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In actuarial research a task of particular interest and importance is to pre-
dict the loss cost for individual risks so that informative decisions are made
in various insurance operations such as underwriting, ratemaking and cap-
ital management. The loss cost is typically viewed to follow a compound
distribution where the summation of the severity variables is stopped by the
frequency variable. A challenging issue in modeling such outcomes is to ac-
commodate the potential dependence between the number of claims and the
size of each individual claim. In this article we introduce a novel regression
framework for compound distributions that uses a copula to accommodate
the association between the frequency and the severity variables and, thus, al-
lows for arbitrary dependence between the two components. We further show
that the new model is very flexible and is easily modified to account for in-
complete data due to censoring or truncation. The flexibility of the proposed
model is illustrated using both simulated and real data sets. In the analysis
of granular claims data from property insurance, we find substantive negative
relationship between the number and the size of insurance claims. In addi-
tion, we demonstrate that ignoring the frequency-severity association could
lead to biased decision-making in insurance operations.

1. Introduction. In actuarial research on nonlife insurance, a task of particular interest
and importance is to predict the loss cost for individual risks in an insurer’s book of business.
Interpretation and prediction of loss cost of individual policyholders deepens the insurer’s
understanding of the risk profile of the entire portfolio which further leads to better-informed
decisions in various insurance operations, such as underwriting, ratemaking and capital man-
agement.

The loss cost of a policyholder is jointly determined by the number of claims and the
amount of each claim during the contract period. As a result, researchers and practitioners
typically view the loss cost outcome to follow a compound or generalized distribution (see
Karlis and Xekalaki (2005) and Johnson, Kemp and Kotz (2005)). Specifically, the loss cost
per policy year, denoted by S, can be represented as

S = Y1 + · · · + YN,(1.1)

where N is a counting random variable and represents the number of claims, and Yj

(j = 1, . . . ,N ) is a nonnegative continuous random variable and represents the size of the
j th claim. The sequence of Y1, Y2, . . . is further assumed to be independently and identi-
cally distributed. Compound distributions have been extensively used in the actuarial science
literature for modeling aggregate losses in an insurance system (see, e.g., Klugman, Panjer
and Willmot (2012), Lin (2014), and Albrecher, Beirlant and Teugels (2017)). In insurance
applications, N and {Yj } are referred to as the “frequency” and “severity” components, re-
spectively.
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In this article we focus on the regression method for compound distributions when both
N and (Y1, . . . , YN) are observed. A challenging issue in modeling such outcomes in the
regression setting is to accommodate the potential dependence between the number of claims
and the size of each individual claim. The goal of this work is to introduce a simple yet
flexible regression framework to allow for arbitrary dependence between the frequency and
severity distributions.

The current regression approach to studying the aggregate loss S relies on the indepen-
dence assumption between N and each Yj . Under such independence assumption one devel-
ops regression models for the number and size of claims separately, which is known as the
frequency-severity or two-part model. See Frees (2014) for discussions on various types of
two-part models. As a special case, when the frequency is a Poisson variable and the sever-
ity is a gamma variable, the loss cost is known to follow a Tweedie distribution (Tweedie
(1984)). Jørgensen and Paes de Souza (1994) and Smyth and Jørgensen (2002) have explored
fitting the Tweedie’s compound Poisson model to the loss cost data in property insurance.

In addition to actuarial science and insurance, regression models based on compound dis-
tributions have been used in many other disciplines as well. In health economics the two-part
model was used to study an individual’s total number of doctor visits resulting from multiple
spells of illness in a given period (see, for instance, Silva and Windmeijer (2001)). In market-
ing, Tellis (1988) employed a special case of the frequency-severity model to study the effect
of repetitive advertising on consumer purchasing choices; Aribarg, Pieters and Wedel (2010)
studied consumer advertisement recognition where an individual’s attention is formulated as
a compound model determined by eye fixation frequency and gaze duration. In operational
risk the compound distribution for aggregate losses is the foundation for the determination of
the operational risk capital required by the Basel capital framework for banks (Panjer (2006)
and Shevchenko (2010)). In psychology, Smithson and Shou (2014) pointed out the applica-
tions of this type of model in different areas of psychology, such as perception and decision
making, where a psychological process is thought to be serially summed from observable
component process outputs.

The two-part models in different scientific fields described above employ some common
key assumptions, including:

(1) The distribution of N does not depend on the values of Yj for j = 1, . . . ,N ;
(2) Conditional on N = n > 0, Y1, . . . , Yn are independently distributed random variables;
(3) Conditional on N = n > 0, the common distribution of Y1, . . . , Yn does not depend

on n.

The (conditional) independence assumption between N and Yj certainly leads to tractable sta-
tistical inference because it allows one to build regression models separately for the frequency
and severity components. However, if N and Yj are correlated, ignoring the association be-
tween them will lead to serious biases in the inference. First, the regression coefficients in
the severity regression model will be inconsistent estimates of the marginal effect of explana-
tory variables. Second, there is a persistent error in the prediction for the severity given the
frequency. Third, the misspecification will introduce bias in the inference for the compound
distribution.

Motivated by the above observations, we introduce a novel copula-linked compound distri-
bution and the associated two-part regression framework that allow for arbitrary dependence
between the frequency and severity components. Specifically, we employ a parametric copula
to construct the joint distribution of frequency and severity variables, thus relax the indepen-
dence assumption in standard methods. We show that the resulting copula regression frame-
work is able to nest several commonly used approaches as special cases, including the hurdle
model, the selection model and the frequency-severity model, among others. Furthermore,
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we extend the basic model to accommodate the case of incomplete data due to censoring or
truncation. Because of the parametric nature, likelihood-based approaches are proposed for
estimation, inference and diagnostics.

The flexibility of the proposed model is illustrated using both simulated and real data sets.
In the numerical experiments we showcase the impact of ignoring the frequency and severity
dependence on the resulting compound distribution. In the empirical study we apply the pro-
posed method to granular claims data in property insurance. Our analysis detects substantive
negative dependency between the number and the size of insurance claims. In addition, we
demonstrate the importance of such dependency in some key insurance functions, including
underwriting and ratemaking, loss reserving and capital management. The results suggest
that ignorance of frequency-severity dependence could lead to biased decision making in
insurance operations.

To the best of our knowledge, this work is among the first efforts to explicitly incorpo-
rate the dependence between the frequency and severity variables of a compound distribu-
tion in a regression setting. Recent literature has made some development in this direction;
for example, see Czado et al. (2012), Krämer et al. (2013) and Garrido, Genest and Schulz
(2016) among others. The fundamental difference between our work and existing studies is
that the aforementioned studies examined the relation between the frequency N and the av-
erage severity Y = ∑N

j=1 Yj/N , while the proposed method directly looks into the relation
between the frequency N and the individual severity Yj . Alternative mechanisms for intro-
ducing dependence between the frequency and individual severity variables include the corre-
lated random-effect framework, as in Olsen and Schafer (2001), and the conditional approach,
as in Frees, Gao and Rosenberg (2011). The difficulty with both methods as compared to the
proposed copula approach is that it is not straightforward to handle incomplete data which is
not unusual in insurance applications because of various coverage modifications.

