

Standard particle-based; and (3) MCMC-based. All three approaches yield comparative results

θ φδ σ 2
δ σ 2

ε

Adaptive Particle-Based (Est) 2.04 1.22 0.78 0.44
Adaptive Particle-Based (95% CI) (1.05, 3.14) (0.83, 1.50) (0.36, 1.32) (0.36, 0.52)
Standard Particle-Based (Est) 2.04 1.22 0.80 0.44
Standard Particle-Based (95% CI) (1.03, 3.11) (0.81, 1.50) (0.32, 1.33) (0.35, 0.51)
MCMC-Based (Est) 2.04 1.21 0.79 0.44
MCMC-Based (95% CI) (1.06, 3.17) (0.80, 1.50) (0.34, 1.33) (0.36, 0.52)

where γt = 0.1 for t = 1, . . . ,10. We run K = 100 Metropolis–Hastings updates for each
mutation cycle. In the adaptive particle-based calibration approach, our algorithm auto-
matically chose four cycles with a likelihood incorporation schedule γ = (γ1, γ2, γ3, γ4) =
(0.100,0.148,0.2743,0.4777) using the adaptive likelihood incorporation schedule. For each
mutation step we run batches of K = 10 Metropolis–Hastings updates until the stopping cri-
terion is met.

All three methods yield comparable calibration results (see Table 1); however, our adap-
tive particle-based approach exhibits a considerable speedup in computation. For the model
parameter, θ , calibration via MCMC (the “gold standard”) provides estimate θ̂mcmc = 2.04
and 95% credible interval bounds (1.06,3.17). Similarly, the standard particle-based ap-
proach generates estimate θ̂std = 2.04 with 95% credible interval bounds (1.03,3.11), and
the adaptive particle-based approach yields estimate θ̂adapt = 2.04 with 95% credible inter-
val bounds (1.05,3.14). The adaptive particle-based approach has considerably shorter wall
times due to fewer computer model evaluations. To illustrate, the adaptive approach requires
just 4 × 20 = 80 sequential computer model runs, as opposed to 10 × 200 = 2000 runs for
the standard particle-based approach and 100,000 for the MCMC-based approach.

6. Application to the PSU3D-ICE model. Here, we provide specifics for calibrating
the PSU3D-ICE model and discuss how our method provides key computational benefits
over existing calibration approaches. We also summarize results from a comparative analysis
of three calibration methods within the context of the PSU3D-ICE model. The efficiency of
our computational approach allows us to study the effect of observations from the Pliocene
on parameter calibration and projections of sea level rise and also enables us to conduct a
prior sensitivity analysis.

6.1. Calibrating PSU3D-ICE. We calibrate 11 model parameters using both paleocli-
mate records and modern observations from satellite imagery (Section 2). For the paleocli-
mate records, modern volume and modern grounded ice area, we use independent truncated
normal distributions. The upper and lower ranges for the truncated normal likelihood func-
tions are based on domain area expertise and past studies (Section 2.2).

We calibrate the PSU3D-ICE model using five observations: (1) Zplio, the Antarctic ice
sheet’s contribution to sea level change (m) in the Pliocene, (2) Zlig, contribution in the Last
Interglacial Age (m), (3) Zlgm, contribution in the Last Glacial Maximum (m), (4) Zvol, the
Antarctic ice sheet’s total ice volume in the modern era (km3) and (5) Zarea, total grounded ice
area in the modern era (km2). We also use observations of ice occurrence taken at 10 strategic
point in the Antarctic ice sheet. Here, Zspat = (Zspat,1, . . . ,Zspat,10). All 10 locations have ice
presence; so, Zspat,i = 1 for locations i = 1, . . . ,10.
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Likelihood. For the observational dataset,
Z = (Zplio,Zlig,Zlgm,Zvol,Zarea,Zspat,1, . . . ,Zspat,10), we define a likelihood function us-

ing truncated normal distributions and indicator functions. For the modern volume, modern
total grounded area and paleoclimate records, we use independent truncated normal distribu-
tions as the observational model. T N(μ,σ 2, α,β) denotes a truncated normal distributions
with the mean (μ), variance (σ 2), upper bound (α) and lower bound (β):

