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Neuroscientists often use functional magnetic resonance imaging (fMRI)
to infer effects of treatments on neural activity in brain regions. In a typical
fMRI experiment, each subject is observed at several hundred time points.
At each point, the blood oxygenation level dependent (BOLD) response is
measured at 100,000 or more locations (voxels). Typically, these responses
are modeled treating each voxel separately, and no rationale for interpreting
associations as effects is given. Building on Sobel and Lindquist (J. Amer.
Statist. Assoc. 109 (2014) 967–976), who used potential outcomes to define
unit and average effects at each voxel and time point, we define and estimate
both “point” and “cumulated” effects for brain regions. Second, we construct
a multisubject, multivoxel, multirun whole brain causal model with explicit
parameters for regions. We justify estimation using BOLD responses aver-
aged over voxels within regions, making feasible estimation for all regions
simultaneously, thereby also facilitating inferences about association between
effects in different regions. We apply the model to a study of pain, finding ef-
fects in standard pain regions. We also observe more cerebellar activity than
observed in previous studies using prevailing methods.

1. Introduction. Functional magnetic resonance imaging (fMRI) (Kwong et al. (1992),
Ogawa et al. (1990)) is a noninvasive procedure for whole brain imaging with good spatial
resolution and in which neuronal activity is measured indirectly through changes in brain
hemodynamics. In a typical fMRI study, each subject is administered one or more stimuli
and observed at hundreds of time points. At each time point, the subject’s blood oxygenation
level dependent (BOLD) response is recorded at roughly 100,000 spatial locations (voxels),
yielding multivariate time series data (Li (2014)). Localization studies estimate the effects
of one or more stimuli on brain activity in different locations. Here, the association between
experimental stimuli and BOLD responses is typically modeled voxel by voxel (Lindquist
(2008)) or the BOLD responses are averaged over predefined regions of interest (ROIs), de-
fined as a collection of adjacent voxels, then modeled separately by region. (Poldrack (2007)).
Parameter estimates describing the association are then deemed effects.

Increasingly, researchers are also interested in effective connectivity, that is, the integra-
tion of neural activity among different brain regions and the causal relations among activity
in these areas (Friston (2011), Lindquist and Sobel (2016)). To study this, neuroscientists
estimate the association between BOLD responses in different voxels (or averages of BOLD
responses within regions) using various statistical methods, for example, Granger causal map-
ping (Roebroeck, Formisano and Goebel (2005)), dynamic causal modeling (Friston, Harri-
son and Penny (2003)), structural equations and directed graphical models (Mclntosh and
Gonzalez-Lima (1994)) and, following common practice, interpret parameter estimates as
effects.

Received July 2019; revised November 2019.
Key words and phrases. Causal inference, fMRI, functional connectivity, systematic error, pain, region of in-

terest.

452

http://www.imstat.org/aoas/
https://doi.org/10.1214/19-AOAS1316
http://www.imstat.org
mailto:michael@stat.columbia.edu
mailto:mlindqui@jhsph.edu


ESTIMATING CAUSAL EFFECTS OF HUMAN BRAIN FUNCTION 453

The approaches to causal inference above lack foundation. Researchers typically do not
indicate what they mean by causation nor the manner in which and/or conditions under which
estimated associations support a causal interpretation. To provide foundation, Lindquist and
Sobel (2011, 2013) advocated using the potential outcomes framework from the statistical
literature on causal inference in fMRI research.

Sobel and Lindquist (2014) (hereafter SL) start at the most elemental level, defining the
unit effect of treatment sequence s vs. sequence s ′ for subject i at a specific voxel v(b) in brain
region b at measurement time t . The unit effects cannot be observed directly, but these and
their average (and variance) over a population of subjects are identified from the observed
data under a model for the BOLD responses. Following the predominant “general linear
model” (GLM) approach (Friston et al. (1994)), in which a separate model is estimated at
each voxel, SL modeled the BOLD response at time t as the sum of a hemodynamic response
function (HRF) describing the time course of blood flow to the brain, a systematic error and
a random error. As is common, they modeled the signal, that is, the HRF, as the product of
an unknown subject, voxel and treatment specific amplitude with a canonical HRF (CHRF),
assumed to be known and invariant over subjects, voxels and treatments. As neural activity
tends to cluster in ROIs composed of multiple voxels, and, as it is the activity in these ROIs
that is of primary interest, SL, following common practice, used a cluster based thresholding
procedure to group adjacent voxels into clusters (Poldrack, Mumford and Nichols (2011))
and heat maps color coded to correspond with the value of the associated t-statistic to display
the effects.

The foregoing approach is problematic. SL define causal effects at the voxel level, then use
the thresholding procedure to declare affected regions without ever defining causal effects for
regions. The results are also sensitive to the thresholds chosen (Carp (2012), Woo, Krishnan
and Wager (2014)). Further, while the assumption that the HRF is the product of an unknown
amplitude with the known CHRF allows for direct comparisons of amplitudes across voxels,
subjects and treatments, it is not biologically plausible (Monti (2011)), and its use will lead
to biased estimates of activation and connectivity, as these depend on the model for the HRF.
In addition, as heat maps display t ratios, rather than the amount of neural activity in a voxel
or, by extension, within an ROI, neural activity in region A can exceed that in region B even
if the associated heat map suggests otherwise. Nor are heat maps useful for understanding
connectivity, as they do not indicate the strength of association between neural activity in
different voxels or regions.

In lieu of ad hoc cluster thresholding, some researchers have constructed models to ac-
count for the spatial association between different voxels. Woolrich et al. (2004) and Penny,
Trujillo-Barreto and Friston (2005) proposed single-subject Bayesian models that account
for spatial relations among “nearby” voxels. Harrison and Green (2010) generalized the lat-
ter model. Bowman (2007) proposed a multisubject, multivoxel, linear mixed model for the
BOLD responses in a single brain region using a “functional” distance metric to account for
correlation among distant voxels.

Several multisubject multivoxel models build explicitly on the GLM approach. Bowman
(2005) modeled voxelwise activations in empirically defined clusters of voxels, then used
the estimated activations to model relationships among activations in a cluster with a spatial
autoregressive model. Bowman et al. (2008) proposed a whole brain Bayesian hierarchical
model, also using a two-stage estimation procedure. Sanyal and Ferreira (2012) and Mejia
et al. (2017) also construct multisubject multivoxel Bayesian hierarchical models using a two-
stage approach. Zhang et al. (2016) recently proposed a one step multisubject, multivoxel,
nonparametric Bayesian model. They point out that, even if variational Bayes is used for
inference, the huge amount of data generated by fMRI experiments may necessitate some
form of data reduction, for example, summarizing the responses over a region before applying
the model to the whole brain.
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This paper aims to develop a principled framework for causal inference at higher levels
of brain organization. First, using voxelwise unit effects as building blocks, we define unit
causal effects for ROIs, using these to define causal estimands for ROI time courses; we also
consider the variance of the effects and the association between these in different regions.
Second, to estimate these effects, we construct a multisubject, multiregion, multirun, hierar-
chical whole brain model. As in some prior work, we analyze BOLD responses averaged over
regions; unlike such work, in which this approach is justified out of computational necessity,
mathematical justification is given (Appendix B). While this approach has been criticized
for ignoring the spatial structure of relationships among different voxels and the possibly
different levels of activation within an ROI (Bowman (2007)), the spatiotemporal structure
of neural activity depends on the anatomical structure of the brain, short and long distance
connections among neurons and the treatment under study, and we do not believe current
knowledge permits specification of reasonable spatiotemporal models at a fine grained level;
thus, an advantage of our estimation procedure is that it does not require specifying rela-
tionships among voxels within an ROI. Third, our procedure is computationally feasible for
hundreds of subjects and regions, allowing us to work with finely delineated ROIs, thereby
mitigating the criticism that potentially highly heterogeneous activity within ROIs is ignored.
Fourth, we estimate the functional connectivity between effects for all pairs of ROIs, some-
thing that estimation procedures that can only handle one or a few ROIs cannot do. We also
display our results graphically, using whole-brain maps of causal effects, and spatiotempo-
ral correlation plots facilitating the investigation of temporally lagged relationships between
ROIs.