Given that our work fits in the broader literature on multivariate modeling in insurance, it
is worth discussing their differences and connections. The current literature on dependence
modeling of insurance claims focuses on the joint modeling of multiple outcomes of loss cost
that could arise from multiple lines of business (see Frees, Lee and Yang (2016)), multiple
coverage in a single business line (see Shi, Feng and Boucher (2016)) or multiple peril types
covered by a policy (see Shi and Yang (2018)). In this line of studies, each loss cost outcome
is formulated using either a Tweedie model or a two-part model. Both can be viewed in the
framework of the compound distribution (1.1) where the N and each Yj are assumed to be
independent with each other. Apart from the association among multiple loss cost outcomes,
this work examines a single loss cost outcome, and the focus is on the dependence between
the frequency and severity components in the compound model.

The rest of the paper is structured as follows. Section 2 introduces the dependent
frequency-severity regression model for the compound distribution and discusses its exten-
sion for incomplete data due to censoring and truncation. The likelihood-based methods for
estimation, inference and diagnostics are further discussed. Section 3 provides numerical ex-
periments to show the impact of ignoring the frequency-severity dependence under various
settings. Section 4 applies the proposed approach to the loss cost data in property insurance
and shows the importance of the frequency-severity dependence in insurance operations. Sec-
tion 5 concludes the article. The Supplementary Material (Shi and Zhao (2020)) contains
additional technical examples, numerical studies and detailed data analysis.

2. Copula-linked compound regression.

2.1. Basic model. In the basic setup, we assume that complete information on (N,Y1,

. . . , YN) is observed for each subject, where N is a count variable and {Yj } are continuous
variables. For simplicity, we suppress the subject index in the following presentation. The
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joint distribution of (N,Y1, . . . , YN) is built upon the assumption that (Y1, . . . , Yn) are condi-
tionally i.i.d. given N = n, as opposed to the unconditional i.i.d. assumption in the standard
compound distribution. There are several implications of this assumption. First, conditional
independence of (Y1, . . . , Yn) given N = n introduces correlation among Yj , which departs
from the i.i.d. assumption in the standard model. Second, identical distribution of (Y1, . . . , Yn)

given N = n implies identical marginal distribution of Yj which is consistent with the i.i.d.
assumption in the standard model. Third, the bivariate distribution of (N,Yj ) are identical
given N = n which nests the independent case in the standard model.

To facilitate presentation, we denote Y as the variable associated with the common dis-
tribution of the sequence {Yj }. Note that Y is only defined in the sense of a distribution,
not in the sense of a random variable. Under the conditional independence assumption, the
associated pmf/pdf function is

fN,Y (n, y1, . . . , yn) =
⎧⎪⎨⎪⎩

Pr(N = 0) n = 0,
∂

∂y1 · · · ∂yn

Pr(N = n,Y1 ≤ y1, . . . , Yn ≤ yn) n > 0

= [
fN(0)

]I (n=0)[
fN(n) × fY |N(y1, . . . , yn|n)

]I (n>0)

= fN(n) ×
[

n∏
j=1

fY |N(yj |n)

]I (n>0)

,

(2.1)

where I (·) is an indictor function.
The central component to define (2.1) is the joint distribution of N and Y . To allow for

flexible dependence between N and Y , we take a parametric approach and employ a bivariate
parametric copula to construct their joint distribution. Refer to Nelsen (2006) and Joe (2015)
for an introduction to dependence modeling with copulas. According to Sklar’s theorem, the
joint distribution of N and Y can be expressed in terms of a bivariate copula C:

FN,Y (n, y) = Pr(N ≤ n,Y ≤ y) = C
(
FN(n),FY (y)

)
.(2.2)

Denote h(u, v) = ∂
∂v

C(u, v), it follows that

fN,Y (n, y) = ∂

∂y
Pr(N = n,Y ≤ y)

= fY (y)
[
h
(
FN(n),FY (y)

) − h
(
FN(n − 1),FY (y)

)]
.

(2.3)

From above, one finds the conditional distribution of Y given N as

FY |N(y|n) = Pr(Y ≤ y|N = n)
(2.4)

= 1

fN(n)

[
C

(
FN(n),FY (y)

) − C
(
FN(n − 1),FY (y)

)]
,

fY |N(y|n) = ∂

∂y
Pr(Y ≤ y|N = n)

(2.5)

= fY (y)

fN(n)

[
h
(
FN(n),FY (y)

) − h
(
FN(n − 1),FY (y)

)]
.

In a regression context one wants to incorporate exogenous explanatory variables to ac-
count for observed heterogeneity in both N and Yj . Thus, the marginal models for both N

and Yj are defined conditional on covariates. For example, in generalized linear models one
could specify gf (E(Ni |xi )) = x′

iβ
f and gs(E(Yij |xi )) = x′

iβ
s , where i is the subject index,
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xi is the vector of covariates, β is the regression coefficients and g denotes the link function.
Superscripts f and s indicate the frequency and severity components, respectively.

As a special case, when the copula in (2.2) is an independence copula, that is, N and each
Yj are independent, model (2.1) reduces to

fN,Y (n, y1, . . . , yn) = fN(n) ×
[

n∏
j=1

fY (yj )

]I (n>0)

,(2.6)

where the marginal models of N and Y are totally separable. Since (2.1) includes (2.6) as
a special case, the usual goodness-of-fit statistics, such as the likelihood ratio test, could be
used to test whether the independence assumption between N and Yj is supported by the
data.

It is worth stressing several observations in model (2.1). First, the independence assump-
tion of Yj given N implies a specific dependence among the sequence {Yj }. As pointed out by
Liu and Wang (2017), other types of dependence might exists between N and {Yj }. Indeed,
more flexible relation among {Yj } could be accommodated by further specifying a joint dis-
tribution of {Yj } given N . Since the focus of this work is the association between N and each
Yj rather than the association within {Yj }, we leave this potential generalization of the cur-
rent model for future investigation. Second, the proposed model is flexible such that several
commonly used two-part models can be viewed in the copula framework. Specific exam-
ples include the hurdle model (Mullahy (1986)), the selection model (Smith (2003)) and the
frequency-severity model (Frees (2014)). Detailed discussions can be found in Section S.1 of
the Supplementary Material. Third, the current representation assumes Y to be a nonnegative
continuous outcome. However, the framework is ready to accommodate discrete outcomes
with suitable modifications for (2.3). For instance, Y could be a count variable in the study
of health care utilization under multiple spells of illness.

2.2. Incomplete data. Insurance contracts typically contain some cost sharing features,
such as deductible and policy limit, to reduce the cost of insurers. Due to such coverage mod-
ifications, N and/or Y are often not completely observed. Motivated by such observations,
we extend the basic copula model to accommodate incomplete data.

Presumably the contract has a per-occurrence deductible d and a policy limit l. The de-
ductible refers to the maximal amount of loss assumed by the policyholder, and the policy
limit represents the maximal possible indemnification from the insurer. Note that both quan-
tities vary by policyholders. Given that deductible and policyholder will affect the frequency
and severity observed by the insurer, we denote Ñ and Ỹ as the corresponding modified
variables. Hence, the modified aggregate loss to the insurer is

S̃ = Ỹ1 + · · · + ỸÑ .

