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Evolve and resequence studies provide a popular approach to simulate
evolution in the lab and explore its genetic basis. In this context, Pearson’s
chi-square test, Fisher’s exact test as well as the Cochran–Mantel–Haenszel
test are commonly used to infer genomic positions affected by selection from
temporal changes in allele frequency. However, the null model associated
with these tests does not match the null hypothesis of actual interest. Indeed,
due to genetic drift and possibly other additional noise components such as
pool sequencing, the null variance in the data can be substantially larger than
accounted for by these common test statistics. This leads to p-values that are
systematically too small and, therefore, a huge number of false positive re-
sults. Even, if the ranking rather than the actual p-values is of interest, a naive
application of the mentioned tests will give misleading results, as the amount
of overdispersion varies from locus to locus. We therefore propose adjusted
statistics that take the overdispersion into account while keeping the formulas
simple. This is particularly useful in genome-wide applications, where mil-
lions of SNPs can be handled with little computational effort. We then apply
the adapted test statistics to real data from Drosophila and investigate how
information from intermediate generations can be included when available.
We also discuss further applications such as genome-wide association stud-
ies based on pool sequencing data and tests for local adaptation.

1. Introduction. An important question in the field of population genetics is how pop-
ulations adapt to changes in their environment. Experimental evolution allows to study
the adaptation under controlled conditions. If these experiments are combined with high-
throughput sequencing, they are called evolve and resequence (E&R) experiments (Turner
et al. (2011)). Such experiments are carried out both on microbes and on higher organisms.
Due to large population sizes and short generation times, microbes permit to study evolu-
tionary processes based on newly arriving mutations. With higher organisms and sexual re-
production on the other hand, evolution based on standing genetic variation is usually ex-
plored. A major goal is to identify genomic positions (a.k.a. loci) that are responsible for the
adaptation. For this purpose, the organisms are kept over t + 1 generations G0,G1, . . . ,Gt

under conditions that require adaptation. Allele frequencies are obtained by sequencing the
genomes at G0 and Gt and possibly also at some intermediate time points. Depending on
the (time and financial) budget, the organisms are sequenced individually, or as a pool, in
order to obtain allele frequencies for typically millions of single-nucleotide polymorphisms
(SNPs). Individual sequencing can also be implemented using barcoding, with barcode tags
that identify the organism being added before sequencing.

Allele frequency changes over time are then tested for signals of selection. For this pur-
pose, usually only biallelic SNPs are considered. Indeed, multiallelic sites are rare in popula-
tion data and likely caused by sequencing errors (Burke et al. (2010)). Consequently, frequen-
cies of the two alleles are used in the base and the evolved population for each tested SNP.
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Pearson’s chi-square test (for simplicity subsequently called chi-square test) is a very popu-
lar method for this purpose (e.g., Griffin et al. (2017)). Serving the same purpose, Fisher’s
exact test is sometimes used as an alternative (Burke et al. (2010)). Being a generalization of
the chi-square test for stratified data, the Cochran–Mantel–Haenszel (CMH) test is also often
applied when allele frequency data from several replicate populations is available. See, for
example, Barghi et al. (2017), Nouhaud et al. (2016), Orozco-terWengel et al. (2012), Tobler
et al. (2014) for applications.

Kofler and Schlötterer (2014) compare several methods for detecting selection by contrast-
ing allele frequencies at two different time points. Apart from the CMH test, they consider
the pairwise summary statistic “diffStat” (Turner et al. (2011)), an association statistic by
Turner and Miller (2012) and FST (Remolina et al. (2012)). A comparison of receiver oper-
ator curves (ROC) for these tests shows that the CMH test performs best, that is, has more
power than the other tests considered to identify selected SNPs.

Further methods are available for detecting selection in E&R experiments when organisms
are sequenced also at intermediate generations. The method of Bollback, York and Nielsen
(2008), for instance, is based on a hidden Markov model (HMM). Generalizations of this ap-
proach are provided by Malaspinas et al. (2012) and Steinrücken, Bhaskar and Song (2014).
Also, Mathieson and McVean (2013) adapt HMMs to structured populations. The method
CLEAR by Iranmehr et al. (2017) uses Markov chains in a discrete state model and com-
putes the exact likelihood for small populations. Ignoring spatial dependence, linked loci are
modeled using composite likelihood statistics. A frequency increment test (FIT) based on
an approximation of the allele frequency dynamics by a Gaussian process is proposed by
Feder, Kryazhimskiy and Plotkin (2014). Considering all loci separately, Topa et al. (2015)
also model the allele frequency trajectories by Gaussian processes, whereas Terhorst, Schlöt-
terer and Song (2015) approximate the joint likelihood for multiple loci. The approach by
Taus, Futschik and Schlötterer (2017) is based on linear least square (LLS) regression to fit
the allele frequency data to a selection model. Schraiber, Evans and Slatkin (2016) estimate
parameters in a Bayesian framework with Markov chain Monte Carlo sampling. Another
Bayesian approach has been proposed by Levy et al. (2015) for estimating parameters in bar-
coded lineages. Finally, the Wright–Fisher ABC method proposed by Foll, Shim and Jensen
(2015) applies approximate Bayesian computation (ABC).