Our approach bears some resemblance to that of Bowman et al. (2008). But the differences
are substantial. In stage one, Bowman et al. (2008) used the GLM approach to estimate single
subject activations at every voxel; in stage two, using a Bayesian hierarchical model, the
estimated activations are decomposed as the sum of a fixed effect for ROIs with a mean zero
random subject effect for region and a mean zero random effect (common to all subjects) for
voxels in a region. The activations within ROIs are assumed equicorrelated. In our stage one,
single subject region level activations are estimated without imposing a correlation structure
for the voxel level activations within ROIs; in stage two, the activations are modeled as the
sum of a fixed effect and a random subject effect. Second, Bowman et al. (2008) model
the HRF as the product of a scalar amplitude with the canonical HRF (CHRF). To avoid the
biased estimates that result from this approach, we use basis sets to model the HRF. Although
many comamonly used sets do not adequately handle the complexities of the HRF (Lindquist
and Wager (2007), Lindquist et al. (2009)), Degras and Lindquist (2014) demonstrated that
cardinal B splines with a high order and sufficient number of knots recover the HRF well;
here, we model the HRF with 15 cardinal B-splines of order 6. In Appendix C, we show this
accurately recovers the HRF for a variety of HRFs featuring various durations and onsets,
whereas the standard approach fails to do so for HRFs that are not “close” to the CHRF.

We illustrate our approach using a study of thermal pain, where noxious heat stimuli were
applied at different temperatures to the left forearm of each of 33 subjects. For every ROI,
we estimate an “integrated average effect.” In addition to the effects in standard pain regions,
we observe more cerebellar and visual activity than is usually observed in pain studies of this
type. Our approach also allows us to estimate the lagged correlation between HRFs across the
brain. We illustrate these relationships using a spatiotemporal correlation plot that pinpoints
enhanced correlation between pain-related regions both in reaction to the thermal stimuli as
well as in the time preceding pain reporting, signaling a potential correlation of activity across
brain regions during “pain recall.”

We proceed as follows. The experiment and data are described in Section 2. In Section 3
notation is introduced and causal effects for voxels and brain regions are defined. In Section 4
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we set out the whole brain causal model and the methods used to estimate causal effects and
make inferences about these. The thermal pain data are analyzed in Section 5. Section 6
concludes.

2. An fMRI study of thermal pain. 33 healthy, right-handed subjects completed the
study (age 27.9 ± 9.0 years, 22 females); all gave informed consent. The Columbia Uni-
versity Institutional Review Board approved the study. For each subject, seven runs were
administered during a single session. Each run consisted of between 58–75 trials. In each
trial, thermal stimulations were delivered to the volar surface of the left inner forearm. Each
stimulus lasted 12.5 seconds, with three second ramp-up, two second ramp-down periods and
7.5 seconds at the target temperature. Six temperatures, ranging from 44.3 to 49.3◦C in in-
crements of 1◦C, were administered to each participant; for the analysis, these were grouped
into warm (<46◦) and hot (>46◦) stimuli (Wager et al. (2013)). Each stimulus was followed
by a 4.5 to 8.5 second prerating period, after which subjects rated their intensity of pain on
a scale of zero to 100; in this paper, as interest centers on the hemodynamic responses to
the thermal stimuli, we do not analyze these rating data. Each trial ended with a five to nine
second resting period, followed by a new trial, or, if the trial terminated a run, a brief (one or
more minutes) resting period followed by a new run.

For each subject, 1845 images were acquired using a 3T Philips Achieva TX scanner
at Columbia University. Structural images were acquired using high-resolution T1 spoiled
gradient recall (SPGR) images. Functional echo planar images (EPIs) were acquired with
repetition time (TR) = 2000 ms, echo time (TE) = 20 ms, field of view = 224 mm, 64 × 64
matrix, 3×3×3 mm3 voxels, 42 interleaved slices, parallel imaging and sensitivity encoding
(SENSE) factor 1.5. For each subject, structural images were coregistered to the mean func-
tional image using the iterative mutual information-based algorithm in SPM8;1 the images
were then normalized to Montreal Neurological Institute (MNI) space using SPM8’s genera-
tive segment-and-normalize algorithm. Prior to preprocessing of functional images, the first
four volumes were removed to allow for image intensity stabilization. Outliers were identi-
fied using the Mahalanobis distance for the matrix of slicewise mean and standard deviation
values. The functional images were corrected for differences in slice-timing, and the motion
was corrected using SPM8. These images were warped to SPM’s normative atlas using warp-
ing parameters estimated from coregistered high-resolution structural images, and smoothed
with an 8 mm full width at half maximum (FWHM) Gaussian kernel. A high-pass filter of
180s was applied to the time series data. For a complete description of the data acquisition
and preprocessing, see Woo et al. (2015).

3. Causal effects for brain regions. Observation of subject i ∈ {1, . . . , n} in run r ∈
{1, . . . ,R} begins at subject specific time kir . At each equally spaced time point t ∈ {1, . . . , T }
of run r , subjects are assigned no stimulus (j = 0) or a stimulus j ∈ {1, . . . , J }. Let zjtr = 1 if
stimulus j ∈ {1, . . . , J } is applied at time point t of run r , 0; otherwise, ztr ≡ (z1tr , . . . , zJ tr )

the assignment vector at time t of run r , z̄T r = (z1r , . . . , zT r) the treatment regimen for
run r of the experiment. Let Yivb,kir+t (z̄) ≡ Yivbtr (z̄) denote i’s potential BOLD response
at voxel v(b) ∈ {1, . . . , Vb} of brain region b ∈ {1, . . . ,B} at time t of run r under the ex-
perimental regimen z̄ ≡ (z̄T 1, . . . , z̄T R). SL considered the case R = 1.They assumed re-
sponses at time t do not depend on treatments administered after time t : thus, Yivbtr (z̄) =
Yivbtr (z̄T 1, . . . , z̄T ,r−1, z̄tr ), where z̄tr ≡ (z1r , . . . , ztr ). Further, we assume that responses
during run r do not carry over to subsequent runs: Yivbtr (z̄T 1, . . . , z̄T ,r−1, z̄tr ) = Yivbtr (z̄tr ).
This is reasonable because: (a) the length of the break between runs exceeds the duration of

1Statistical Parametric Mapping, version 8; http://www.fil.ion.ucl.ac.uk/spm/.

http://www.fil.ion.ucl.ac.uk/spm/
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the HRF, (b) unlike a problem solving task, in which a subject might continue to focus on the
prior stimulus during the next run, there is no reason to think or evidence to suggest the du-
ration of the response to the thermal stimulus exceeds the duration of the HRF, (c) the break
allows the subject to recoup, mitigating potential effects due to habituation and/or fatigue.

Following SL, we decompose the potential responses as follows:

(1) Yivbtr (z̄tr ) = �ivbtr (z̄tr ) + Bivbtr (z̄tr ) + εivbtr (z̄tr ),

where �ivbtr (z̄tr ) and Bivbtr (z̄tr ) are, respectively, the true signal and systematic error of
subject i at voxel v(b) during time t of run r , and εivbtr (z̄tr ) is a mean zero error.