We consider two cases of incomplete data. The first one corresponds to the per-loss sce-
nario as defined in Klugman, Panjer and Willmot (2012). This scenario assumes that all acci-
dents are reported to the insurer regardless of whether the loss amount exceeds the deductible.
In this case the frequency component is not affected by coverage modifications; thus, Ñ = N .
However, the severity component will be adjusted by

Ỹ =

⎧⎪⎪⎨⎪⎪⎩
0 Y ≤ d,

Y − d d < Y ≤ l,

l − d Y > l.
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Thus, the joint distribution of (Ñ, Ỹ1, . . . , ỸÑ ) can be shown as

fÑ,Ỹ (n, y1, . . . , yn) = [
fÑ (0)

]I (n=0)[
fÑ (n) × fỸ |Ñ (y1, . . . , yn|n)

]I (n>0)

= [
fÑ (0)

]I (n=0)

[
fÑ (n) ×

n∏
j=1

fỸ |Ñ (yj |n)

]I (n>0)

,
(2.7)

where fÑ (n) = fN(n) and

fỸ |Ñ (y|n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pr(Ỹ = 0|Ñ = n) y = 0,
∂

∂y
Pr(Ỹ ≤ y|Ñ = n) 0 < y < l − d,

Pr(Ỹ = l − d|Ñ = n) y = l − d

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pr(Y ≤ d|N = n) y = 0,
∂

∂y
Pr(Y ≤ y + d|N = n) 0 < y < l − d,

Pr(Y ≥ l|N = n) y = l − d

=

⎧⎪⎪⎨⎪⎪⎩
FY |N(d|n) y = 0,

fY |N(y + d|n) 0 < y < l − d,

1 − FY |N(l|n) y = l − d.

As pointed out by one reviewer, the copula between N and Ỹ stays unchanged since censoring
is a monotone increasing function of Y .

The second one corresponds to the per-payment scenario as defined in Klugman, Panjer
and Willmot (2012). Differing from the former scenario, the accident with a loss amount
below the deductible is unobservable to the insurer. Hence both frequency and severity are
modified by coverage modifications. The relation between the original and modified variables
are

Ñ = I (Y1 > d) + · · · + I (YN > d) and Ỹ =

⎧⎪⎪⎨⎪⎪⎩
– Y ≤ d,

Y − d d < Y ≤ l,

l − d Y > l.

To derive the distribution of (Ñ, Ỹ1, . . . , ỸÑ ), we assume, without loss of generality, the
first k (≤ Ñ = n) claims are below maximum indemnification, and the rest n − k claims
receive maximum payments, that is, 0 < y1, . . . , yk < l − d and yk+1, . . . , yn = l − d . Then,
we have

fÑ,Ỹ (n, y1, . . . , yn)

= ∂k

∂y1 · · · ∂yk

Pr(Ñ = n, Ỹ1 ≤ y1, . . . , Ỹk ≤ yk, Ỹk+1 = · · · = Ỹn = l − d)

= E
[

∂k

∂y1 · · · ∂yk

Pr(Ñ = n, Ỹ1 ≤ y1, . . . , Ỹk ≤ yk, Ỹk+1 = · · · = Ỹn = l − d|N)

]

= E
[(

N

n

)
∂k

∂y1 · · · ∂yk

Pr(d < Yj ≤ yj + d, j = 1, . . . , k,

Yk+1, . . . , Yn > l,Yn+1, . . . , YN ≤ d|N)

]
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= E

[(
N

n

)
k∏

j=1

Pr(Yj = yj + d)

n∏
j=k+1

Pr(Yj > l)

N∏
j=n+1

Pr(Yj ≤ d)

]

= E

[(
N

n

)
k∏

j=1

fY |N(yj + d|N)
[
1 − FY |N(l|N)

]n−k[
FY |N(d|N)

]N−n

]
.

Though motivated by insurance applications, the above cases are representative of two
common mechanisms for incomplete observations, censoring and truncation. Our method
relies on the assumption that censoring or truncation is exogenous, that is, the underlying
distribution of N and Y are not affected by such mechanisms.

2.3. Inference. Because of the parametric nature of the proposed copula model, pa-
rameters can be estimated using likelihood-based approach. Denote model parameters by
θ = (θf , θs, θc), where θf is the vector of parameters in the frequency model, θs is the
vector of parameters in the severity model and θc represents association parameters in the
bivariate copula. For complete data and censored data, one could employ either two-stage
MLE or full MLE. However, for truncated data only full MLE is available. In the following,
we give detailed estimation procedures for the case of complete data. The procedures for the
censored and truncated data are similar and thus omitted.

Using the basic model (2.1), the log-likelihood function for subject i is shown as

li(θ) = logfN(ni) + I (ni > 0) ×
ni∑

j=1

logfY |N(yij |ni).

Given a random sample {Ni,Y i}mi=1 = {ni, yi1, . . . , yini
}mi=1, the full log likelihood for the

case of complete data can be written as

L(θ) =
m∑

i=1

logfN(ni) + ∑
{i:ni>0}

ni∑
j=1

logfY |N(yij |ni)

=
m∑

i=1

logfN(ni) − ∑
{i:ni>0}

ni logfN(ni)

+ ∑
{i:ni>0}

ni∑
j=1

{
logfY (yij ) + log

[
h
(
FN(ni),FY (yij )

) − h
(
FN(ni − 1),FY (yij )

)]}
.

One estimation strategy is the full information likelihood method. The full MLE θ̂ can be
obtained as the maximizer of the full log likelihood function L(θ). Under regularity condi-
tions, for example, Theorem 3.3 in Newey and McFadden (1994), θ̂ is consistent and asymp-
totically normal. The asymptotic covariance matrix of θ̂ can be consistently estimated using
the inverse of observed information at the full MLE θ̂ , that is, −[ ∂2

∂θ∂θ ′ L(θ̂)]−1.
The above likelihood function also suggests a two-stage estimation strategy. Denote the

two-stage MLE by θ̂
2s = (θ̂

f
2s, θ̂

s
2s, θ̂

c
2s), and further denote

L1
(
θf ) =

m∑
i=1

logfN(ni), L2(θ) =
m∑

i=1

I (ni > 0) ×
[

ni∑
j=1

logfY |N(yij |ni)

]
,

we have L(θ) = L1(θ
f ) + L2(θ). In the first stage, one estimates the count regression model

fN(ni) to obtain θ̂
f
2s by solving ∂

∂θf L1(θ
f ) = 0. Fixing the parameters in the first part, θf =
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θ̂
f
2s , the second stage estimates the conditional model fY |N(yij |ni) to obtain θ̂ s

2s and θ̂ c
2s by

solving ∂2

∂(θs ,θc)
L2(θ̂

f
2s, θ

s, θc) = 0. Under the regularity conditions of Theorem 6.1 in Newey

and McFadden (1994), θ̂
2s

is consistent and asymptotically normal. However, the asymptotic

covariance matrix of θ̂
2s

can be tedious to calculate. The advantage of the two-stage MLE is

its computational efficiency. Thus, to speed up the computation, we first obtain θ̂
2s

and then
use it as the initial point for the maximization of the full likelihood.

The proposed two-stage approach differs from the inference functions for marginals (IFM)
method that is widely used in copula regression (Joe (2005)). The IFM first estimates param-
eters in the univariate marginal models and then estimates the association parameters in the
copula. In our case the parameters in the severity component and the copula shall be esti-
mated simultaneously. Applying IFM estimation to the proposed copula model will lead to
inconsistent estimation because the marginal likelihood for Y is not observed when N = 0.