Besides detecting loci under selection, several of the discussed approaches additionally
estimate selection coefficients, often jointly, with other parameters like the effective popu-
lation size (e.g., Bollback, York and Nielsen (2008)), age of alleles (e.g., Malaspinas et al.
(2012), Schraiber, Evans and Slatkin (2016)) or allelic dominance (e.g., Taus, Futschik and
Schlötterer (2017)). However, such methods are computationally much more demanding than
simple methods like the chi-square and the CMH tests. Hence, the latter are still widely used
when testing for selection and, for example, implemented in the software tool PoPoolation2
(Kofler, Pandey and Schlötterer (2011)). A recent comparison of several methods to detect
different types of selection by Vlachos et al. (2019) also suggests that, besides their sim-
plicity, the adapted CMH and chi-square tests proposed here are among the best performing
methods.

When comparing the allele frequencies between pairs of samples, the null models for the
classical chi-square test, Fisher’s exact test and also the CMH test assume that the probability
of sampling a given allele is the same within each given pair. However, the sampling variation
is not the only component of variance relevant in E&R experiments. Allele frequency changes
between generations happen because of genetic drift, that is, due to chance. This increases the
variance in the data noticeably, unless population sizes are large enough to safely ignore drift.
Such a situation usually occurs only when working with microorganisms (e.g., Illingworth
et al. (2012)). Another potential source of random variation is pool sequencing where the
obtained reads can be regarded as a sample from the DNA pool.
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If the chi-square or the CMH tests are applied to data, which contain more variance than
assumed by the tests (overdispersion), the resulting values of the test statistic will be too
large and, hence, the p-values too small. As a consequence, selection is often inferred for
loci where it is not present. In the simulations with drift and pool sequencing that we carried
out, the null hypothesis of neutrality is rejected in up to 80% of the cases, despite being true.
Hence, the additional variance introduced by drift and pool sequencing is by no means neg-
ligible. A common procedure to account for false positives due to drift and pool sequencing
is to calculate a modified rejection cutoff via computer simulations (Orozco-terWengel et al.
(2012)). Griffin et al. (2017) chose another approach by applying three different statistical
tests and considering only SNPs which are significant with respect to all three methods as
candidate loci.

This issue is also well known in the unrelated context of complex surveys, where different
strategies have been proposed to obtain appropriate tests of homogeneity. (See, e.g., Chap-
ter 10 in Lohr (2010).)

Our aim is to adapt the chi-square test and the CMH test in a way that additional sources of
variance are directly included into the test statistics, making computer simulations no longer
necessary. Thus, we propose a method that is faster than the commonly used ones. When
sequence data for intermediate generations is available, the additional information can be
included into our test statistics without a considerable increase in computation time. Also in
terms of power, our method performs better than other approaches. In particular, our method
has considerably more power to detect selected SNPs than the classical CMH test with the
modified rejection cutoff (Orozco-terWengel et al. (2012)). Compared to the approach for
detecting selection in Taus, Futschik and Schlötterer (2017), which the authors found to be
faster than the CLEAR method by Iranmehr et al. (2017) and the Wright–Fisher ABC by
Foll, Shim and Jensen (2015), our method has also slightly more power and is 105 times
faster. Hence, our method performs very well in terms of speed and power.

In this article, we first present variants of the chi-square and the CMH tests for general
underlying variances. The statistics derived in this step can be useful in all situations, where
overdispersion is present.

Further, we provide specific formulas for the test statistics under scenarios with drift and
pool sequencing, which are common in E&R experiments, and seen also in other situations.
In genome-wide association studies (GWAS), for instance, the CMH test is often used for
the inference of an association between a trait such as a disease and an allele variant. When
the data arises from pool sequencing (e.g., Bastide et al. (2013), Endler et al. (2016)), our
adapted test could be a good alternative. This and further applications of our proposed tests
are discussed in Section 5.

The remainder of this article is structured as follows: The test statistics for general under-
lying variances are presented in Section 2, and the scenarios with drift and pool sequencing
are considered in Section 2.1. In Section 3 the adapted tests are applied to simulated data,
and their performance is examined. We use the tests on real data and present the results in
Section 4. A discussion in Section 5 concludes this article.

2. Adapted tests. In this section, we generalize the chi-square and the CMH tests to
work under overdispersion and derive explicit formulas for scenarios with drift and pool
sequencing. Given the application in mind, our focus is on the null model of homogeneity,
although our derivations also apply to the tests of independence.