The signal �ivbt ′r (z̄tr , 0̄t ′−t ), where 0̄t ′−t is a vector of 0’s of length J (t ′ − t) is subject i’s
hemodynamic response at time t ′ ≥ t to treatments administered through time t : at each time
t ′′ ≤ t , a treatment j ∈ {1, . . . , J } is either administered or not, and, when treatment j �= 0
is administered at time t ′′, a subject, treatment and voxel specific hemodynamic response
function (HRF) hivbj (q), 0 ≤ q ≤ P , with the integer P corresponding to 30 seconds, is
generated. Although the HRF varies with subjects, voxels and stimuli, its qualitative features
are similar: starting from baseline Aivb, initially blood flow to the voxel increases monoton-
ically, typically peaking between four and six seconds, followed by a monotonic decrease
that “overshoots” the baseline and a subsequent return to baseline. For an illustration, see
Figure 1. The signal �ivbt ′r (z̄tr , 0̄t ′−t ) is then the sum of the baseline response Aivb with the
convolution of the component HRFs with treatment assignments

(2) �ivbt ′r (z̄tr , 0̄t ′−t ) = Aivb +
J∑

j=1

P∑
p=t ′−t

hivbj (p)zj,t ′−p,r .

The assumption that the relationship between neuronal activity and the HRF can be described
as a linear system is often made in fMRI analysis (Lindquist (2008)). Studies have shown this
assumption is reasonable (Boynton et al. (1996)), particularly if stimuli are spaced at least five
seconds apart (Miezin et al. (2000)). Futher, the HRF hivbj (·) is assumed invariant over the
course of the experiment; this is certainly reasonable when the experiment takes place within
a single session. Thus, the signal (2) depends on the run r only through the sequence z̄tr .
Hereafter, we make this explicit: �ivbt ′r (z̄tr , 0̄t ′−t ) ≡ �ivbt ′(z̄tr , 0̄t ′−t ).

Differences in BOLD responses under different regimens are due to differences in the sig-
nal (causal), random errors and systematic errors of (1). Both the systematic error Bivbtr (z̄tr )

and signal �ivbt (z̄tr ) depend on treatment regimen, but, as differences in systematic errors
under different regimens are not indicative of causation, causal effects should be defined so as
to exclude these. Systematic error results from machine drift and task related head motion not
corrected for during preprocessing, while the zero mean random errors reflect measurement
error due to nonneural physiological artifacts such as heart rate and respiration.

SL defined the “voxelwise unit effect” comparing treatment subregimen z̄tr with subregi-
men z̄∗

tr for subject i at voxel v(b) at time t ′ ≥ t of run r as

(3)

ψivbt ′r
(
z̄tr , z̄∗

tr

) ≡ �ivbt ′(z̄tr , 0̄t ′−t ) − �ivbt ′
(
z̄∗
tr , 0̄t ′−t

) ≡ ψivbt ′
(
z̄tr , z̄∗

tr

)

=
J∑

j=1

P∑
p=t ′−t

hivbj (p)
(
zj,t ′−p,r − z∗

j,t ′−p,r

)
.

Consider now the special case where the subregimens z̄tr and z̄∗
tr are identical for m or more

times prior to t , and, at time t , zjtr = 1, z∗
j tr = 0 for all j . Then, as the HRF returns to

hivbj (0) = 0 after P time points, and zj,t+1,r = z∗
j,t+1,r ,. . . , zjt ′r = z∗

j t ′r , at time t ′ = t + p,
ψivbt ′(z̄tr , z̄∗

tr ) = hivbj (p) for m + t ′ − t ≥ P .
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The average effect at voxel v(b) at time t ′ of run r is the average of the unit effects
ψivbt ′(z̄tr , z̄∗

tr ) over the population P from which the subjects are drawn. The variance of
the unit effects may also be considered.

Regionwise unit effects may be defined using the voxelwise effects, for example,
maxv(b)∈b(ψi1bt ′(z̄tr , z̄∗

tr ), . . . ,ψiVbbt ′(z̄tr , z̄∗
tr )), or ψi+bt ′(z̄tr , z̄∗

tr ) = ∑
v(b)∈b wv(b)ψivbt ′(z̄tr ,

z̄∗
tr ), where 0 ≤ wv(b) ≤ 1 and

∑
v(b)∈b wv(b) = 1, as here. In our application, wv(b) = V −1

b , as
the voxel elements have equal volume, the unit effect of subregimen z̄tr vs. z̄∗

tr for subject i

in region b at time t ′ is then

(4)

ψi+bt ′
(
z̄tr , z̄∗

tr

) =
∑

v(b)∈b

∑J
j=1

∑P
p=t ′−t hivbj (p)(zj,t ′−p,r − z∗

j,t ′−p,r )

Vb

≡
J∑

j=1

P∑
p=t ′−t

hi+bj (p)
(
zj,t ′−p,r − z∗

j,t ′−p,r

)
.

The average regionwise effect of z̄tr vs. z̄∗
tr in region b at time t ′ of run r over the population

of subjects P is then defined as

(5) ψ++bt ′
(
z̄tr , z̄∗

tr

) = E
(
ψi+bt ′

(
z̄tr , z̄∗

tr

)) ≡
J∑

j=1

P∑
p=t ′−t

h++bj (p)
(
zj,t ′−p,r − z∗

j,t ′−p,r

)
.

Let t̃ ≥ t . The variance of the regionwise unit effects and the association between these in
different regions and/or time points will also be of interest,

(6)
C

(
ψi+bt ′

(
z̄tr , z̄∗

tr

)
,ψi+b′ t̃

(
z̄tr , z̄∗

tr

))
= E

((
ψi+bt ′

(
z̄tr , z̄∗

tr

) − ψ++bt ′
(
z̄tr , z̄∗

tr

))(
ψi+b′ t̃

(
z̄tr , z̄∗

tr

) − ψ++b′ t̃
(
z̄tr , z̄∗

tr

)))
.

The variance measures effect heterogeneity. The standardized covariances measure the au-
tocorrelation between responses within a region at different times or the cross-correlation
between responses in different regions, the latter a measure of task related functional connec-
tivity.

The HRFs hi+bj (·) measure the time course of a subject’s response to a single stimulus. As
the building blocks underlying the causal comparisons (4), these effects are of fundamental
interest, as are comparisons of these among treatments, regions and subjects. In our analysis,
where interest centers on the effect of administering a stimulus j in region b during subinter-
vals of [0,P ], we define unit integrated and average integrated effects between times q∗ and
q∗∗ > q∗ as

Hi+bj

(
q∗, q∗∗) =

∫ q∗∗

q∗
hi+bj (q) dq,(7)

H++bj

(
q∗, q∗∗) =

∫ q∗∗

q∗
h++bj (q) dq,(8)

respectively. Beauchamp et al. (2003) used a similar summary to capture the poststimulus
increase in the hemodynamic response, prior to the subsequent undershoot.

4. Causal inference for brain regions. To estimate the effects above, additional as-
sumptions are needed. We first construct a whole brain causal model for the decomposition
(1) of the BOLD responses, then express the effects using the model parameters. An impor-
tant feature of the model is the use of basis functions to estimate the signal, thereby reducing
the chance of misspecification relative to specifications using the CHRF; even so, it is impor-
tant to remember that, if the model is misspecified, the resulting estimates will be biased for
the effects defined in Section 3. Second, we discuss the identification of the model from the
observed data. Third, we discuss estimation and inference.
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4.1. A whole brain causal model. To estimate the components of (1), we construct a
whole-brain causal model below that is a generalization of the model considered in SL,

(9)

Yivbtr (z̄tr ) = Aivb +
J∑

j=1

P∑
p=0

K∑
k=1

DivbkjSk(p)zj,t−p,r

+
L∑

�=1

γivb�rNivbt�r (z̄tr ) + εivbtr (z̄tr ),

with signal

�ivbt (z̄tr ) = Aivb +
J∑

j=1

P∑
p=0

hivbj (p)zj,t−p,r

= Aivb +
J∑

j=1

P∑
p=0

K∑
k=1

DivbkjSk(p)zj,t−p,r ,

(10)

systematic error

(11) Bivbtr (z̄tr ) =
L∑

�=1

γivb�rNivbt�r (z̄tr ),

and error εivbtr (z̄tr ), with

(12)
E

(
εivbtr (z̄tr ) | Aivb,

{
Divbkj : (j, k) = (1,1), . . . , (J,K)

}
,{

Nivbt�r (z̄tr ) : � = 1, . . . ,L
}) = 0.