For model comparison one could refer to information-based criteria, such as AIC or BIC.
To assess the goodness-of-fit of the copula model, we suggest the following steps. The ade-
quacy of fit for the count regression can be examined using the standard Pearson’s chi-squared
test. The usual diagnostic analysis for neither the marginal distribution of Y nor the bivariate
copula is applicable in our case, for the same reason that the two pieces must be estimated
jointly. Therefore, we employ a procedure based on the conditional distribution fY |N . Specif-
ically, we calculate the fitted distribution F̂Y |N(yij |ni) for i = 1, . . . ,m and j = 1, . . . , ni .
One expects the sequence {F̂Y |N(yij |ni)} to be a sample of uniform (0,1), provided that
the copula model is correctly specified. In addition, one could visualize the adequacy of
fit with a normal QQ plot by graphing the empirical quantiles from {�−1(F̂Y |N(yij |ni))}
against the theoretical quantiles from a standard normal distribution. We demonstrate in de-
tail the usage of the proposed diagnostic tools in Section S.3 of the Supplementary Mate-
rial.

3. Numerical experiments.

3.1. Impact of dependence between N and Y . This section presents two numerical ex-
periments to emphasize the importance of the dependency between N and Y . Consider a
compound distribution S = Y1 + · · · + YN , where N ∼ Poisson(λ = 1), Y ∼ Gamma(α =
2, γ = 500) and joint distribution of N and Y is specified by a parametric copula. This setting
is of particular interest because of the special case where S is known as Tweedie compound
Poisson distribution when N and Y are independent. As noted by Jørgensen (1987), under
parameterizations λ = μ2−p/[φ(2 −p)], α = (2 −p)/(p − 1) and γ = φ(p − 1)/μp−1, this
distribution can be expressed in the form of the exponential dispersion model with a power
variance function V (μ) = μp for p ∈ (1,2).

The first experiment demonstrates the effect of frequency-severity dependency on the dis-
tribution of aggregate loss. The distribution of S is calculated using Monte Carlo simulation
and is displayed in Figure 1. The first panel uses the Gaussian copula with different levels of
dependence measured by Kendall’s tau. When tau = 0, the copula model reduces to the inde-
pendence case which is equivalent to a Tweedie distribution (μ = 1000, p = 4/3, φ = 150).
The positive (negative) dependence leads to a longer (shorter) tail in the aggregate loss distri-
bution. The second panel compares three copulas (Gaussian, Clayton and Gumbel) with the
same Kendall’s tau. One observes the effect of tail dependence (upper for Gumbel and lower
for Clayton), although it is not substantial.

The second experiment examines the effect of frequency-severity dependence on the con-
ditional severity distribution. Figure 2 reports the distribution of Y given N at different levels
of dependence. In each panel we show densities fY (y), fY |N>0(y|N > 0) and fY |N(y|n). The
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FIG. 1. Empirical CDF of aggregate loss. The left panel simulates data from the Gaussian copula with different
Kendall’s tau, and the right panel simulates data from different copulas with the same Kendall’s tau.

former two cases correspond to the common practice where the claim amount is not affected
by the number of claims given occurrence. The result is indicative of severe misspecification
bias when the dependence between frequency and severity is ignored.

3.2. Estimation based on the joint distribution of N and Y . This simulation study exam-
ines the finite-sample performance of the estimations based on the joint distribution of N and
Y and further demonstrates the inference bias incurred by ignoring the frequency-severity
dependence. We consider the Gaussian copula compound model in a regression context. The
primary distribution is Poisson and the secondary distribution is gamma with

Poisson : log
(
E(Ni)

) = log(λi) = β
f
0 + β

f
1 X1i + β

f
2 X2i ,

Gamma : log
(
E(Yij )

) = log(αγi) = βs
0 + βs

1X1i + βs
2X2i ,

FIG. 2. The conditional distribution of loss amount given number of claims. The four panels correspond to
different levels of dependence between claim frequency and severity.
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TABLE 1
Estimation results for complete data using the two-stage approach and the joint MLE

Independence Two stage Joint MLE

Relative
bias

Relative
bias

Relative
biasParameter Mean RMSE Mean RMSE Mean RMSE

Low Dependence

β
f
0 = −1.5 −1.515 0.010 0.107 −1.515 0.010 0.107 −1.518 0.012 0.114

β
f
1 = 2.5 2.524 0.009 0.125 2.524 0.009 0.125 2.516 0.006 0.132

β
f
2 = 1 0.995 −0.005 0.073 0.995 −0.005 0.073 1.002 0.002 0.075

βs
0 = 5 5.092 0.018 0.124 4.988 −0.002 0.093 4.991 −0.002 0.091

βs
1 = −2.5 −2.552 0.021 0.110 −2.493 −0.003 0.101 −2.495 −0.002 0.105

βs
2 = 5 4.977 −0.005 0.056 5.004 0.001 0.054 5.001 0.000 0.051

α = 2 2.061 0.030 0.109 1.998 −0.001 0.097 2.005 0.003 0.093
ρ = 0.1 0.104 0.039 0.042 0.102 0.023 0.039

Medium Dependence

β
f
0 = −1.5 −1.487 −0.009 0.106 −1.487 −0.009 0.106 −1.500 0.000 0.098

β
f
1 = 2.5 2.478 −0.009 0.118 2.478 −0.009 0.118 2.501 0.000 0.116

β
f
2 = 1 1.005 0.005 0.078 1.005 0.005 0.078 0.998 −0.002 0.069

βs
0 = 5 5.419 0.084 0.429 5.002 0.000 0.082 5.002 0.000 0.079

βs
1 = −2.5 −2.733 0.093 0.262 −2.503 0.001 0.094 −2.506 0.002 0.103

βs
2 = 5 4.913 −0.017 0.104 5.001 0.000 0.057 5.005 0.001 0.053

α = 2 2.420 0.210 0.432 2.005 0.003 0.104 2.009 0.004 0.106
ρ = 0.5 0.501 0.003 0.028 0.500 −0.001 0.026

High Dependence

β
f
0 = −1.5 −1.509 0.006 0.110 −1.509 0.006 0.110 −1.503 0.002 0.078

β
f
1 = 2.5 2.507 0.003 0.134 2.507 0.003 0.134 2.497 −0.001 0.091

β
f
2 = 1 1.003 0.003 0.080 1.003 0.003 0.080 1.002 0.002 0.058

βs
0 = 5 5.690 0.138 0.698 4.999 0.000 0.090 5.000 0.000 0.058

βs
1 = −2.5 −2.870 0.148 0.395 −2.500 0.000 0.129 −2.507 0.003 0.082

βs
2 = 5 4.855 −0.029 0.166 5.001 0.000 0.069 5.001 0.000 0.050

α = 2 3.083 0.541 1.109 2.004 0.002 0.081 2.000 0.000 0.077
ρ = 0.9 0.900 0.000 0.006 0.901 0.001 0.006

where X1i and X2i are i.i.d. and X1 ∼ Uniform(0,1) and X2 ∼ Bernoulli(0.5). In the Gaus-
sian copula we consider different degrees of dependence. The copula model is estimated
using both the two-stage method and the joint MLE, and the results are summarized in Ta-
ble 1. We report the relative bias and the root mean squared error. The calculations are based
on a sample size of 500 with 250 replications. There is no substantial difference in the esti-
mates from the two approaches. For comparison, we also report in the table the results of the
standard two-part model where N and Y are assumed to be independent. As anticipated, the
estimates for the frequency model is consistent with the copula approach. However, the esti-
mation assuming conditional independence introduces a long-term bias in the severity model,
and this bias positively correlates with the association between N and Y .