We summarize our data in a 2 × 2 contingency table. Using the notation from Table 1, the
chi-square test statistic in its standard form is defined as

(1) Tχ2 :=
2∑

i=1

2∑
j=1

(xij − xi+x+j

n
)2

xi+x+j

n

= n(x11x22 − x12x21)
2

x1+ x2+x+1x+2
.
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TABLE 1
Standard contingency table used with chi-square test. Subsequent interpretation in our population genetic

application: Entries are allele frequencies for a biallelic SNP taken either from two populations or from one
population at two time points. n is the total number of sequencing reads (coverage) for the considered SNP, xij

are the reads for allele j in population i, xi+ is the total number of reads in population i and x+j is the total
number of allele j in both populations, i, j ∈ {1,2}. The frequencies are obtained either by individual

sequencing of a sample or by pool sequencing applied to the entire population

allele 1 allele 2

Population 1 x11 x12 x1+
Population 2 x21 x22 x2+

x+1 x+2 n

As shown in Section S1 (equation (S10)) of the Supplementary Material (Spitzer, Pelizzola
and Futschik (2020)), we may rewrite Tχ2 as

(2) T a
χ2

(
ŝ2

1 , ŝ2
2
) := (x11x22 − x12x21)

2

x2
2+ŝ2

1 + x2
1+ŝ2

2

= (x11 − x1+x+1
n

)2

(
x2+
n

)2ŝ2
1 + (

x1+
n

)2ŝ2
2

,

with ŝ2
1 := x1+ x+1

n
x+2
n

, and ŝ2
2 := x2+ x+1

n
x+2
n

.
In order to adapt the test to models that involve different variances, we may now replace ŝ2

1
and ŝ2

2 by consistent estimators of Var(x11) and Var(x21). As for the classical chi-square test
(see Section S1 of the Supplementary Materials (Spitzer, Pelizzola and Futschik (2020)), in
particular equation (S8)), T a

χ2(ŝ
2
1 , ŝ2

2) converges in distribution to a χ2-distribution with one
degree of freedom under the null hypothesis of homogeneity.

The CMH test is based on a 2 × 2 × k∗ contingency table, where the k∗ partial 2 × 2
tables are assumed to be independent. We use the same notation as for the chi-square test and
indicate a variable belonging to the kth partial table with the additional index k such as in
x+1k below. The null hypothesis is that both true proportions within each partial table are the
same, that is, the odds ratio in each partial table equals 1 (McDonald (2014)). The classical
CMH test statistic is

(3) TCMH := (
∑k∗

k=1(x11k − x1+kx+1k

nk
))2

∑k∗
k=1

x1+kx+1kx2+kx+2k

n2
k(nk−1)

.

See Chapter 6.3 in Agresti (2002).1

Analogous to the chi-square test, one can adapt the CMH test to general underlying vari-
ances. As a first step, we write the test statistic of the CMH test as

(4) T a
CMH

(
ŝ2

1k, ŝ
2
2k;k = 1, . . . , k∗) := (

∑k∗
k=1(x11k − x1+kx+1k

nk
))2

∑k∗
k=1((

x2+k

nk
)2ŝ2

1k + (
x1+k

nk
)2ŝ2

2k)

and insert x1+k
x+1k

nk

x+2k

nk−1 for ŝ2
1k and x2+k

x+1k

nk

x+2k

nk−1 for ŝ2
2k , k = 1, . . . , k∗. (See Section S2 of

the Supplentary Material (Spitzer, Pelizzola and Futschik (2020)).) As with the chi-square
test, the formula assumes one sampling step only, which is not appropriate for more complex
models. Again, however, ŝ2

1k and ŝ2
2k can be replaced by consistent estimators of Var(x11k)

and Var(x21k), k = 1, . . . , k∗. In the next section we present suitable variance estimators for
situations with drift and pool sequencing.

1 This is the test statistic as proposed by Mantel and Haenszel which is commonly considered for the CMH

test. The statistic proposed by Cochran differs by the factor 1
nk

instead of 1
nk−1 in each term of the denominator.

Asymptotically, this difference is negligible.
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2.1. Adaptation of the tests to drift and pool sequencing. We first focus on the chi-square
test and assume that allele frequency data is available for a single population at two time
points. Under the null hypothesis, the population allele frequency at the later time point p2
for a given biallelic SNP arises from p1 according to the Wright–Fisher model of genetic
drift (see, e.g., Chapter 3 in Ewens (2004)). Therefore, p2 is modeled as a random variable.
Usually, one cannot observe p1 and p2 directly. Indeed, both quantities are frequently esti-
mated from population samples. If experimenters use pool sequencing as a further sampling
step, we model this by binomial sampling as, for example, in Waples (1989) or Jónás et al.
(2016). The random sample size is known as coverage, and the success probability is taken
as the frequency of allele 1 in the underlying DNA material. If only a sample of the pop-
ulation is sequenced, we assume again binomial sampling for simplicity: An extension to
hypergeometric sampling is straightforward.

Typically, genomic selection is taken as alternative hypothesis that leads to differences
between our estimates for p1 and p2 that cannot be explained by sampling and drift.

Figure 1(a) summarizes the scenario with drift and one underlying sampling step, which is
either taking a sample from the population for (individual) sequencing or applying pool se-
quencing (to the whole population). The scenario with drift and two sampling steps (sampling
from the population and pool sequencing) is outlined in Figure 1(b).