In (10), the HRF hivbj (·) = ∑K
k=1 DivbkjSk(·) is modeled using basis functions Sk(·), k =

1, . . . ,K where Divbkj is the coefficient for the kth basis function for subject i at voxel v(b)

with respect to the j th stimulus.
The systematic error

∑L
�=1 γivb�rNivbt�r (z̄tr ) at voxel v(b) for subject i at time t of run

r results from machine drift and task related head motion not corrected for during prepro-
cessing; the L variables Nivbt�r (z̄tr ) include covariates for capturing the baseline drift and its
temporal trend and measures of head motion.

In previous work, SL considered the special case R = 1. In addition, following common
practice, SL assumed the HRF is the product of an amplitude Aivbj with the “canonical” HRF
(CHRF) widely used in the SPM neuroimaging software

(13) hivbj (q) = Aivbj h̃(q) = Aivbj

(
qα1−1β

α1
1 e−β1q

	(α1)
− c

qα2−1β
α2
2 e−β2q

	(α2)

)
,

where α1, α2, β1, β2 and c are known constants and q is measured in seconds. Because the
CHRF does not depend on i, j , or v(b), the amplitudes Aivbj are comparable across subjects,
treatments and voxels. However, the assumption (13) is not reasonable, and its use leads to
biased estimates of the HRF.

The causal estimands in Section 3 are readily expressed in terms of the model (9), for
example,

(14)

ψi+bt ′
(
z̄tr , z̄∗

tr

) =
∑

vb∈b

∑J
j=1

∑K
k=1

∑P
p=t ′−t DivbkjSk(p)(zj,t ′−p,r − z∗

j,t ′−p,r )

Vb

≡
J∑

j=1

K∑
k=1

P∑
p=t ′−t

DibkjSk(p)
(
zj,t ′−p,r − z∗

j,t ′−p,r

)
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for t ′ ≤ t + P , 0 otherwise, and

(15)

H++bj

(
q∗, q∗∗) =

∫ q∗∗

q∗
h++bj (q) dq =

∫ q∗∗

q∗

K∑
k=1

δbkjSk(q) dq

=
K∑

k=1

δbkj

∫ q∗∗

q∗
Sk(q) dq,

where δbkj is the expectation of Dibkj over subjects.

4.2. Identification of causal effects. Let � denote the set of treatment regimens to which
i can be exposed with positive probability and Z̄i the regimen to which i is assigned. In
fMRI studies, in general, either all subjects are: (1) assigned to a regimen z̄, (2) randomly
assigned to a regimen in � or (3) assigned to treatments sequentially, with later assignments
depending only on earlier assignments. Let Qi(z̄) = {�ivbt (z̄tr ),Bivbtr (z̄tr ), εivbtr (z̄tr ) : vb ∈
b, b ∈ {1, . . . ,B}, (t, r) ∈ {(1,1), . . . , (T ,R)}. Then, for all z̄ ∈ �,

(16) Qi(z̄) ⊥⊥ Z̄i ,

which implies the model (9) to (12) is identified through the analogous model for the observed
data

Yivbtr (Z̄itr ) = Aivb +
J∑

j=1

P∑
p=0

K∑
k=1

DivbkjSk(p)Zij,t−p,r

+
L∑

�=1

γivb�rNivbt�r (Z̄itr ) + εivbtr (Z̄itr ),

(17)

E
(
εivbtr (Z̄itr ) | Aivb,

{
Divbkj : (j, k) = (1,1), . . . , (J,K)

}
,{

Nivbt�r (Z̄itr ) : � = 1, . . .L
}
, Z̄itr

) = 0,
(18)

where Z̄itr is the subregimen of Zi through time t of run r and Zij,t−p,r = 1 if i is assigned
to treatment j ∈ {1, . . . , J } at time t − p of run r , 0 otherwise.

4.3. Estimation and inference. We now consider the observed data model (17) to (18).
If the variance structure for the random effects and errors is specified, feasible generalized
least squares (or maximum likelihood) estimation of the model is conceptually straightfor-
ward. But even were it possible to formulate a realistic covariance structure for the spatial
relationships among voxels, the massive number of data points, parameters and random ef-
fects renders this approach infeasible. Similarly, ordinary least squares (OLS) with a robust
covariance matrix is not feasible.

We therefore proceed as follows (for details, see Appendix B). The individual and average
effects depend on the fixed effects δbkj and random effects Dibkj ≡ V −1

b

∑
v(b)∈b Divbkj ≡

δbkj + dibkj , where E(dibkj ) = 0. For each subject, we treat the Dibkj as parameters and
estimate these using OLS. These estimates can be obtained using the B averaged BOLD
responses Yi+btr (Z̄itr ) ≡ V −1

b

∑
v(b)∈b Yivbtr (Z̄itr ) as outcomes in the aggregated model im-

plied by (17) to (18)

(19)

Yi+btr (Z̄itr ) = Aib +
J∑

j=1

P∑
p=0

K∑
k=1

DibkjSk(p)Zij,t−p,r

+
L∑

�=1

γib�rNi+bt�r (Z̄itr ) + εibtr (Z̄itr ),
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where Ni+bt�r (Z̄itr ) = Nivbt�r (Z̄itr ) for all v(b) ∈ b, Aib ≡ V −1
b

∑
v(b)∈b Aivb ≡ αb + aib,

E(aib) = 0, γib�r ≡ V −1
b

∑
v(b)∈b γivb�r and εibtr (Z̄itr ) = V −1

b

∑
v(b)∈b εivbtr (Z̄itr ).

We collect the Aib and Dibkj together as a vector βi.1, with OLS estimator β̂i.1 =
(β̂

′
i11, . . . , β̂

′
iB1)

′, consisting of components β̂ib1 = (Âib, D̂ib11, . . . , D̂ibK1, . . . , D̂ibKJ )′,
b = 1, . . . ,B .

Using the “global two-stage method” (Davidian and Giltinan (1995)), we model β̂i.1,

(20) β̂ i.1 = β ..1 + bi.1 + ηi.1,

where β ..1 = E(β i.1), bi.1 = βi.1 − β ..1 and ηi.1 = β̂i.1 − βi.1 are independent and bi.1 ∼
N(0,b), ηi.1 ∼ N(0,Ci). Maximum likelihood is used to estimate β ..1 and b, and standard
errors are obtained using the information matrix; as Davidian and Giltinan ((1995), page 141)
point out, the estimator should “perform well” even if the normality assumptions are not met,
as maximum likelihood and generalized least squares give the same estimate of β ..1.

As the covariance matrix Ci of the OLS estimator of β̂i.1 depends on unknown parameter
values, in practice, an estimate Ĉi is used above. We constructed the estimate Ĉi of Ci as
follows.

We assume the errors in (19) follow a multivariate AR(1) process,

(21) εibtr (Z̄itr ) = ρbεib,t−1,r (Z̄i,t−1,r ) + uibtr ,

with covariances C(uibtr , uib′t ′r ) = φbb′ if t = t ′, 0 otherwise.
The OLS estimates Âib, D̂ibkj , γ̂ib�r are then used to compute residuals eibtr (Z̄itr ), i =

1, . . . , n, and the residuals are used to estimate the parameters φbb′ and ρb, b = 1, . . . ,B ,
b′ = 1, . . . ,B:

ρ̂b = n−1
n∑

i=1

{
R∑

r=1

T∑
t=2

eib,t−1,r (Z̄i,t−1,r )eibtr (Z̄itr )/

R∑
r=1

T∑
t=2

e2
ibtr (Z̄itr )

}
,(22)

φ̂bb′ = (1 − ρ̂bρ̂b′)(nT R)−1
n∑

i=1

R∑
r=1

T∑
t=1

eibtr (Z̄itr )eib′tr (Z̄itr ).(23)

Equations (22) and (23) are then used to estimate the T RB × T RB covariance matrix ε of
the errors, and the estimate ̂ε is used to obtain the estimate Ĉi of Ci .