Zplio ∼ T N
(
μ = Y(θ)plio, σ

2 = 302, α = Y(θ)plio − 10, β = Y(θ)plio + 10
)
,

Zlig ∼ T N
(
μ = Y(θ)lig, σ

2 = 102, α = Y(θ)lig − 2, β = Y(θ)lig + 2
)
,

Zlgm ∼ T N
(
μ = Y(θ)lgm, σ 2 = 202, α = Y(θ)lgm − 5, β = Y(θ)lig + 5

)
,

Zvol ∼ T N
(
μ = Y(θ)vol, σ

2 = 1.6 × 1015, α = Y(θ)vol − 2.5 × 1015,

β = Y(θ)vol + 2.5 × 1015)
,

Zarea ∼ T N
(
μ = Y(θ)area, σ

2 = 0.6 × 1012, α = Y(θ)area − 1.5 × 1012,

β = Y(θ)area + 1.5 × 1012)
.

The second set of observations are binary occurrences of ice at 10 strategically placed
points on the Antarctic ice sheet (Lee et al. (2020)). For these observations we use indicator
functions as the observational model as follows:

Zspat ∼
10∏

i=1

I
(
Y(θ)spat,i = Zspat,i

)
,

where Y(θ)spat,i denotes the model spatial output for a model run using parameters θ .

Priors. We set the prior distributions for the 11 model parameters based on expert
knowledge. Five model parameters—CALVNICK, TAUASTH, CALVLIQ, CLIFFVMAX,
FACEMELTRATE—have uniform prior distributions. Here, θ ∼ U(α,β), where α and β de-
note the upper and lower bounds of the uniform distribution. The prior distributions are as
follows:

• θCALVNICK ∼ U(0,2)

• θTAUASTH ∼ U(1000,5000)

• θCALVLIQ ∼ U(0,200)

• θCLIFFVMAX ∼ U(0,12,000)

• θFACEMELTRATE ∼ U(0,20)

Six parameters—OCFACMULT, OCFACMULTASE, CRHSHELF, ENHANCESHEET,
ENHANCESHELF, CRHFAC—have log-uniform prior distributions. Here, θ ∼ LU(base,
α,β), which implies logbase(θ) ∼ U(α,β) where α and β denote the upper and lower bounds
of the uniform distribution. The prior distributions are as follows:

• log10(θOCFACMULT) ∼ U(−0.5,0.5),
• log10(θOCFACMULTASE) ∼ U(0,1),
• log10(θCRHSHELF) ∼ U(−7,−4),
• log10(θENHANCESHEET) ∼ U(−1,1).
• log0.3(θENHANCESHELF) ∼ U(−1,1),
• log10(θCRHFAC) ∼ U(−2,2).

We can estimate the data-model discrepancy as an additive model bias, α ∈ R, such that
our observational model (1) is modified to be Z = Y(θ) + α + ε. For observations that are
discontinuous in time, past ice-sheet calibration studies (Edwards et al. (2019), Williamson et
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al. (2013), Ruckert et al. (2017)) model the discrepancy term as a tolerance to the observation
measurement error which follows the zero-mean Gaussian process framework provided in
Kennedy and O’Hagan (2001). For the PSU3D-ICE model we find that calibration with and
without the discrepancy term yields very similar results.

6.2. Computational benefits of our approach. Our adaptive particle-based approach
greatly reduces calibration wall times compared to using an all-at-once random-walk
Metropolis–Hastings algorithm as in past ice-sheet calibration studies (cf. Ruckert et al.
(2017), Bakker, Applegate and Keller (2016), Petra et al. (2014)). Our fast calibration ap-
proach had a total wall-time of ∼ 6.5 hours and evolved 2015 particles for an effective
sample size (ESS) of 1533. For the MCMC-based calibration approach, it would be com-
putationally prohibitive to generate a large enough sample with a similar ESS. Instead, we
estimate the time to generate an ESS of 1533. We ran the Metropolis–Hastings algorithm for
12 days to generate 1500 samples. We calculated the effective sample size per hour (Jones
et al. (2006)) for each model parameter and then projected the time required to obtain an ESS
of 1533, the ESS from the particle-based approach. It would require 12 to 18 months running
the Metropolis–Hastings algorithm to generate the same ESS as our particle-based approach.