Table 1 summarizes the notation for a contingency table based on one sampling step (sam-
pling from the population or pool sequencing), while Table 2 is for two sampling steps (sam-
pling plus pool sequencing). Note that in the scenario with two sampling steps, only the

FIG. 1. Sampling schemes for the scenarios with genetic drift and one sampling step, shown in (a), or genetic
drift and two sampling steps, shown in (b).
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TABLE 2
Allele frequencies for a biallelic SNP taken either from two populations or from one population at two time

points, assuming two underlying sampling steps. m is the total number of sequencing reads (coverage) for the
considered SNP, x̂ij are the reads for allele j in population i, ri is the total number of reads in population i and

x̂+j is the total number of allele j in both populations, i, j ∈ {1,2}

allele 1 allele 2

Population 1 x̂11 x̂12 r1
Population 2 x̂21 x̂22 r2

x̂+1 x̂+2 m

sample sizes x1+ and x2+, but not the allele frequencies, are known for the first step. In the
situations where one population descends from another, population 1 is the base population,
and population 2 is the evolved population.

Conditional on p1, the variance in allele frequency, due to drift after t generations, can be
calculated as

(5) p1(1 − p1)

(
1 −

(
1 − 1

2Ne

)t)
,

where p1 is the frequency of allele 1 in the base population and 2Ne is the effective population
size considering gametes (Falconer (1960)).

If we have data from k∗ replicate populations, the above considerations hold analogously
for every replicate k ∈ {1, . . . , k∗}.

We derive variance estimators for the described scenarios in Section S3 of the Supplemen-
tary Material (Spitzer, Pelizzola and Futschik (2020)). In Table 3, we present these estimators
for Var(x11) and Var(x21) and in Table 4 for Var(x11k) and Var(x21k). To obtain the adapted
test statistics for the different scenarios, they can be inserted for ŝ2

1 and ŝ2
2 in (2), or ŝ2

1k and
ŝ2

2k in (4), respectively. The proposed formulas use estimators p̂2 and p̂2k of E[p2|p1] and
E[p2k|p1k]. Also, σ̂ 2

drift and σ̂ 2
drift-k are estimators of Var(p2|p1) and Var(p2k|p1k). Choices

for these quantities are discussed below.
Notice that different models may apply at different time points. If an experiment involves,

for instance, individual sequencing of a sample from the base population and pool sequencing
of a sample of the evolved population, the variance estimators should be chosen accordingly:
One would take (2) as test statistic with ŝ2

1 replaced by x11x12
x1+ and ŝ2

2 replaced by r2(p̂2(1 −
p̂2)(1 + r2−1

x2+ ) + (r2 − 1)
x2+−1
x2+ σ̂ 2

drift).

A simple estimator for E[p2|p1] is x11
x1+ or x̂11

r1
, depending on the number of underlying

sampling steps. However, our simulations show that often the distribution of the correspond-

TABLE 3
Estimators ŝ2

1 and ŝ2
2 of Var(x11) and Var(x21) for different scenarios

ŝ2
1 ŝ2

2

1 sampling step∗ x1+ x+1
n

x+2
n x2+ x+1

n
x+2
n

1 sampling step, drift x11x12
x1+ x2+(p̂2(1 − p̂2) + (x2+ − 1)σ̂ 2

drift)

2 sampling steps x̂11x̂12
r1

(1 + r1−1
x1+ )

x̂21x̂22
r2

(1 + r2−1
x2+ )

2 sampling steps, drift x̂11x̂12
r1

(1 + r1−1
x1+ ) r2(p̂2(1 − p̂2)(1 + r2−1

x2+ ) + (r2 − 1)
x2+−1
x2+ σ̂ 2

drift)

∗This is the situation of the classical chi-square test.
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TABLE 4
Estimators ŝ2

1k and ŝ2
2k of Var(x11k) and Var(x21k) for different scenarios

ŝ2
1k ŝ2

2k

1 sampling step∗ x1+k
x+1k
nk

x+2k

nk−1 x2+k
x+1k
nk

x+2k

nk−1
1 sampling step, drift x11kx12k

x1+k
x2+k(p̂2k(1 − p̂2k) + (x2+k − 1)σ̂ 2

drift−k)

2 sampling steps x̂11k x̂12k
r1k

(1 + r1k−1
x1+k

)
x̂21k x̂22k

r2k
(1 + r2k−1

x2+k
)

2 sampling steps, drift x̂11k x̂12k
r1k

(1 + r1k−1
x1+k

) r2k(p̂2k(1 − p̂2k)(1 + r2k−1
x2+k

) + (r2k − 1)
x2+k−1
x2+k

σ̂ 2
drift-k)

∗This is the situation of the classical CMH test.

ing p-values is closer to a uniform distribution on [0,1] when E[p2|p1] is estimated as

(6)
x11
x1+ + x21

x2+
2

or
x̂11
r1

+ x̂21
r2

2
, respectively.

For a consistent variance estimator of p2 after t generations of drift, σ̂ 2
drift, we can approx-

imate (5) by

(7)
x11x12

x2
1+

(
1 −

(
1 − 1

2Ne

)t)
or

x̂11x̂12

r2
1

(
1 −

(
1 − 1

2Ne

)t)
, respectively.

When sequence data for intermediate generations between 0 and t is available, we can use
this additional information for the estimation of E[p2|p1] and Var(p2|p1).