Inference for the estimands of Section 4.1 is straightforward, as these are linear com-
binations of model terms. For example, (15) is a linear combination of the parame-
ters δbkj , with known coefficients ck(q

∗, q∗∗) = ∫ q∗∗
q∗ Sk(q) dq . Thus, Ĥ++bj (q

∗, q∗∗) =∑K
k=1 δ̂bkj ck(q

∗, q∗∗) is approximately normally distributed with mean H++bj (q
∗, q∗∗) and

variance
∑K

k′
∑K

k=1 ck′(q∗, q∗∗)ck(q
∗, q∗∗)C(δ̂bk′j , δ̂bkj ). Inferences about the correlation be-

tween neural activity in different regions can be made using the delta method.
Our application has 33 subjects, 1845 brain volumes per subject and 286 regions; with suf-

ficiently fewer subjects, volumes and regions, the linear mixed model (19) may be estimated
directly.

5. Results. We used a variant of the Yeo atlas (Yeo et al. (2011)) to subdivide the brain
into 286 regions, with j = 1 for the warm nonpainful stimulus, j = 2 for the hot painful
stimulus and J = 3 for the pain-reporting stimulus. Although stimulus J = 3 is not of interest
here, it is necessary to model the effects of this stimulus to avoid biasing the estimated effects
for stimuli 1 and 2. To model the HRFs corresponding to these stimuli, we used 15 cardinal
B-spline basis functions of order 6 over the time period zero to 30 seconds. To model the
systematic error, we included, for each region and run: (a) constant and linear terms to capture
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FIG. 1. The estimated HRFs, for the warm and hot stimuli, from the anterior insula, a region commonly associ-
ated with pain processing.

the machine drift over time, (b) the six estimated head movement parameters (x, y, z, roll,
pitch and yaw) and their mean-centered squares, derivatives and squared derivatives, and
(c) the signal from white matter and ventricles.

Interest centers on the neural activity associated with pain. Therefore, we compare the
activity under the painful stimulus (j = 2) with that under the nonpainful stimulus (j = 1),
removing from consideration activations that are the same for both conditions, due solely to
the delivery of the stimuli. Figure 1 displays the estimated average HRFs (ĥ++bj (·)) for the
anterior insula, a region strongly associated with pain affect (i.e., aversiveness of pain). As
expected, while the region responds to both treatments, the signal response is higher under
the painful stimulus, with a more substantial undershoot following the peak.

To more formally compare these stimuli, we performed a hypothesis test using the differ-
ence Ĥ++b2(4,12)− Ĥ++b1(4,12) in the estimated integrated average effect from four to 12
seconds as a test statistic. We chose this range to cover the peak activation period of primary
interest. As evidenced by Figure 1, were we to extend the range to cover the subsequent post-
stimulus undershoot, we might infer (possibly correctly) that there is no difference between
the painful and nonpainful stimulus, even though the HRFs are clearly different.

Results, thresholded at the 0.05 level (familywise error rate (FWER) corrected using Bon-
ferroni correction), are shown in Figure 2. In total, 15 regions were differentially affected.
There is clear activation in key lateral pain/somatosensory regions, also in the midcingulate
cortex (MCC) and the dorsal lateral prefrontal cortex (DLPFC). Interestingly, we observe
more cerebellar activity than in other studies using the GLM approach. Although little is
known about the cerebellum’s role in nociceptive processing, our results are in line with
some recent work suggesting its involvement in affective processing, pain modulation, and
sensorimotor processing (Moulton et al. (2010)). Altered cerebellar functioning has also been
shown to be associated with chronic pain (Borsook et al. (2008)). In addition, the cerebellum

FIG. 2. A map showing regions where the integrated average effect between four and 12 seconds is significantly
larger in response to the hot stimulus than the warm stimulus. The results are thresholded at the p < 0.05 level
(FWER corrected).
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FIG. 3. (A) The top panel displays estimates of the correlations ρ(Hi+bj (4,12),Hi+b′j (4,12)) between inte-
grated average effects in different regions for warm (j = 1) and hot (j = 2) stimuli. The bottom panel shows the
same correlations for the 15 differentially affected regions. The regions are grouped according to their location in
one of seven networks. Here, we see subcortical regions, as well as those contained in the ventral attention (vAt-
tention) network, frontoparietal network and cerebellum. (B) The difference between the estimated correlations
for the hot vs. warm stimulus, for all regions (top) and for the 15 differentially affected regions (bottom).

plays an important role in pain prediction (Wager et al. (2013)). We also observed increased
variation in the estimated integrated effect for the DLPFC, a region associated with executive
functioning such as sustained attention and working memory (Barbey, Koenigs and Grafman
(2013)), indicating larger interindividual differences.

The top panel of Figure 3(A) displays, for all 286 regions, estimates of the correlations
ρ(Hi+bj (4,12),Hi+b′j (4,12)) between integrated average effects in different regions, for
both warm and hot stimuli. The bottom panel displays these correlations for the 15 regions
previously identified as differentially affected; these are grouped into networks as defined
by Yeo et al. (2011). In particular, regions were contained in the ventral attention and fron-
toparietal networks as well as in the cerebellum. The frontoparietal network has been shown
to predict modulation of pain (Kong et al. (2013)). The ventral attention network is used
when detecting sensory events outside the current focus of attention (Corbetta and Shulman
(2002)). Figure 3(B) displays the difference between correlations for the two stimuli; the
correlations between cerebellum and frontoparietal networks (indicated by pairs with orange
color) are larger for the painful stimulus, while the correlations within the cerebellum are
larger for the nonpainful stimulus (indicated by pairs colored blue).

Figure 4(A) displays the spatiotemporal correlation structure for both painful and non-
painful stimuli for the 15 significant regions. The data are organized in 15 × 15 = 225 blocks
corresponding to each pair (b, b′) for the 15 regions. Each block of dimension 31 × 31 dis-
plays estimates of the lagged correlations ρ(hi+bj (p), hi+b′j (p′)) between the HRFs for the
equally spaced time points p, p′. As above, regions are grouped into networks as defined by
Yeo et al. (2011). Results are similar for the painful and nonpainful stimuli—strong correla-
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FIG. 4. (A) Estimates of the correlations ρ(hi+bj (p),hi+b′j (p′))between the HRFs, corresponding to warm
(j = 1) and hot (j = 2) stimuli, across the 15 differentially affected regions. Each square corresponds to a 31×31
matrix of correlations for pairs of regions b, b′; here p = 0, . . . ,30. Regions are grouped by location in one of
the seven networks in Yeo et al. (2011). The difference between the correlations under hot and warm stimuli is
displayed to the right. (B) The top two panels show the third row of blocks depicted in Figure 4 (see arrow in left
panel of (A)), corresponding to the correlation between a region in the ventral attention network and all other
significant regions. The third panel depicts the difference between hot and warm stimuli.

tion within the cerebellum, frontoparietal and ventral attention networks as well as between
the frontoparietal and ventral attention networks.

Figure 4(B) highlights the correlation between a specific “seed” region from the ventral
attention network and the 14 other regions deemed significant. Thus, the first two panels cor-
respond to the third row of blocks depicted in Figure 4(A). The third panel depicts the differ-
ence between hot and warm stimuli. Here, more subtle differences between the two stimuli
can be observed—an increased correlation during the latter parts of the HRF between the
seed region and regions in the frontoparietal network (see, e.g., the lower right-hand portion
of the ninth block from the left). This is indicative of increased correlations between regions
in the time preceding pain reporting, perhaps signaling a contribution to activity during “pain
recall” (e.g., Lindquist (2012)).