The computing times are based on the PSU3D-ICE model run at 80 km spatial resolution
and an adaptive temporal resolution with a baseline timestep of eight years. Run times are for
the NCAR Cheyenne HPC system with 2.3-GHz Intel Xeon E5-2697V4 Broadwell proces-
sors. Note that in practice, computation times for the particle-based methods can be slightly
higher due to initialization and communications costs inherent to parallelized computing.
Reduction of initialization and communication costs is an active area of research with novel
methods in development (Ballard, Siefert and Hu (2016), Fan et al. (2018)). Note that the
computation times for the MCMC-based approach are quite optimistic as we initialized the
Markov chain and set the proposal distribution using all samples generated from our particle-
based approach. In general, MCMC algorithms would not have access to these particles and
would, therefore, likely require even more iterations of the MCMC algorithm to achieve the
desired ESS.

6.3. Comparisons to other calibration approaches. We conduct a comparative study be-
tween our particle-based calibration approach and competing emulation-calibration methods
(see Supplementary Material (Lee et al. (2020)) for details). We calibrate the PSU3D-ICE
model using three methods:

1. A low-dimensional emulation-calibration approach: This approach varies only three
parameters—OCFACMULT, CALVLIQ and CLIFFVMAX—and fixes the remaining eight
parameters at scientifically justified values provided by our expert on ice sheets (DP). We
include this approach because reducing the number of parameters is a common way to ad-
dress computational challenges associated with calibration with long model run times (e.g.,
Edwards et al. (2019), Chang et al. (2014), Sacks et al. (1989)). We chose these three param-
eters because they are considered to be important in modeling the long-term evolution of the
Antarctic ice sheet (Edwards et al. (2019), DeConto and Pollard (2016)). We train a Gaussian
process emulator using 512 design points and use the squared exponential covariance func-
tion to represent the dependence between the design points. For the experimental design we
use a full factorial design with eight equally spaced points for each model parameter.

2. A high-dimensional emulation-calibration approach: This approach calibrates all 11 se-
lected parameters of the PSU3D-ICE model. We train a Gaussian process emulator using 512
design points generated via Latin hypercube design (LHC). Similar to the low-dimensional
case, we use a squared exponential covariance function to model the dependence between
design points. Emulation and calibration details are provided in the Supplementary Material
(Lee et al. (2020)).
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FIG. 2. (Top Panel) Posterior densities of the projected Antarctic ice sheet’s contribution to sea level change in
2100, 2300, and 2500 using the adaptive particle-based approach (solid line), emulation-calibration with three
parameters (dashed line), and emulation-calibration with 11 parameters (dotted line). (Bottom Panel) Empirical
survival functions of the projected Antarctic ice sheet’s contribution to sea level change in 2100, 2300, and 2500
using the adaptive particle-based approach (solid line), emulation-calibration with three parameters (dashed
line), and emulation-calibration with 11 parameters (dotted line). Three-parameter emulation results in sharper
densities centered on distinctively lower point estimates. The 11-parameter emulation-calibration approach re-
sults in highly uncertain projections.

3. Our particle-based approach: We use our heavily parallelized particle-based approach
to calibrate all 11 selected parameters.

For the first method, we find that by fixing eight of 11 parameters we greatly constrain
the parameter space and, thereby, underestimate the parametric uncertainty underlying the
ice sheet model. Projections for the Antarctic sea level contribution in 2100–2500 are much
lower and overconfident compared to those from our particle-based approach (Figure 2). For
the second method, the limited amount of design points (training data) generates an inac-
curate surrogate model as shown by the large out-of-sample cross-validated mean squared
prediction error (Supplementary Material (Lee et al. (2020))). This calls into question the
parameter estimates as well as the resulting projections. As shown in Figure 3, the second
approach produces extremely sharp posterior distributions for two key model parameters,
CLIFFVMAX and TAUASTH, which is inconsistent with the parameter estimates from the
particle-based approach.

Figure 4 compares the posterior densities of projections and hindcasts for the three-
parameter emulation-calibration approach and our 11-parameter particle-based method. Note
that the three-parameter emulation-calibration approach (striped blue shading) underesti-
mates the tail-area risk, or the 99th% quantile, for sea level projections compared to our
approach (striped red shading). By calibrating more parameters, we can expect the tail-area
risk to increase by a factor of 74 in 2100 and 65 in 2300.