Let t1 = 0, t2, . . . , tγ = t be the generations for which sequence data is available, and let
p1 = f1, f2, . . . , fγ = p2 be the corresponding population frequencies of allele 1. Estimat-
ing these frequencies in each generation by the corresponding relative sample frequencies
f̂1, . . . , f̂γ , we may proceed as in (6) and use this additional information to estimate E[p2|p1]
by

(8)

∑γ
i=1 f̂i

γ
.

Extending (7), the drift variance may also be estimated as

(9)
γ−1∑
i=1

f̂i(1 − f̂i)

(
1 −

(
1 − 1

2Ne

)ti+1−ti
)
.

Analogous estimators may be used for E[p2k|p1k] and Var(p2k|p1k) in the situation with
replicate populations.

As our tests are carried out separately for each locus, they are not directly affected by
linkage. It might be worth noting, however, that linkage may lead to significant SNPs which
are not the causal targets of selection. This fact is also known as the hitchhiking effect in
population genetics and makes it difficult to single out the truly beneficial SNPs. As there is
no guarantee that the most significant SNP is the causal target of selection, any test will lead
to a set of candidate SNPs containing also several hitchhikers.

When scanning a genomic region or even the full genome, a multiple testing adjustment
is required to avoid a large number of false positive SNPs. It is well known that Bonferroni
corrections can be very conservative under dependency, and they are therefore not recom-
mended given genetic linkage. Both a Benjamini–Hochberg false discovery rate (FDR) cor-
rection (Benjamini and Hochberg (1995)) or the recently proposed harmonic mean p-values
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by Wilson (2019) seem reasonable strategies in our context. Notice that the harmonic mean
p-values seem to be robust and quite powerful also under positive dependency.

We explore the behavior of the adapted test statistics by computer simulations and present
the results in the following section. We focus on the scenario with two sampling steps and
genetic drift, since there the additional variance is the largest.

We introduce the following notation: If we do not have data for intermediate generations,
we estimate E[p2|p1] and Var(p2|p1), as well as E[p2k|p1k] and Var(p2k|p1k), by the esti-
mators given in (6) and (7) or their analogs for the kth of k∗ replicates. With drift and one
sampling step we denote the adapted tests, then T 1s&d

χ2 and T 1s&d
CMH , with drift and two sam-

pling steps we name them T 2s&d
χ2 and T 2s&d

CMH . If data for intermediate generations is available,
we apply the estimators (8) and (9) or their analogs for the kth replicate. In the case of drift,
we denote the adapted tests by T

1s&d-ig
χ2 and T

1s&d-ig
CMH (one sampling step), and T

2s&d-ig
χ2 and

T
2s&d-ig
CMH (two sampling steps).

3. Simulation results. We carried out extensive simulations in R (R-Core-Team (2018))
in order to explore the behavior of the adapted tests described in the previous section. We
simulated genetic drift using the package poolSeq (Taus, Futschik and Schlötterer (2017)).
When we encountered loci with frequency 0 for one allele in the base population but a pos-
itive frequency in a later generation, we changed the allele count from 0 to 1 in order to
always obtain a well-defined test statistic. When these situations occur with real data, there
are different possible explanations: Either a mutation arose in a later generation and the allele
really was not present before, or the frequency of the respective allele is low, but not 0, in the
base population and the allele was just by chance not sampled or amplified in the sequencing
process. Since mutation rates are usually low over such a time span (Burke et al. (2010)), the
latter scenario is the more likely one. Finally, if the frequency in the later generation is very
low, the nonzero frequency may also be due to a sequencing error. Overall, our method to
deal with this phenomenon seems to be a pragmatic compromise.

We first provide results under the null hypothesis and then examine the power of our
adapted test statistics. After that we compare our adapted tests to other state-of-the-art meth-
ods. We first simulate allele frequencies in generation 0 uniformly distributed on [0,1] to
give all possible true allele frequencies the same weight. At the end of the section, an al-
lele frequency distribution for generation 0 is used that resembles the one encountered in
experimental data available to us.

Null distribution. In our simulations we set Ne = 300 and used 1000 as sample size of
alleles that were sequenced at generations 0 and 60; the sequencing coverage was chosen
Poisson distributed with mean 80. These parameter choices were motivated by the real data
for Drosophila taken from Barghi et al. (2017) and discussed in Section 4.

To control the type I error, it is desirable that the p-values of a test are uniformly dis-
tributed on [0,1] or, at least, stochastically larger than uniform if the null hypothesis is true.
Indeed, under the neutral Wright–Fisher model we observe that the distribution of the p-
values belonging to the adapted tests is close to a uniform distribution and that the tests
control the 5% significance level. In contrast, the nonadapted tests show a huge excess of
small p-values. Based on 106 simulated loci, Figure 2 displays the distribution of the p-
values for the classical CMH test with three replicates and the test adapted to drift, sampling
and pool sequencing T 2s&d

CMH . For the adapted chi-square test T 2s&d
χ2 , the distribution of the p-

values is slightly further from a uniform distribution but controls the 5% significance thresh-
old (Supplementary Material (Spitzer, Pelizzola and Futschik (2020)), Figure S1). We obtain
similar results in situations with drift and only one sampling step (Supplementary Material
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FIG. 2. Distribution of the p-values obtained from TCMH (a) and T 2s&d
CMH (b). Horizontal line indicates frequency

of 5%. Simulation setup: 106 neutral loci with true allele frequencies in base population uniformly distributed on
[0,1], Ne = 300, allele sample size 1000, pool sequencing with Poisson distributed coverage (μ = 80), sequence
data for generations 0 and 60 and three replicate populations.