6. Discussion. In fMRI studies, subjects’ BOLD responses to treatments are recorded
at many voxels and time points. At each voxel and time point, intrasubject comparisons of
signal responses under different treatment regimens yield definitions of unit treatment effects,
averaging these over subjects gives average treatment effects. We build on these voxelwise
effects to define unit and average treatment effects for brain regions composed of clusters of
voxels, both for time points and intervals.

In the standard GLM approach to the analysis of fMRI data, each voxel is modeled sepa-
rately, and the results are stitched together in a somewhat ad-hoc manner to make inferences
about neural activity in aggregates composed of adjacent voxels. The approach does not yield



464 M. E. SOBEL AND M. A. LINDQUIST

estimates of treatment effects for these clusters or, more generally, in brain regions. We esti-
mate effects for regions using a multisubject, multivoxel, multi-run whole-brain causal model
with explicit region parameters; the average treatment effects are a function of these param-
eters. Nor does the GLM approach provide estimates of the relationship between neural ac-
tivity in different brain locations. Using BOLD responses averaged over regions, we model
all regions simultaneously. This allows us to estimate the associations among the effects in
different regions, thereby providing measures of task specific functional connectivity.

We apply the model to estimate the effects of a painful stimulus on neural activity. In
addition to the activity generated in regions typically associated with pain, we observe more
cerebellar activity than observed in previous work using the GLM approach. As this approach
is typically implemented using the CHRF or a variant thereof, leading to downwardly biased
estimates and reduced detection of activation, as demonstrated in Appendix C, this new find-
ing points to the potential importance of using more flexible and realistic models of the HRF,
as here. We present our results using whole-brain maps of effects and spatiotemporal corre-
lation plots that display lagged relations among brain regions.

Recall that in the study on which our results are based, subjects also reported on a visual
analog scale the amount of pain they experienced in response to the pain stimuli. A natural
question to ask is how this subjectively experienced pain is mediated by the neural activity
we have studied. To that end, we have identified those brain regions differentially affected by
the warm and hot stimuli, and it is the activity in one or more of these regions that mediates
the relationship between a painful stimulus and reported pain. As a future step, we want to
extend the analysis here to investigate the indirect effects of the pain stimuli on reported
pain through the activity in these regions. To do so, definitions of direct and indirect effects,
conditions for identification and extended estimation procedures, suited to the fMRI context,
will need to be developed.

Finally, in fMRI experiments subjects are typically randomly assigned to a treatment reg-
imen prior to intervention or assignments depend only on previous assignments, and it is
reasonable to assume no interference between subjects. Our definitions of unit effects for re-
gions and our approach are also applicable under the same conditions in areas such as climate
science, environmental science and geostatistics, where it is common to observe geographical
units, nested within larger regions, over time. However, here if assignments depend also on
previous outcomes and/or time varying confounders, it will be necessary to use identifica-
tion conditions and estimation methods from the literature on longitudinal causal inference
(Robins and Hernán (2009)). In addition, these effect definitions will not carry over to the
case where there is interference among units (Hudgens and Halloran (2008), Sobel (2006)),
in which case various kinds of effects (e.g., direct and spillover) may be of interest. If as-
signments also depended on spatial confounders associated with the unit and, possibly, even
other units, new identification and estimation methods would be required. While challenging,
the development of a general framework for spatiotemporal causal inference would be very
useful; we hope our work takes a small step in this direction.

APPENDIX A: NOTATION

The following is a brief guide to the key notational conventions used in Sections 3 and 4.

Section 3.

• t ∈ 1, . . . , T denotes time points at which subjects are observed. Time is nested within runs
r = 1, . . . ,R. Thus, tr refers to time point t in run r .

• zjtr = 1 denotes the application of stimulus j ∈ 1, . . . J at time t of run r ; otherwise,
zjtr = 0.
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• ztr = (z1tr , . . . zJ tr ), the treatment at time t of run r .
• z̄tr = (z1r , . . . ztr ), the treatment subregimen up to time t during run r .
• z̄ ≡ (z̄T 1, . . . , z̄T R) denotes the entire treatment sequence.
• Yivbtr (z̄tr ) denotes the potential blood oxygen level dependent (BOLD) response of subject

i at voxel v(b) in region b, v(b) ∈ {1, . . . , Vb}, b ∈ {1, . . . ,B} under treatment subregimen
z̄tr .

• hivbj (p) denotes the hemodynamic response function (HRF) for subject i at voxel v(b) in
brain region b, p time points after the application of stimulus j .

• hi+bj (p) denotes the HRF for subject i in brain region b, p time points after application
of stimulus j .

• h++bj (p) is the mean (over subjects) HRF in brain region b, p time points after application
of stimulus j .

• �ivbt ′(z̄tr , 0̄t ′−t ) = Aivb + ∑J
j=1

∑P
p=t ′−t hivbj (p)zj,t ′−p,r is the signal component of the

BOLD response Yivbt ′r (z̄tr ,0t ′−t ) at time t ′ ≥ t of run r .
• ψivbt ′(z̄tr , z̄∗

tr ) denotes the effect of treatment subregimen (z̄tr ,0t ′−t ) vs. (z̄∗
tr ,0t ′−t ) for

subject i at voxel v(b) of region b at time t ′ ≥ t of run r .
• Bivbtr (z̄tr ) denotes the systematic error component of Yivbtr (z̄tr ).
• εivbtr (z̄tr ) is the mean zero random error component of Yivbtr (z̄tr ).
• Hi+bj (q

∗, q∗∗) = ∫ q∗∗
q∗ hi+bj (q) dq denotes the unit integrated effect for subject i in region

b under stimulus j from time q∗ to q∗∗.
• H++bj (q

∗, q∗∗) = ∫ q∗∗
q∗ h++bj (q) dq denotes the average integrated effect (over subjects)

in region b, under stimulus j , from time q∗ to q∗∗.

Section 4.

• Zij,t−p,r = 1 if stimulus j is applied to subject i at time t − p of run r , 0 otherwise.
• Z̄itr denotes the observed sequence of stimuli applied to subject i through time t during

run r .
• Z̄i denotes the treatment regimen applied to subject i.
• The signal �ivbtr (z̄tr ) is expressed using basis functions for the HRF,

hivbj (p) = Aivb +∑K
k=1 DivbkjSk(p), where Sk(·), k = 1, . . . ,K are K basis functions.

• hi+bj (p) = Aib + ∑K
k=1 DibkjSk(p), the HRF averaged over voxels in region b.

• h++bj (p) = E(hi+bj (p)) = αb + ∑K
k=1 δbkjSk(p).

APPENDIX B

We show that the least squares estimates Âib of Aib, b = 1, . . . ,B and D̂ibkj of Dibkj ,
b = 1, . . . ,B , k = 1, . . . ,K , j = 1, . . . , J , in model (19) are the averages over region b of the
least squares estimates Âivb and D̂ivbkj of Aivb and Divbkj obtained using the GLM approach
in which i’s BOLD response series at each voxel is treated as a separate response vector. As
it is not feasible to estimate the whole-brain model using the voxelwise BOLD responses, we
therefore apply OLS to the BOLD responses averaged over regions and, then, model these
estimates.