The three-parameter emulation-calibration required 1.5 minutes to fit the Gaussian process
emulator using 12 processors on the Cheyenne HPC system and ∼1.5 hours to generate 500k
samples via MCMC from the posterior distribution. The 11-parameter emulation-calibration
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FIG. 3. Posterior densities of model parameters using the adaptive particle-based approach (solid line), emula-
tion-calibration with three parameters (dashed line) and emulation-calibration with 11 parameters (dotted line).
Three-parameter emulation-calibration experiments use model parameters OCFACMULT, CALVLIQ and CLIF-
FVMAX. The 11-parameter emulation-calibration experiment include all model parameters. Shaded panels de-
note parameters used in the three-parameter emulation-calibration experiment. Both emulation-based approaches
result in sharper posterior densities than the particle-based approach for a subset of the model parameters.

required 10 minutes to fit the emulator using 12 processors on the Cheyenne HPC system and
∼1.5 hours to generate 500k samples via MCMC from the posterior distribution.

6.4. The effect of deep time observations on projections. Calibration can be improved by
considering an important source of uncertainty, the state of the Antarctic ice sheet during the
Pliocene era (Dolan et al. (2018), Salzmann et al. (2013), Dutton et al. (2015)). There is some
evidence that the Antarctic ice sheet experienced fluctuations in volume during the Pliocene
era (Naish et al. (2009)). Other studies suggest that at peak warming episodes during the
Pliocene era, the Antarctic ice sheet had a lower volume, contributing to higher sea level rise
(Cook et al. (2014), Dolan et al. (2011), Dowsett and Cronin (1990), Pollard and DeConto
(2009), Pollard, DeConto and Alley (2015), De Boer, Stocchi and Van De Wal (2014)). How-
ever, the maximum Antarctic ice retreat and sea level rise contribution during the Pliocene
remains largely uncertain (Dutton et al. (2015), Rovere et al. (2014)).

We examine whether the width of the Pliocene observation windows (5 m to 25 m, 5 m
to 10 m, 10 m to 25 m) has an influence on sea level projections and parameter estimation.
(See Supplementary Material (Lee et al. (2020)) for details on how these windows affect
the likelihood function.) Our results demonstrate that information regarding the nature of the
Antarctic ice sheet during the Pliocene era has a strong influence on sea level projections.
Figure 5 illustrates how the posterior densities for two key model parameters (CALVLIQ
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FIG. 4. Antarctic ice Sheet contribution to sea level rise in the Pliocene (bottom panel), Last Interglacial Age
(fourth panel), Last Glacial Maximum (third panel), 2100 (second panel), and 2300 (first panel). Red shading
denotes the posterior densities for each time period and projections after calibrating 11 parameters using our
fast particle-based approach. Blue shading denotes the posterior densities after calibrating three parameters
using emulation-calibration. The light gray shading represents the observational constraints for the Last Glacial
Maximum, Last Interglacial Age, and Pliocene. The striped red and striped blue shading represents the 99%th
percent quantile for the 11-parameter approach and three-parameter approach, respectively.

and CLIFFVMAX) differ under the three Pliocene windows. Both parameters influence ice
dynamics inherent to marine cliff instability (MICI)—hydrofracturing due to surface melt
(CALVLIQ) and structural failure of tall ice cliffs (CLIFFVMAX). As shown in Figure 6,
increasing the Pliocene window from the range 5 m to 10 m to the range 10 m to 25 m
requires more aggressive MICI (larger values of these parameters), hence resulting in higher
projections of sea level rise (e.g., exceeding 3 m in 2300). If we are very uncertain about
the Pliocene (represented by a very large window of 5 m to 25 m), the resulting sea level
projections in 2300 also become highly uncertain (95% credible interval of 1.2 m to 12.4 m),
compared to projections from narrower windows of 5 m to 10 m (95% credible interval of
1.2 m to 11.5 m) or 10 m to 25 m (95% credible interval of 3.0 m to 12.9 m).

The experiments using low (5 m to 10 m) and high (10 m to 25 m) Pliocene windows
utilized subsets of the samples generated from the main calibration, and the corresponding
subsamples had an effective sample size (ESS) of 891 and 642, respectively.

6.5. Sensitivity to model parameter priors. Calibration results may exhibit sensitivity to
the choice of the model parameters’ prior distributions (cf. Jackson et al. (2015), Reese et al.
(2004)), especially for sparse observational records. This constitutes an important source
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FIG. 5. Posterior densities of model parameters for calibration using a wide Pliocene window of 5 m to 25 m
(solid line), low window of 5 m to 10 m (dashed line), and a high window of 10 m to 25 m (dotted line). There is
noticeable change in the densities for three model parameters—CALVNICK, CALVLIQ, and CLIFFVMAX.

of second-order, or deep uncertainty, an important factor in the design of risk management
strategies (Keller and McInerney (2008)). To examine prior sensitivity, we calibrate the ice
sheet model using two sets of prior distributions which are in the form of uniform or log-
uniform distributions. One set of priors has a much wider range (large difference between
upper and lower bounds) than the other. The much wider ranges represent physically possible
parameter values that do not violate any fundamental physical laws, and the narrower ranges
represent values that yield reasonable model behavior found in many years of unstructured
tuning by the model developers (Pollard and DeConto (2012)). We provide additional details
in the Supplementary Material (Lee et al. (2020)).