(Spitzer, Pelizzola and Futschik (2020)), Figure S2). With two underlying sampling steps but
without drift, a situation occurring, for example, in GWAS using pool sequencing data (e.g.,
Bastide et al. (2013), Endler et al. (2016)), the adapted tests show again an improved perfor-
mance (Supplementary Material (Spitzer, Pelizzola and Futschik (2020)), Figure S3).

In genome-wide applications, corrections for multiple testing are usually needed, and sig-
nificance levels much below 0.05 become important. To check the type I error control in such
a situation, we did a simulation analysis for 106 loci based on sequence data with the param-
eter choices as above (but five replicate populations in case of the CMH test). As shown in
Figure 3, especially T 2s&d

χ2 turns out to be anticonservative for very small significance levels.
To understand this issue, it should be noted that the distributional approximations involved

in these tests are less reliable for loci with a very small or very high allele frequency.
An obvious remedy would be to introduce a threshold value ζ and only consider loci with

frequency of the minor (less frequent) allele larger than ζ in the base population. According
to Figure 3, filtering has the desired effect, if ζ is chosen large enough.

One disadvantage of this approach is that by filtering out SNPs with small and large allele
frequencies, we exclude a lot of potentially selected loci. We therefore explore also other
approaches to resolve the issue: If sequence data is available, not only from two time points
but also from intermediate generations, we can modify the adapted tests by taking the addi-
tional information into account, resulting in the test statistics T

1s&d-ig
χ2 , T

2s&d-ig
χ2 , T

1s&d-ig
CMH and

T
2s&d-ig
CMH ; see Section 2.1. Simulations with the same parameters as in Figure 3 but, addition-

ally, with sequence data every 10 generations, show that T
2s&d-ig
χ2 and T

2s&d-ig
CMH hold the 5%

level or are conservative for all significance levels without filtering out small and large allele
frequencies (Supplementary Material (Spitzer, Pelizzola and Futschik (2020)), Figure S4).

If time series data is not available, a p-value correction may be applied by fitting the dis-
tribution Fp of p-values simulated under the null hypothesis and transforming the p-values
to uniform using Fp(·). In Section S4 of the Supplementary Material (Spitzer, Pelizzola and
Futschik (2020)), we propose a parametric choice of Fp for correcting small (potentially sig-



CHI-SQUARE AND CMH TEST UNDER OVERDISPERSION 211

FIG. 3. Proportion of loci with p-value smaller than cutoff value against cutoff value for different minimum
values of the allele frequencies of both alleles in the base population, in (a) for T 2s&d

χ2 and in (b) for T 2s&d
CMH .

The black solid line is the angle bisector. Simulation setup: 106 neutral loci with true allele frequencies in base
population uniformly distributed on [0,1], Ne = 300, allele sample size 1000, pool sequencing with Poisson
distributed coverage (μ = 80), sequence data for generations 0 and 60 and five replicate populations in (b).

nificant) p-values and show that it leads to a substantial improvement of the null distribution
of p-values obtained with T 2s&d

χ2 .

Power. We additionally carried out simulations involving 105 selected loci in order to
examine the power of the adapted tests at a significance threshold of α = 0.05. We first
consider a realistic set of standard parameter choices: Ne = 300, sample size 1000, coverage
100, and sequence data available for generations 0 and 60. To also investigate the influence
of these model parameters, we considered a set of alternative values for each of them.

Not surprisingly, the power of T 2s&d
CMH is higher than the power of T 2s&d

χ2 because the amount
of information increases with more replicates. As also expected, the power increases with the
selection coefficient s and the effective population size Ne. Figure 4(a) shows the power
of T 2s&d

χ2 for different values of s and Ne. Figure 4(b) displays the same for T 2s&d
CMH with five

replicates. Comparing Figures 4(c) and 4(d), which are for the same scenario as in Figure 4(a)
but with 20 and 200 generations of evolution, we see that for small selection coefficients the
power increases with the number of generations. This is since more generations of evolution
lead to larger frequency differences between base and evolved populations unless the selec-
tion coefficients are large. Under strong selection many alleles soon reach a frequency close
to 1 (fixation), and, hence, the signal of selection does not become stronger anymore with
more generations. On the other hand, the drift variance that we calculate for the denomina-
tor of the test statistic increases with every generation which reduces the power. The gain in
power due to more generations of evolution and the loss in power due to fixation may can-
cel each other out, leading to the plateauing effect at around 0.8 we observe in Figure 4(d).
The impact of the number of generations on the power is qualitatively the same for T 2s&d

CMH .
(Supplementary Material (Spitzer, Pelizzola and Futschik (2020)), Figure S5).