Additional simulation studies are provided in Section S.2 of the Supplementary Material
to illustrate the estimation for incomplete data. We emphasize that, in contrast to the cases of
complete data and censored data, independence estimation will introduce persistent bias in
both frequency and severity components of the model when data are truncated.
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4. Modeling aggregate insurance claims. In nonlife insurance (including property, ca-
sualty and health) the compound distribution (1.1) is a common approach to modeling aggre-
gate losses in an insurance system. Examples of an insurance system include a single policy-
holder, a line of business or a portfolio of contracts. The compound distribution is known as
collective risk model in the actuarial literature, and the frequency and severity components
are the two building blocks of the model (Klugman, Panjer and Willmot (2012)).

In this application we examine the Wisconsin local government property fund which pro-
vides property insurance for local government entities in the State of Wisconsin, such as
court houses, school districts, fire stations, etc. We consider the building and contents cov-
erage where the building element covers for the physical structure of a property including
its permanent fixtures and fittings, and the contents element covers possessions and valu-
ables within the property that are detached and removable. Similar to most nonlife insurance
product, the contract provided by the property fund has a one-year term.

The insurance system in this context corresponds to a policyholder, that is, a local govern-
ment entity. The outcome of interest is the aggregate loss for an entity during the policy year,
determined by both the number and the size of claims. As discussed in Section 1, the col-
lective risk model implies a frequency-severity approach for modeling the aggregate loss for
each policyholder, and the current practice relies on the independence assumption between
the two building blocks N and Y in the collective risk model.

The purpose of the analysis below is twofold. First, we provide empirical evidence of
significant negative association between the frequency and severity of insurance claims; sec-
ond, we show that ignoring the frequency-severity dependence could lead to biased decision-
making in insurance operations. In the following sections we use the term “independence
model” to refer to the standard frequency-severity model that assumes independence between
the frequency and severity components and “copula model” to refer to the proposed copula
approach in Section 2.1 that allows for flexible dependence between the frequency and sever-
ity components.

Granular insurance claim data are collected for a portfolio of local government entities for
years 2009–2011. For each policyholder one observes the number of claims and the ground-
up loss of each claim during each year. We use data of 2009 and 2010 to develop the model,
and data of 2011 for model validation. There are 2080 and 1017 policy-year observations in
the training data and validation data, respectively.

4.1. Exploring frequency-severity association. To explore the relationship between claim
frequency and severity, we display in Figure 3 the violin plot of claim size by the number
of claims for the portfolio of government entities. To account for exposure, the claim size
is normalized by the amount of coverage. First, one observes that, given occurrence, the
distribution of claim severity correlates with claim frequency. Second, the violin plot suggests
a negative relation between claim severity and frequency, that is, the amount of claims tends
to be smaller for policyholders who have more claims.

To further motivate usage of the proposed copula model, we perform some preliminary
analyses to examine the role of frequency-severity dependence in model fitting. Our starting
point is the Tweedie model, given it is the industry standard in property-casualty insurance
for modeling semicontinuous loss cost. Recall that the Tweedie distribution is a Poisson sum
of gamma variables where the Poisson and gamma variables are assumed to be independent.
To examine the role of dependence, we further allow the Possion and gamma variables in the
Tweedie distribution to be correlated. Specifically, we fit a copula model for the aggregate
loss where the frequency is a Poisson variable, the severity is a gamma variable and their
joint distribution is specified by a bivariate Gaussian copula. The association parameter in
Gaussian copula is estimated to be −0.278 with a standard error of 0.022. This result is
consistent with the pattern suggested by Figure 3.
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FIG. 3. Violin plot of claim amount per $1000 coverage by the number of claims.

To compare the Tweedie and copula models, we present in Figure 4 two goodness-of-fit
plots. Denote FS(s) as the cumulative distribution function (CDF) of aggregate loss. The left
figure shows the fitted CDF of the aggregate loss from the two parametric models along with
the empirical estimate. Since the plot of CDF emphasizes the center of the distribution, it
is not ideal to visualize the effects of extremal large values. To further investigate the tail
fit, the right figure plots − log(1 − FS(s)) between the empirical distribution and the two
parametric (Tweedie and copula) models. On one hand, both plots indicate that the copula
model exhibits superior fit to the Tweedie model, emphasizing the importance of frequency-
severity dependence. On the other hand, there is still room for improvement of goodness-of-
fit in both the center and the tail of the distribution. This suggests considering more flexible
distributions for marginal behavior. To illustrate, we fit another copula model using zero-
one inflated negative binomial distribution for claim frequency, the generalized beta of the
second kind (GB2) distribution for claim severity and a Gaussian copula between the two
components. The estimated association parameter is −0.207 with a standard error of 0.032.
The corresponding goodness-of-fit plots are also shown in Figure 4. As anticipated, refined
marginal models improve the fit, especially in the heavy right tail. Overall, the preliminary
analyses suggests that there is significant negative dependence between claim frequency and
severity and, accounting for such association, enhances the goodness-of-fit for the aggregate
loss distribution.

FIG. 4. Comparison between empirical and parametric Cumulative Distribution Functions (CDF, denoted by
FS(s)) of aggregate loss.



COPULA TWO-PART MODEL 369

4.2. Empirical analysis. The observation in Section 4.1 motivates us to jointly exam-
ine the frequency and severity components in the collective risk model. Differing from the
earlier preliminary analysis, first, we explore using more flexible marginal distributions for
modeling the number and the size of insurance claims. Second, we incorporate covariates
to account for observed heterogeneity, and thus the relation between frequency and severity
is interpreted as residual dependence. Third, we consider various copula that offer different
types of dependence in modeling the frequency-severity relationship.

To facilitate model specification, we examine the distributions of both claim frequency
and severity, as well as their relationship with available explanatory variables. The insur-
ance database contains policyholder-specific and claim-specific information that one could
use to account for the variation in claim frequency and severity. Details of such covariate
information are provided in Section S.3 of the Supplementary Material. For claim frequency
we consider the policy-level characteristics, including entity type (whether a policyholder is
a city, county, township, village or others), alarm credit (whether a policyholder receives a
credit for alarm system), the level of deductible and the amount of coverage. For illustration
we exhibit in Table 2 the empirical distribution of the number of claims per policyholder in
the training data. As usually observed in insurance claims data, the majority of policyholders
(about 70%) has zero claims over the year. However, this percentage is much smaller than
private lines of business such as personal automobile insurance. Another striking feature of
claim counts is that there is an excess of ones in addition to the zero inflation. We further
break down the frequency distribution by entity type, as shown in Table 2 and visualized in
Figure 5. The substantial variation suggests that entity type is an important predictor for the
claim count.

Table 3 summarizes the empirical quantiles of claim amounts. There are in total 1381
claims in the sampling period. The descriptive statistics indicates that claim amount is skewed
and heavy-tailed distributed. For claim severity, besides policy-level information, we look
into the effects of claim-level information such as peril type, occurrence time and reporting
delay. As an example, Table 3 shows the empirical distribution of claim amount by peril type
and by occurrence time. The claim amount, due to fire and water damages, tends to be larger
compared to other perils, and the loss events occurred in the summer is more likely to result
in higher claims. The pattern is also displayed in the violin plot of the claim severity in log
scale in Figure 6. The plot reinforces the skewness in the severity distribution and stresses the
heterogeneity across occurrence and peril type.