The choice of prior distributions has a notable effect on parameter estimates (Figure 7) and
sea level projections (Figure 8 and Table 2). Note that constraining the model parameters a
priori may underestimate sea level projections. However, overly wide prior distributions may
permit physically unrealistic outcomes. Hence, it is important to carefully construct prior
distributions based on domain area expertise, as we have in this manuscript. In particular,
changing the prior on the parameter CLIFFVMAX—wastage rate for unstable marine ice
cliffs—can have a strong impact on projections. For a prior range of 0 km/year to 12 km/year,
the 95% credible interval for the Antarctic ice sheet’s contribution to sea level rise in 2300
is 1.2 m to 12.4 m. A wider prior range of 0 km/year to 600 km/year results in considerably
higher projection uncertainty denoted by a 95% credible interval of 0.7 m to 21.0 m.

For the experiment using the wide priors, our particle-based calibration approach utilized
2015 particles to obtain an effective sample size (ESS) of 1583.
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FIG. 6. (Top Panel) Posterior densities of the projected Antarctic ice sheet’s contribution to sea level change in
2100, 2300, and 2500 for calibration using a wide Pliocene window of 5 m to 25 m (solid line), low window of 5 m
to 10 m (dashed line), and a high window of 10 m to 25 m (dotted line). (Bottom Panel) Empirical survival function
of the projected Antarctic ice sheet’s contribution to sea level change in 2100, 2300, and 2500 for calibration using
a wide Pliocene window of 5 m to 25 m (solid line), low window of 5 m to 10 m (dashed line), and a high window
of 10 m to 25 m (dotted line). constraining the Pliocene windows yield sharper projections of sea level rise. The
higher window results in considerably higher projections than the lower window.

The wider range for CLIFFVMAX explores a fundamental uncertainty in MICI—the rate
at which very tall ice cliffs will disintegrate back into the ice sheet interior. If grounding
lines retreat into the interior of deep Antarctic basins, the exposed ice cliffs will be taller
than any observed today, and the wastage velocities (CLIFFVMAX) could conceivably be
much greater than the approximately 12 km per year observed today at the ice fronts of
major Greenland glaciers (which might not even be approximate analogs for MICI, being
driven instead mainly by buoyant calving; Murray et al. (2015)). The bimodal character
of the posterior densities in the top panels of Figure 8 for 2300 and 2500 are due to the
very large CLIFFVMAX range. The upper peak centered on around 20 m is produced by
CLIFFVMAX values of approximately 100 km per year and above, which produce col-
lapse of almost all marine ice in both East and West Antarctica. The lower peak centered
on around 5 m occurs for many lower CLIFFVMAX values, for which the more vulner-
able West Antarctic ice sheet collapses, but marine basins in East Antarctica do not re-
treat.

TABLE 2
Antarctic ice sheet’s projected contribution to sea level change in 2100–2500 after calibration using narrow and

wide prior distributions

Prior Year 2100 Year 2200 Year 2300 Year 2400 Year 2500

Narrow 0.4 (−0.3, 1) 3.8 (0.1, 6.7) 7.9 (1.2, 12.4) 10.6 (2.5, 15.5) 12.8 (3.7, 18.5)
Wide 1.8 (−0.4, 5.5) 10 (−0.2, 19.5) 13.9 (0.7, 21) 15.5 (1.8, 21.8) 16.6 (3.1, 22.5)
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FIG. 7. Posterior densities of model parameters using expert prior distributions (solid lines) and wider expert
prior distributions (dashed lines). The dissimilarity of posterior distributions indicate that calibration results are
highly sensitive to the choice of prior distributions.

7. Discussion.

7.1. Summary. We present a novel particle-based approach to calibrate the 80 km resolu-
tion PSU3D-ICE model. We show that our approach provides good approximations and dras-
tically reduces overall calibration wall times by heavily parallelizing the sequential Monte
Carlo algorithm and carefully tuning the algorithm to further reduce the number of sequen-
tial model evaluations. Our algorithm is applicable to a broad class of models that have a
moderate run time (given our computing resources, between a few seconds and several min-
utes) and a moderate number of model parameters (in our case between five and 20).