The influence of sample size and coverage is shown in Figure 5, in (a) for T 2s&d
χ2 and in

(b) for T 2s&d
CMH . The power increases with the sample size and with the coverage. Since the

coverage values are an order of magnitude smaller than the values for the sample size, the
effect is much more pronounced for the coverage.
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FIG. 4. Power vs. selection coefficients for different values of the effective population size Ne , in (a), (c) and
(d) for T 2s&d

χ2 and in (b) for T 2s&d
CMH . Simulation setup: 105 loci for each selection coefficient with true allele

frequencies in base population uniformly distributed on [0,1], allele sample size 1000, pool sequencing with
coverage 100 and five replicate populations in (b); (a) and (b) sequence data generations 0 and 60, (c) sequence
data generations 0 and 20, (d) sequence data generations 0 and 200.

The power of T
2s&d-ig
χ2 and T

2s&d-ig
CMH is similar to the power of T 2s&d

χ2 and T 2s&d
CMH ; see Table 5.

In general, T
2s&d-ig
χ2 and T

2s&d-ig
CMH are affected in the same way by the parameter choices as

T 2s&d
χ2 and T 2s&d

CMH (not shown).

Method comparison. We compared the performance of our adapted test statistics to other
state-of-the-art methods. As summaries we considered the type I error, the power and the run
time. We looked at the classical chi-square test with the modified rejection cutoff (Orozco-
terWengel et al. (2012)) and the LLS approach for detecting selection of Taus, Futschik and
Schlötterer (2017). As mentioned in the Introduction, the LLS method is faster than other
methods such as CLEAR (Iranmehr et al. (2017)). Still, the computation times encountered
with the LLS method are high, and we restricted our simulations, therefore, here to 104 loci
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FIG. 5. Power vs. sample size of alleles (pool size) for different pool sequencing coverages, in (a) for T 2s&d
χ2 ,

and in (b) for T 2s&d
CMH . Simulation setup: 105 loci for each value of the pool size with true allele frequencies in base

population uniformly distributed on [0,1], Ne = 300, selection coefficient 0.05, sequence data for generations 0
and 60, and five replicate populations in (b).

of which 10% are under selection. The other parameters were chosen again Ne = 300, allele
sample size 1000, coverage Poisson distributed with mean 80 and 60 generations of drift.

Compared with the LLS method by Taus, Futschik and Schlötterer (2017), T 2s&d
χ2 and

T
2s&d-ig
χ2 have a similar power to detect selection while being much faster; see Table 5. The

chi-square test with the modified rejection cutoff (Orozco-terWengel et al. (2012)) needs
a similar computation time as our tests but has much lower power. Indeed, the simulated
rejection boundary makes it over conservative.

TABLE 5
Comparison of type I error, power and running times in seconds for different tests of selection. Simulation setup:

104 loci with true allele frequencies in base population uniformly distributed on [0,1], 10% of the loci under
selection, selection coefficients exponentially distributed with mean 0.1, Ne = 300, allele sample size 1000, pool
sequencing with Poisson distributed coverage (μ = 80), sequence data for generations 0 and 60, additionally for

generations 10, 20, 30, 40, 50 when T
2s&d-ig
χ2 , T

2s&d-ig
CMH and LLS are applied; five replicate populations with

T 2s&d
CMH , and T

2s&d-ig
CMH

Test Type I Error Power Time

T 2s&d
χ2 0.050 0.417 0.005

T
2s&d-ig
χ2 0.046 0.490 0.369

T 2s&d
CMH with five replicates 0.050 0.761 0.014

T
2s&d-ig
CMH with five replicates 0.049 0.756 0.487

Tχ2 0.374 0.751 0.144

Tχ2 with modified rejection cutoff 0.00034 0.226 0.144
(Orozco-terWengel et al. (2012))

LLS* (Taus, Futschik and Schlötterer (2017)) 0.047 0.456 33,568.010

∗Assume diploids, dominance is set to 0.5, the method to estimate selection is set to “LLS” and p-values are
simulated with N.pval set to 1000, which means that 1000 simulations are performed to estimate the p-values.
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TABLE 6
Proportion of positively detected SNPs for each tool. Simulation setup: 104 SNPs under selection, selection
coefficients exponentially distributed with mean 0.06, and 104 neutrally evolving SNPs are simulated with

Ne = 300, allele sample size 1000, pool sequencing with Poisson distributed coverage (μ = 80), sequence data

for generations 0 and 60, additionally, for generations 10, 20, 30, 40, 50 when T
2s&d-ig
CMH and LLS are applied,

three replicate populations

Truth

Positive Negative

Positive for T
2s&d-ig
CMH 0.5926 0.0472

Positive for T 2s&d
CMH 0.5485 0.0479

Positive for TCMH 0.7708 0.3448
Positive for TCMH with modified rejection 0.0445 0.003

cutoff (Orozco-terWengel et al. (2012))
Positive for LLS 0.5663 0.0478

We also ran simulations with slightly different parameter choices and computed the pro-
portion of true and false positives. For the results and details on the parameter values, see
Table 6. The results, as well as the ones in Table 5, illustrate the favourable performance of
our methods.