TABLE 2
Distribution of claim frequency: Overall and by entity type (in percentage)

Entity type

Frequency Overall City County School Town Village Others

0 68.08 45.67 19.67 67.11 91.95 70.33 85.45
1 19.38 24.00 31.15 23.36 6.90 20.75 12.27
2 6.54 13.33 20.49 5.26 0.86 7.05 0.91
3 2.12 4.67 6.56 2.63 0.00 1.04 0.45
4 1.49 4.00 9.84 0.66 0.00 0.62 0.00
5 0.67 2.33 4.10 0.16 0.29 0.00 0.00
≥6 1.73 6.00 8.20 0.82 0.00 0.21 0.91

Obs 2080 300 122 608 348 482 220
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FIG. 5. Distribution of claim count by entity type.

In the final model, we consider a zero-one inflated negative binomial regression for claim
frequency,

fN(ni) = p0
i I (ni = 0) + p1

i I (ni = 1) + (
1 − p0

i − p1
i

)
gN(ni),(4.1)

where pk
i (k = 0,1) is specified using a multinomial logistic regression,

pk
i = exp(x′

iβ
f
k )

1 + ∑1
k=0 exp(x′

iβ
f
k )

, k = 0,1

and gN(·) is a standard negative binomial model,

gN(ni) = �(η + ni)

�(η)�(ni + 1)

[
η

η + exp(xiβ
f )

]η[
exp(xiβ

f )

η + exp(xiβ
f )

]ni

,

with η > 0 being the dispersion parameter. This specification allows to accommodate the
excess of both zeros and ones in the claim count. To accommodate the skewness and heavy-
tails, a parametric regression based on GB2 distribution is employed for claim severity (for
instance, see Shi (2014)) for details on GB2 regression),

fY (yij ) = [exp(wij )]φ1

yij |σ |B(φ1, φ2)[1 + exp(wij )]φ2
,(4.2)

TABLE 3
Distribution of claim amount: Overall, by peril and by occurrence (in dollars)

Peril Occurrence

Quantiles Overall Fire Water Others Spring Summer Fall Winter

10 946 1072 1009 790 991 950 945 912
25 1645 2168 1641 1418 1600 1655 1746 1666
50 3542 4989 4200 2945 3021 3859 3802 3619
75 9062 13,069 11,305 5724 7219 11,838 8852 7155
90 29,288 29,849 35,640 22,203 27,872 34,181 26,890 26,758

Obs 1381 400 389 592 290 539 289 263
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FIG. 6. Violin plots of claim severity. The left and right panels show severity distributions by peril and occur-
rence, respectively.

where φ1 and φ2 are shape parameters, σ is the scale parameter and wij = (logyij −x′
iβ

s)/σ .
A parametric bivariate copula is employed to construct the joint distribution of N and Y . We
consider commonly used bivariate copulas from the elliptical and Archimedean families,
including Gaussian, t , Clayton, Frank, Gumbel and Joe. For the Archimedean copulas that
only allow for positive association, we consider the associated 90 and 270 degree rotated
copulas.

The copulas models are estimated using likelihood-based estimation described in Sec-
tion 2.3. The corresponding goodness-of-fit statistics are reported in Table 4. The indepen-
dence model is presented as a benchmark. Model selection criteria AIC and BIC recommend
the Gaussian copula model. It appears that the tail dependence is not a concern in this context.
The implied Kendall’s tau, reported in the table, reinforces the negative frequency-severity
dependence obtained in the earlier analysis, indicating that the claim frequency and severity
are correlated after controlling for the covariates. Because the independence model is nested
by the copula model, we perform a likelihood ratio test to formally evaluate the goodness-of-
fit of the copula models against the independence model. The large χ2 statistics confirm the
statistical significance of the negative frequency-severity dependence.

The specification for the dependent frequency-severity model, including both the marginals
and the copula, is a result of a series of model comparisons, diagnostic analysis, and robust
checks. The detailed analysis is provided in Section S.3 of the Supplementary Material.

TABLE 4
Goodness-of-fit statistics for various copula models

Kendall’s tau LogLik AIC BIC Pearson’s χ2

Independence −15,756 31,587 31,801
Gaussian −0.19 −15,720 31,518 31,738 70.77
t −0.19 −15,719 31,519 31,744 72.38
Clayton90 −0.08 −15,723 31,523 31,743 66.06
Clayton270 −0.33 −15,739 31,555 31,775 34.09
Gumbel90 −0.29 −15,722 31,521 31,741 68.04
Gumbel270 −0.09 −15,731 31,540 31,759 49.53
Frank90/270 −0.22 −15,733 31,544 31,764 45.49
Joe90 −0.34 −15,739 31,557 31,777 32.38
Joe270 −0.05 −15,735 31,548 31,768 41.41
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Table 5 reports the estimated parameters for the selected Gaussian copula model. The asso-
ciation parameter in the Gaussian copula is −0.29 and −0.30 using two-stage and full MLE,
respectively. Given that the rating variables in insurance are highly regulated, one should
regard the observed frequency-severity dependence as a result of unobserved heterogeneity,
and thus the sign of the dependence could be either positive and negative. Our focus is to
provide a data-driven method to capture such relationship and to show the detrimental effects
of ignorant supposition of independence on statistical inference and hence insurance opera-
tions. For comparison, we also report in Table 5 the estimation results for the independence
model. For the frequency component one anticipates no essential difference in estimates of
regression coefficients between the independence and copula models. We observed that the
two-stage MLE is identical to the independence model, and we attribute the difference from
the full MLE to the finite sample property. In contrast, the difference in the estimates for the
severity component is substantial between the independence and copula models (both two-
stage and full MLE) which is in line with the significant negative dependence between N

and Y . The analysis indicates that ignoring the frequency-severity dependence could intro-
duce significant bias in parameter estimation.

4.3. Implications on insurance operations. The previous section shows the statistical sig-
nificance of the dependence between frequency and severity in the collective risk model. This
section focuses on the substantive significance of the frequency-severity dependence and
demonstrates its impacts on the decision making in some key insurance operations (Frees
(2015)).

The first operation that we consider is underwriting and ratemaking. They are two basic
functions in insurance companies and are closely related to each other. The former deals
with the selection of risks, and the latter deals with the determination of the price for the
risks accepted. To achieve the underwriting profit target, the central task in underwriting
and ratemaking is to quantify the risks of potential customers which provides the insurer a
risk score of policyholders to facilitate portfolio selection. To compare performance of the
independence and the copula models, we look to the policyholders in the validation data of
2011 and examine which method leads to a more profitable portfolio construction.

For the purpose of underwriting, we use the coefficient of variation to measure the risk of
policyholders. For each of the 1017 policyholders in year 2011, we calculate the coefficient of
variation of the loss cost, denoted Ri = √

Var[Si]/E[Si] for the ith policyholder. Given that
the aggregate loss cost is specified using a collective risk model (1.1), the mean and variance
of S is calculated by

E[S] = E
[
NE[Y |N ]] independence= E[N ]E[Y ],

Var[S] = E
[
N Var[Y |N ]] + Var

[
NE[Y |N ]] independence= E[N ]Var[Y ] + Var[N ](E[Y ])2

.