Let Yivb.r = (Yivb1r (Zi1r ), . . . , YivbT r(Z̄iT r ))
′, Yivb.. = (Y′

ivb.1, . . . ,Y′
ivb.R)′, Divb.j =

(Divb1j , . . . ,DivbKj )
′, j = 1, . . . , J , βivb1 = (Aivb,D′

ivb.1, . . . ,D′
ivb.J )′, Xi1 = (1,Wi),

where 1 is T R × 1 and Wi = (Wi1, . . . ,WiJ ) is the T R × KJ matrix composed of the
T × K submatrices Wij with elements

∑P
p=0 Zi,j,t−p,rSk(p) in position (T (R − 1) + t ,

k) of Wij . Let βivb2r = (γivb1r , . . . , γivbLr)
′, Xi2r the corresponding T × L matrix of

nuisance covariates, with element Nivbt� in position (t, �) β ivb2. = (β ′
ivb21, . . . ,β

′
ivb2R)′,
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Xi2. = diag(Xi21, . . . ,Xi2R), εivb.r = (εivb1r (Zi1r ), . . . , εivbT r(Z̄iT r ))
′, εivb.. = (ε′

ivb.1, . . . ,

ε′
ivb.R)′. For individual i, reexpressing (17) at a single voxel v(b) in matrix form gives

(24) Yivb.. = Xi1βivb1 + Xi2.βivb2. + εivb...

The model matrix (Xi1,Xi2.) is assumed to have full column rank. Some simple matrix
algebra gives

(25) β̂ ivb1 = Q−1
i GiYivb..,

where

Qi = X′
i1Xi1 − (

X′
i1Xi2.

)(
X′

i2.Xi2.

)−1(
X′

i2.Xi1
)
,(26)

Gi = X′
i1 − (

X′
i1Xi2.

)(
X′

i2.Xi2.

)−1
X′

i2..(27)

Now, let Yi.... = (Y′
i11.., . . . ,Y′

iV11.., . . . ,Y′
iVBB..)

′, Dib.j = (Dib1j , . . . ,DibKj )
′, β ib1 =

(Aib,D′
ib.1, . . . ,D′

ib.J )′, βi.1 = (β ′
i11, . . . ,β

′
iB1)

′. Let V = ∑B
b=1 Vb; let the V T R ×B(KJ +

1) matrix X∗
i1 = J ⊗ Xi1, where J = (j1, . . . , jB) is a V × B matrix with columns jb =

(01×V1+...Vb−1,11×Vb
,01×(V −(V1+···Vb))

′, b = 1, . . . ,B and ⊗ denotes the Kronecker product.
Let βi..2. = (β ′

i112., . . . ,β
′
iV112., . . . ,β

′
iVBB2.)

′, X∗
i2 the V T R × V LR matrix IV ⊗ Xi2.. Let

aivb = Aivb − Aib, divbkj = Divbkj − Dibkj ,

(28) ηivbtr (Z̄itr ) = aivb +
J∑

j=1

P∑
p=0

K∑
k=0

divbkjZij,t−p,rSk(p) + εivbtr (Z̄itr ),

ηivb.r = (ηivb1r (Zi1r ), . . . , ηivbT r(Z̄iT r ))
′, ηivb.. = (η′

ivb.1, . . . ,η
′
ivb.R)′ and ηi.... = (η′

i11..,

. . . ,η′
iBVB..)

′.
The whole-brain voxel level model for individual i is

(29) Yi.... = X∗
i1βi.1 + X∗

i2βi..2. + ηi....,

with least squares estimator β̂i.1 of β i.1,

(30) β̂i.1 = Q∗−1
i G∗

i Yi....,

where the B(KJ + 1) × B(KJ + 1) matrix

(31) Q∗
i = X∗′

i1X
∗
i1 − (

X∗′
i1X

∗
i2

)(
X∗′

i2X
∗
i2

)−1(
X∗′

12X
∗
i1

) = diag(V1, . . . , VB) ⊗ Qi

and the B(KJ + 1) × V T R matrix

(32) G∗
i = X∗′

i1 − (
X∗′

i1X
∗
i2

)(
X∗′

i2X
∗
i2

)−1
X∗′

i2 = J ′ ⊗ Gi,

giving

(33) β̂ i.1 = (
diag

(
V −1

1 , . . . , V −1
B

) ⊗ Q−1
i

)(
J ′ ⊗ Gi

)
Yi.... = (

J ∗′ ⊗ Q−1
i Gi

)
Yi....,

where row 1 of the B × V matrix J ∗′ = diag(V −1
1 , . . . , V −1

B )J ′ has entries, V −1
1 in columns

1, . . . , V1, 0 otherwise, . . . , row B has entries V −1
B in columns VB−1 +1, . . . , VB , 0 otherwise;

thus, J ∗′ ⊗Q−1
i Gi consists of BV blocks of size (KJ + 1)×T R and block bv (correspond-

ing to element bv in J ∗′) is V −1
b Q−1

i Gi for voxels in region b, 0 otherwise. Thus, the least
squares estimator β̂ib1 of β ib1, b = 1, . . . ,B , is

(34) β̂ib1 = V −1
b

∑
v(b)∈b

Q−1
i GiYivb.. = V −1

b

∑
v(b)∈b

β̂ivb1.



ESTIMATING CAUSAL EFFECTS OF HUMAN BRAIN FUNCTION 467

Further, as V −1
b

∑
v(b)∈b Q−1

i GiYivb.. = Q−1
i Gi(V

−1
b

∑
v(b)∈b Yivb..), the least squares es-

timates may be computed by first averaging over the voxels in the region,

(35) β̂ib1 = Q−1
i GiYi+b..,

where Yi+b.. = V −1
b

∑
v(b)∈b Yivb...

Next, we model Yi+··· = (Y′
i+1.., . . . ,Y′

i+B..)
′. For b = 1, . . . ,B

(36) Yi+b.. = Xi1βib1 + Xi2βib2 + εib..,

where εib.r = (εib1r , . . . , εibT r )
′, εib.. = (ε′

ib.1, . . . , ε
′
ib.R)′. Now, let εi... = (ε′

i1.., . . . , ε
′
iB..)

′,
Xi = (Xi1,Xi2), βi.. = (β ′

i11,β
′
i12, . . . ,β

′
iB1,β

′
iB2)

′. The whole-brain region level model for
individual i is

(37) Yi+··· = (IB ⊗ Xi)βi.. + εi...,

where IB is the B × B identity matrix, εibtr = ρbεib,t−1,r + uibtr , the vectors ui.tr =
(ui1tr , . . . , uiBtr )

′, t = 1, . . . , T , r = 1, . . . ,R are independent and identically distributed
N(0,�). We also assume the collection of R vectors εi..r = (εi11r , . . . , εi1T r , . . . , εiB1r , . . . ,

εiBT r)
′ are mutually independent. Thus, the covariance matrix

ε = Var(εi...) =
⎡
⎢⎣

IR ⊗ V11, . . . , IR ⊗ V1B

...
...

IR ⊗ VB1, . . . , IR ⊗ VBB

⎤
⎥⎦

consists of B2 blocks IR ⊗ Vbb′ , where Vbb′ = Cov(εib.r , εib.′r ) is the T × T matrix with
elements cov(εibtr , εi,b′t ′r ) = (φbb′/1 − ρbρb′)ρmax(0,t−t ′)

b ρ
max(0,t ′−t)
b′ , r = 1, . . .R. The least

squares estimator β̂i.. of β i.. has covariance matrix

(38) V (β̂i..) = (
IB ⊗ X′

iXi

)−1[
(IB ⊗ Xi)ε(IB ⊗ Xi)

](
IB ⊗ X′

iXi

)−1;
V (β̂i..) is then estimated using (22) and (23) to estimate ε , with the resulting estimator ̂ε

used in place of ε in (38).

Now, we model the estimates β̂i.1 = (β̂
′
i11, . . . , β̂

′
iB1)

′ of βi.1 using the decomposition
(20). The log-likelihood

(39) �(β ..1,b) ∝ −
n∑

i=1

[
ln |b + Ci | + (β̂i.1 − β ..1)

′(b + Ci)
−1(β̂i.1 − β ..1)

]
.