We use this new method to assess the impacts of neglecting parametric uncertainties on
sea level projections. Emulation-calibration methods using fewer parameters yield lower and
more overconfident projections of sea level rise than using more parameters through the
particle-based calibration approach. This method includes the recent study of Edwards et al.
(2019), who found that the important mechanism of marine ice cliff instability (MICI) is not
necessary to capture past variations. In this case, future sea level projections are consider-
ably lower. In contrast, our new approach that accounts for more parametric uncertainties
suggests that MICI may still be important and future sea level projections may be much
higher, especially considering potential Pliocene windows. Using emulation-calibration in
a high-dimensional parameter space induces considerable emulator-model discrepancy and
can result in large projection uncertainties. Our method utilizes the actual ice sheet model,
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FIG. 8. (Top Panel) Posterior densities of the projected Antarctic ice sheet’s contribution to sea level change in
2100, 2300, and 2500 using expert prior distributions (solid lines) and wider expert prior distributions (dashed
lines). (Bottom Panel) Empirical survival function of the projected Antarctic ice sheet’s contribution to sea level
change in 2100, 2300, and 2500 using expert prior distributions (solid lines) and wider expert prior distributions
(dashed lines). For wide prior distributions, projections for future sea level rise is higher and more uncertain, and
there exists bi-modality in the projections’ posterior predictive distribution.

thereby preserving the highly nonlinear ice dynamics as well as the complex interactions
between model parameters. This has clear policy-relevant implications because projections
from ice sheet models inform economic and engineering assessments (cf. Sriver et al. (2018),
Diaz and Keller (2016), Johnson, Fischbach and Ortiz (2013)).

Our approach enables calibration experiments that were computationally prohibitive us-
ing current calibration methods. First, assuming different ranges of Pliocene era sea level
constraints (low vs. high) results in markedly different characterizations of parametric un-
certainty and projections of sea level rise over the next five centuries. These results sug-
gest that improved geological data from the Pliocene can help better quantify the model
parameters central to marine ice cliff instability (MICI) and improve sea level projections.
Second, calibration results are highly sensitive to the choice of prior distributions. By over-
constraining the prior distributions (in particular by not allowing very fast cliff disintegration
rates), we can mischaracterize parametric uncertainty and drastically underestimate future
sea level changes.

7.2. Caveats. Our conclusions are subject to the usual caveats that also point to promis-
ing and policy relevant research directions. Key methodological caveats include that our cal-
ibration approach may not scale well to computer models with long model run times (> 15
minutes), high-dimensional input spaces (> 20 parameters) or a combination of both. For
high-dimensional input spaces, our approach would require: (1) a large number of particles
to sensibly approximate the target distribution, (2) longer mutation stages to move the par-
ticles into the high-probability regions and (3) prohibitively large amount of computational
resources to implement our approach. Our approach may not be suitable for computer mod-
els that use multiple processors for a single model run. Selecting an appropriate number of
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particles remains an open question. Past theoretical work (Crisan and Doucet (2000)) states
that using more particles yields better approximations of the target distributions. Here, we set
the total particle count with respect to the available resources.

A number of caveats apply to our scientific findings. Using the PSU3D-ICE model
at a coarser resolution than previous studies (DeConto and Pollard (2016), Chang et al.
(2016a, 2016b), Pollard et al. (2016)) is admittedly a compromise between physical fidelity
and run-time feasibility. At coarser resolutions, complex ice processes may not properly co-
alesce due to the spatial constraints. However, through a simulated example we found that
a single model run at high-resolution (40 km) ran nearly eight times longer than one at at
coarser resolution (80 km). Replicating this calibration study at sharper spatial resolutions
(40 km to 10 km) is a natural and worthwhile extension of this study. Promising avenues
for future work would include incorporating parallel MCMC approaches such as multiple-
try Metropolis (Liu, Liang and Wong (2000)) or “emcee” samplers (Goodman and Weare
(2010)) to reduce computer model runs in the mutation stage. Finally, the likelihood func-
tions for the paleoclimate records may heavily influence calibration results. We have shown
how the choice of expert priors influence calibration, but the influence of likelihood functions
remains unexamined.
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details on model parameters, priors, emulation-calibration details, fundamental equations for
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