The above calculation emphasizes the role of the dependency between the two building
blocks, frequency and severity. We calculate the distribution of aggregate loss for each pol-
icyholder based on 10,000 Monte Carlo simulations. The upper panel of Figure 7 compares
the risk ranking between the independence and the copula models. The first plot is the scatter
plot of the ranking for each policyholder by the two methods. The second plot shows the
realized aggregate losses (in log scale) with the same ranking from the two models. The risk
scores from the two models are highly correlated, yet there are considerable difference in
their rankings.

To evaluate whether the risk ranking points to a profitable portfolio selection strategy,
we display in the lower panel of Figure 7 the cumulative loss distribution (FL(Ri)) vs. the
cumulative premium distribution (FP (Ri)), both ordered by the riskiness of the policyholders
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TABLE 5
Parameter estimation for the independence model and the copula model

Independence Copula-two stage MLE Copula-full MLE

Frequency Severity Frequency Severity Frequency Severity

Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E.

Intercept −1.184 0.375 7.212 0.289 −1.184 0.377 7.031 0.317 −0.728 0.397 6.886 0.324
City 0.299 0.257 −0.333 0.198 0.299 0.244 −0.548 0.216 0.485 0.232 −0.616 0.216
County 0.169 0.285 −0.352 0.209 0.169 0.269 −0.637 0.231 0.391 0.260 −0.717 0.232
School −0.872 0.262 0.141 0.205 −0.872 0.250 0.027 0.221 −0.636 0.238 −0.055 0.222
Town 0.017 0.330 −0.510 0.263 0.017 0.321 −0.610 0.274 0.121 0.312 −0.643 0.274
Village 0.247 0.253 −0.180 0.200 0.247 0.243 −0.387 0.215 0.383 0.235 −0.434 0.215
AlarmCredit05 0.328 0.216 0.060 0.201 0.328 0.215 0.024 0.201 0.316 0.212 0.026 0.200
AlarmCredit10 0.316 0.205 −0.121 0.177 0.316 0.203 −0.201 0.181 0.356 0.201 −0.217 0.180
AlarmCredit15 0.227 0.136 −0.115 0.121 0.227 0.135 −0.123 0.124 0.290 0.134 −0.147 0.124
Deductible −0.221 0.058 0.095 0.034 −0.221 0.056 0.205 0.042 −0.322 0.064 0.235 0.044
Coverage 0.782 0.054 0.048 0.037 0.782 0.053 −0.010 0.041 0.766 0.052 −0.001 0.041
Spring −0.110 0.106 −0.064 0.104 −0.065 0.104
Summer −0.040 0.099 −0.023 0.097 −0.022 0.097
Fall 0.020 0.107 0.049 0.104 0.053 0.104
Fire 0.533 0.085 0.468 0.085 0.466 0.085
Water 0.316 0.084 0.290 0.082 0.288 0.082
ReportDelay −0.001 0.001 −0.001 0.001 −0.001 0.001

Zero-inflated Regression
Intercept −7.834 1.406 −7.834 1.476 −8.583 2.126
Deductible 1.097 0.185 1.097 0.195 1.126 0.266
Coverage −0.538 0.177 −0.538 0.173 −0.583 0.229

One-inflated Regression
Intercept −7.411 1.507 −7.411 1.557 −7.084 1.829
Deductible 0.664 0.217 0.664 0.224 0.577 0.266
Coverage 0.020 0.182 0.020 0.184 0.016 0.201

ρ −0.290 0.034 −0.303 0.033
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FIG. 7. Risk ranking and portfolio selection using the independent and the copula models. The top two figures
compare risk score ranking and the corresponding realized losses between the independence and copula models,
respectively. The bottom two figures compare ordered Lorenz curves between the independence and copula models
where the dashed line indicates perfect equality.

Ri . This curve is known as the ordered Lorenz curve in Frees, Meyers and Cummings (2011).
In Figure 7 the loss and premium distributions are calibrated using the realized losses of the
policyholders and the actual premiums charged by the insurer in year 2011, respectively.
The area between the curve and the 45 degree line is interpreted as an average profit or loss
for the portfolio, with a convex curve for profit and a concave curve for loss. If one thinks
of each underwriting strategy as retaining policies with riskiness less than or equal to Ri ,
the area represents an average profit in the sense that we are taking an expectation over all
decision-making strategies. Furthermore, twice the area is known as the Gini index which
thus has a natural economic interpretation. The Lorenz curve for the independence model
is close to the 45 degree line. In contrast, the Lorenz curve for the copula model suggests
a much higher average profit. Specifically, the Gini indices are 10.55% and 33.24% for the
independence and the copula models, respectively. Therefore, a better underwriting strategy
could be formed using the copula model, given that each policyholder is charged the contract
premium.

We next compare the rates suggested by the independence and the copula models. A fair
rate commensurate with the policyholder’s risk mitigates adverse selection against the in-
surer. We perform a out-of-sample validation based on the Gini correlation in Frees, Mey-
ers and Cummings (2011). Two base premiums are considered, the constant premium and
the contract premium. The former charges average cost to each policyholder, and the latter
is the premium that the property fund charges based on the basic rating variables. Table 6
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TABLE 6
Gini indices for independence and copula models†

Independence Copula

Constant Premium 57.61 (6.57) 63.24 (6.82)
Contract Premium 15.93 (8.81) 26.27 (11.15)

† Standard errors are reported in parentheses.

presents the Gini correlation coefficients for the independence and the copula models. For
both premium bases the copula model shows a higher index, implying a more refined risk
classification than the independence model.

The proposed copula model can also provide insights for the practice of claims reserving.
In property casualty insurance it is typical that a loss event won’t be reported to the insurer
immediately upon occurrence. For instance, a hail damage to the roof might be discovered by
the policyholder several month later. After being reported, it further takes time for the insurer
to decide coverage and finally settle the claim. Because of the long reporting and settlement
delays, an insurer could be responsible for future payments associated with the loss events
occurred in the policy period even post the expiration of the contract. Claims reserving or
loss reserving is the process of estimating outstanding payments or the ultimate payments for
which an insurer is responsible. Reserves are determined at both claim level and portfolio
level (see, e.g., Antonio and Beirlant (2008) and Pigeon, Antonio and Denuit (2014)). At
claim level an insurer estimates the amount for which a particular claim will ultimately be
settled or adjudicated, also known as case reserve. At portfolio level an insurer also estimates
its future liabilities for the entire book of business. To emphasize its importance, loss reserves
typically represent the largest liability item on the balance sheet of nonlife insurers.