As Ci is unknown, the estimated asymptotic covariance matrix Ĉi is used in place of Ci to
solve the likelihood equations and obtain standard errors:

∂�

∂β ..1
=

n∑
i=1

(b + Ĉi)
−1(β̂i.1 − β ..1) = 0,(40)

∂�

∂σqs

= −1/2
n∑

i=1

[
tr

(
(b + Ĉi)

−1 ∂b

∂σqs

)

− (β̂1.1 − β ..1)
′(b + Ĉi)

−1 ∂b

∂σqs

(b + Ĉi)
−1(β̂1.1 − β ..1)

]
= 0,

(41)

where σqs = σsq , q ≤ s, is the qs element of b. Letting (A)qs denote the (qs) element of a
matrix A, note that (41) reduces further, using tr((b + Ĉi)

−1 ∂b

∂σqs
) = 2((b + Ĉi)

−1)qs for
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q �= s and ((b + Ĉi)
−1)qs if q = s. The information matrix has components

−E

(
∂2�

∂β ..1∂β ′
..1

)
=

n∑
i=1

(b + Ĉi)
−1,(42)

−E

(
∂2�

∂β ..1∂σqs

)
= 0, q ≤ s,(43)

−E

(
∂2�

∂σqs∂σq ′s′

)
= 1/2

n∑
i=1

tr

[
(b + Ĉi)

−1 ∂b

∂σrs

(b + Ĉi)
−1 ∂b

∂σq ′s′

]
(44)

= 1/2
n∑

i=1

[(
(b + Ĉi)

−1)
qs

(
(b + Ĉi)

−1)
q ′s′

]
,(45)

where q ≤ s, q ′ ≤ s′.
The EM-algorithm is used to solve the likelihood equations (40) and (41). Here, the “E-

step” provides estimates β̂ i.1, while the “M-step” provides estimates of the population pa-
rameters β ..1 and b. The asymptotic covariance of β̂ ..1 can be obtained by inverting the
estimated information matrix with estimates β̂ ..1 and ̂b in place of β ..1 and b.

APPENDIX C: DETECTING ACTIVATION—A SIMULATION STUDY

We conduct a small simulation study to compare the performance of our method for de-
tecting and estimating activations in ROIs with that of the standard GLM approach, in which
each voxel is modeled separately as the product of an amplitude with the known CHRF.
Attention is limited to the case where the voxel activations are homogeneous throughout the
region. The setup is similar to that in Lindquist et al. (2009) and Degras and Lindquist (2014).
It is also important to note that the standard GLM approach, because each voxel is modeled
separately, cannot be used to study functional connectivity between ROIs; if this is of interest,
a whole-brain approach is essential.

As shown in Figure 5(A), within a static brain slice of size 51 × 40, a set of 25 identically
sized squares, each size 4×4, were placed to represent active ROIs. In each square, a different
HRF was created using stimulus functions that vary systematically across squares in terms of
onset and duration. The HRF in the upper left-hand corner is the CHRF. From left to right the
onset of activation varied from the first to the fifth TR, and from top to bottom, the duration
of activation varied from one to nine TRs in steps of two. Figure 5(B) shows the five HRFs
with no onset shift which are representative of the remaining HRFs. The TR is one second
and the time between stimuli was set to 30 seconds. All HRFs have an amplitude of one.
This activation pattern was repeated to simulate a total of 10 trials; hence, T = 300 in our
simulation.

We generated 1000 datasets, each consisting of the BOLD responses of 15 subjects. Equa-
tion (17) with square specific HRFs was used to to generate the responses, assuming Aivb = 0,
J = 1, R = 1, and no systematic error. An event-related stimulus function with a single spike
repeated every 30 seconds was used. Within each square, a subject specific amplitude Divb1,
equal for all voxels v(b) ∈ b, was drawn from the normal distribution N (1,4/3) with mean
1, variance 4/3 and an error εivbt1(Z̄it1) was drawn from the N (0,4) distribution. This setup
yields an effect size (Cohen’s d = 0.5), similar to that observed in the visual and motor cortex
(Wager et al. (2005)).

For each dataset, we used: (1) the standard approach to estimate the HRF as the product
of the CHRF with an estimated amplitude and (2) our approach, in which the HRF in every
square is estimated using 15 B-spline basis functions of order 6. We parceled the brain slice
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FIG. 5. Overview of the simulation. (A) A set of 25 equally sized squares were placed within a static brain
slice to represent regions of interest (ROIs). The HRFs vary systematically across the squares in their onset and
duration of neuronal activation. From left to right the onset of activation varied between the squares from the first
to the fifth TR. From top to bottom, the duration of activation varied from one to nine TR in steps of two. (B) Five
HRFs with identical onset and varying duration. (C) The parcellation scheme used to define ROIs for our method.

into 29 regions, as shown in Figure 5(C), corresponding to the 25 activation profiles and four
inactive background regions.

Using our approach and the integrated average effect (15) between q∗ = 4 s and q∗∗ = 12 s
as a test statistic, we: (i) estimated the bias of the test statistic at each voxel and (ii) tested the
null hypothesis of no activation: H0 : H++b1(q

∗, q∗∗) = 0 vs. HA : H++b1(q
∗, q∗∗) > 0; the

range [4,12] was chosen to cover the peak activation period of primary interest. To control
for multiple comparisons, we used the Benjami–Hochberg (Benjamini and Hochberg (1995))
procedure with the false discovery rate set at 0.05. The standard GLM approach estimates an
amplitude for each subject and voxel, using these to estimate the population amplitude and
its variance. Since the HRF is assumed to be the product of the CHRF with the amplitude,
testing for activation under this approach is equivalent to testing if the population amplitude
is 0, that is, H0 : D+vb1 = 0 vs. HA : D+vb1 > 0, where D+vb1 = E(Divb1).

The top row of Figure 6 displays the mean bias for the integrated average effect over the
1000 repetitions for each voxel in the slice. Clearly, the GLM approach provides an unbi-
ased estimate in the upper left-hand corner where the HRF is correctly specified. However,
its performance worsens dramatically as the onset and/or duration of the HRF increases.
Interestingly, the bias is consistently negative, indicating that the GLM will consistently un-
derestimate the average integrated effect. Using our approach, the bias is more than an order
of magnitude smaller. In addition, there is no apparent spatial pattern for the bias, and it takes
both positive and negative values.
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FIG. 6. (Top row) The mean bias for the integrated average effect over the 1000 replications of the simulation
for each voxel using the standard voxel-wise GLM (left) approach and our proposed approach (right). For the
GLM approach, the bias is roughly zero in the upper left-hand corner where the HRF is correct, and increases
as the HRF begins to differ from its canonical form. Note that the bias is consistently negative. For our approach
the bias is at least an order of magnitude smaller with no consistent spatial pattern. (Bottom row) The proportion
of times in 1000 replications of the simulation that each voxel was deemed active using the standard voxel-wise
GLM (left) approach and our proposed approach (right). Note that since our approach is fit at the region-level
all voxels within the same region will have the same proportion. For our approach the average proportion in the
active voxels is 0.960. Using the GLM it is roughly the same in the upper left-hand corner where the HRF is
correct, and decays as the HRF begins to differ from its canonical form.

The bottom row of Figure 6 shows the proportion of times each voxel in the slice was
deemed active in the 1000 repetitions. The GLM approach gives reasonable results for de-
layed onsets within three seconds and durations up to three seconds, corresponding to squares
in the upper left-hand corner. However, its performance worsens dramatically as onset and du-
ration increase; for example, in the square in upper right-hand corner the proportion deemed
active is 0.91, in the lower left-hand corner it is 0.19 and in the lower right-hand corner it
is 0. The proportions of false positives are well controlled in the background voxels, as the
average proportion deemed active is only 0.0014, indicating a high degree of specificity.

Using our approach, irrespective of the shape of the underlying HRF we recover appro-
priate activations. The average proportion of true positives for the integrated average effect
across the 25 squares is 0.96, indicating high sensitivity. The average proportion deemed
active in the background regions is 0.001, illustrating the method’s specificity.
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