For reserving purposes, one is interested in the claims amount given occurrence of the
loss events. As pointed out by Wüthrich and Merz (2008), because of the introduction of
new supervisory guidelines (Solvency II) and financial reporting standards (IFRS 4 Phase II),
the measurement of future cash flows and their uncertainty becomes more important. In this
application we examine the predictive distribution of Y given N . For illustration, we dis-
play in Figure 8 the 95% prediction intervals of the claims amount for four representative
risks—“poor, good, average” and “superior.” The bar is determined by the 2.5th and 97.5th
percentiles of the predictive distribution, and the solid dot indicates the predictive mean. The
four risks are selected from the validation data based on the expected number of claims E(N).
Specifically, they expect to have 2.37, 0.76, 0.37, 0.15 claims per year which correspond to
the 95th, 75th, 50th, 25th percentiles of the frequency distribution, respectively. For com-
parison, we impose the corresponding prediction interval from the independence model in
the figure as indicated by the dashed line. First, as expected, the predictive distribution of
claim amounts, given frequency, is skewed and long-tailed. This observation emphasizes that
a range estimate of reserves is more informative than a point estimate for managers to set
appropriate reserves, because an insurer doesn’t want to overestimate or underestimate its
outstanding liabilities. Over-reserving could inflate the price and make the product less com-
petitive, while under-reserving increases the solvency risk. Second, because of the significant
negative relation between claim frequency and severity, the claims amount becomes smaller
as the number of claims increases. A dynamic viewpoint is that an insurer updates its knowl-
edge on the severity distribution based on frequency information. Third, it is apparent that
ignoring the frequency-severity dependence will introduce significant bias in the reserving
estimates. Under the independence assumption, not only the claim severity is invariant with
respect to claim frequency but also the magnitude of the prediction could lead to poor de-
cision making. For example, the results suggest that managers relying on the independence
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FIG. 8. Prediction interval of conditional claims amount for four representative risks.

model tend to over reserve for better risks. In particular, the over-reserving risk is substan-
tial for superior risks. As described earlier, there will be negative effects on both pricing and
reserving. Over prediction of unpaid losses leads to increase in price which could cause the
insurer to lose profitable business.

We further test the prediction of ultimate losses given occurrence for all the policyholders
in the hold-out sample. To compare the prediction from the independence model to the copula
model, we employ the continuous ranked probability score (CRPS) in Gneiting and Raftery
(2007) and Czado, Gneiting and Held (2009). The CRPS is a proper scoring rule that assesses
the quality of probabilistic forecasts. For reserving purposes, we focus on policyholders with
at least one claim, and we evaluate the prediction of the aggregate loss distribution fS|S>0(s).
The predictive distribution is derived for each policyholder based on 10,000 Monte Carlo sim-
ulations where the aggregated loss is generated conditional on occurrence of claims. Then,
the CRPS assigns a numerical score that measures the distance between the cumulative pre-
dictive distribution and the realized losses in the hold-out sample. For 73.34% of the policies
in the hold-out sample, the copula model outperforms the independence model. A binomial
test suggests the superior prediction of the copula model to the independence model is statis-
tically significant.

In the third application we briefly demonstrate implications of the frequency-severity de-
pendence on capital management. Insurance is a highly regulated industry. To mitigate sol-
vency risk and protect public interest, insurers are required to hold minimum amount of risk
capital as a buffer in case of some unexpected catastrophic events. We have already seen the
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TABLE 7
Value-at-risk for the insurance portfolio ($1000)

0.90 0.95 0.99

Independence 39,556 69,124 314,854
(38,961, 40,162) (67,834, 70,521) (300,348, 328,009)

Copula 41,665 75,114 374,234
(41,106, 42,210) (73,921, 76,284) (349,748, 397,509)

Difference 5.33% 8.67% 18.86%

consequences when the dependence between frequency and severity is unaccounted for at the
individual policy level. This example emphasizes its relevance at the portfolio level since the
risk capital is determined for the entire book of business.

To calculate the risk capital, we consider the value-at-risk (VaR), a risk measure widely
used in the insurance and banking industry. The VaR focuses on the tail of the distribution,
and, specifically, VaR(α) is defined as the 100αth percentile. Our interest is the aggregate
losses for the insurance portfolio, defined as L = ∑m

i=1 Si , where Si , the loss cost for policy-
holder i, is specified using the collective risk model (1.1). The distribution of L is estimated
using 10,000 Monte Carlo simulations. Table 7 reports the risk measure at 90%, 95% and
99% levels for both the independence and copula models. To quantify the simulation un-
certainty, we replicate the simulation 100 times to obtain the 95% confidence interval. The
results imply that ignoring the frequency-severity dependence in the collective risk model
leads to significant underestimate of the tail risk for the portfolio.

5. Conclusion. The two-part regression model based on compound distributions is com-
monly used in various disciplines, including insurance, economics, marketing and psychol-
ogy, among others. The current practice is to perform a marginal regression on the primary
(frequency) outcome and a separate regression on the positive portion of the secondary (sever-
ity) outcome. This practice relies on the (conditional) independence assumption and causes
significant biases in inference in the presence of frequency-severity dependence.

Motivated by the wide application of this type of model, this article represents the first
attempt at accommodating the association between the frequency and severity components in
the compound distribution and the associated regression models. We proposed the novel idea
of using a parametric copula to construct the joint distribution of N and Y in the compound
distribution. The copula regression is simple yet enjoys several advantages. First, the copula
model allows for an arbitrary dependence between frequency and severity and, thus, includes
the (conditional) independence model as a special case. Second, separating the marginal from
the joint distribution, the copula model can easily accommodate nonstandard marginal regres-
sions for complicated data structure, for instance, regressions for zero/one-inflated data or the
incomplete data due to censoring and truncation. Third, the parametric nature of the model
implies straightforward likelihood-based inference and, thus, facilitates data-driven model
specification and diagnostics which is critical to the applications with complex and big data.

This work was motivated by the applications in insurance, where the complex and unique
features of claims data provide a general setting to investigate the frequency-severity depen-
dence in the context of the two-part model. For example, the standard count regression is
not sufficient to capture the features in claim frequency, and the modifications on insurance
coverage often cause observations to be incomplete. Although our empirical analysis empha-
sized the consequences of ignoring the frequency-severity dependence on the operations in
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insurance companies, the proposed model is general enough and ready to apply to other dis-
ciplines. It will be interesting to see the implications of the frequency-severity dependence
on decision making in other fields as well.

Finally, we conclude the paper with some discussions on the dependence between the fre-
quency and severity in the proposed copula model. First, the proposed copula model relies on
a simplifying assumption for the dependence, that is, the association parameter in the copula
is constant and does not vary across covariates. A potential extension is to use a conditional
copula approach to allow the association in the copula to be dependent on covariates. See,
for example, Patton (2006), Acar, Craiu and Yao (2011), Veraverbeke, Omelka and Gijbels
(2011), Fermanian and Wegkamp (2012), and Castro-Camilo, de Carvalho and Wadsworth
(2018) for some recent development. We note that some domain knowledge is usually needed
to support the conditional copula approach, for instance, the dependence among stock mar-
kets could be time varying. We leave it as a future research topic to investigate the conditional
dependence in insurance data. Second, we attribute the observed dependence in frequency
and severity to unobserved heterogeneity. Regarding whether such relation is positive or neg-
ative, we think of this more as an empirical question to investigate. Often there are compet-
ing theories to support both positive and negative relationships. For the property insurance
in our paper, one example of unobserved heterogeneity that induces dependence is weather
related hazard. One can think of a geographical region that has frequent but modest storms
vs. another region that has infrequent but very severe storms. Another example of unobserved
heterogeneity is the social-economic factors. One can think of some areas with frequent but
minor crimes vs. other areas with infrequent but severe crimes. Thus, it is important for the
model to offer the flexibility to accommodate both positive and negative relationship and,
thus, to allow for an empirical test of alternative theories.
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