Our proposed test statistics T
1s&d-ig
χ2 and T

1s&d-ig
CMH have also been compared to several other

tests in an extensive benchmarking work in Vlachos et al. (2019) for E&R studies. The com-
parison considers three realistic selection scenarios. It turns out that our proposed test statis-
tics rank among the top methods for each scenario, both in terms of power and time.

Alternative starting allele frequency distribution. In the previous simulations, the true al-
lele frequencies in the base populations were chosen uniformly distributed on [0,1]. In gen-
eral, uniformly distributed allele frequencies are not common in natural populations. There-
fore, we also looked for a more realistic distribution of allele frequencies. As an example we
consider the U-shaped beta distribution proposed in Jónás et al. (2016). The U-shape depicts
the observed excess of high and low allele frequencies in a folded site frequency spectrum
where it is not known which allele is ancestral and which one is derived. Following this ex-
ample, we simulated the true allele frequencies in generation 0 from a beta distribution with
parameters 0.2 and 0.2. The other parameters remained unchanged compared to the previous
simulations. As the chosen distribution produces a higher proportion of allele frequencies
close to the boundaries, the distribution of the p-values becomes less uniform (see Figure 6).
The spikes are caused by discreteness phenomena occurring for very low starting allele fre-
quencies. However, T 2s&d-ig

χ2 and T
2s&d-ig
CMH turned out to be quite conservative (even for signif-

icance levels smaller than 0.05) when sequence data every 10 generations is available. At the
same time, power values of the adapted tests are lower than when under uniformly distributed
starting allele frequencies (Supplementary Material (Spitzer, Pelizzola and Futschik (2020)),
Figure S6). An explanation would be that even SNPs with positively selected alleles have a
large probability of being lost due to drift in early generations, if the initial allele frequency
is very low. For such SNPs we do not have any power of detection.

In particular, we calculated a power of approximately 0.59 for T 2s&d
CMH based on 105 simula-

tions with selection coefficient 0.1, allele sample size 1000, pool sequencing in generations 0
and 60 with coverage Poisson distributed with mean 80 and five replicates. When additional
sequence data for generations 10, 20, 30, 40, and 50 was simulated, we obtained a power of
approximately 0.60 using T

2s&d-ig
CMH as test statistic.
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FIG. 6. Distribution of the p-values obtained from T
2s&d-ig
χ2 (a) and T

2s&d-ig
CMH (b). Horizontal line indicates fre-

quency of 5%. Simulation setup: 106 neutral loci with true allele frequencies in base population beta distributed
with parameters 0.2 and 0.2, Ne = 300, allele sample size 1000, pool sequencing with Poisson distributed cov-
erage (μ = 80), sequence data every 10 generations from generation 0 to 60 and three replicate populations in
(b).

4. Application to experimental data from Drosophila. Here, we consider data from
an E&R experiment on Drosophila simulans as described in Barghi et al. (2017). In this
publication the classical CMH test has been used to infer candidates of selection. Allele
frequency measurements were taken from three replicate populations at generations 0 and
60. All flies were maintained under a cycling routine to stimulate temperature adaptation (12
hours at 18◦C and 12 hours at 28◦C with light for the day).

In the original paper neutral simulations have been used to define a cutoff that leads to 2%
false positive SNPs under the simulated global null model. This cutoff has then been taken as
a threshold for the p-values obtained with the CMH test applied to the real data; see Orozco-
terWengel et al. (2012) for a more detailed description. Assuming that the null model applies
to most of the SNPs, this approach will lead to approximately 80,000 false positive SNPs
and an unclear false discovery rate given a genome of approximately four million SNPs as
considered in Barghi et al. (2017).

An advantage of our approach is that the resulting proper p-values can be combined with
a standard procedure such as harmonic mean p-values by Wilson (2019) or Benjamini–
Hochberg (Benjamini and Hochberg (1995)) that control for multiple testing. Another ad-
vantage of our method is that it will lead to a more proper ranking of the p-values, as the
amount of error incurred with the classical test statistics depends on the relative magnitudes
of the variance components (drift variance, sequencing coverage and sample size) and will
therefore vary between SNPs.

Since the DNA from the whole population was used in the pool sequencing step, we ap-
plied T 1s&d

χ2 and T 1s&d
CMH as test statistics using the model parameters specified in Barghi et al.

(2017). We only present the results for the modified CMH test on the entire data set. A Man-
hattan plot of the SNP positions versus the logarithm (base 10) of the p-values corrected for
multiple testing with the Benjamini–Hochberg method (Benjamini and Hochberg (1995)) is
shown in Figure 7. The computation time needed for this analysis was only about 20 seconds
on a standard laptop. We infer more significant SNPs than Barghi et al. (2017) (0.0049% and
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FIG. 7. Manhattan plot for T 1s&d
CMH applied to real data from Drosophila simulans from Barghi et al. (2017).

0.0002% of the total number of tested SNPs, respectively). This result is concordant with our
simulations showing that our method has higher power compared to the modified rejection
cutoff (Orozco-terWengel et al. (2012)) which is applied in Barghi et al. (2017).

We also applied LLS, T 1s&d
CMH and TCMH (with the modified rejection cutoff) to a small

region (5000 SNPs) of chromosome 2L from the data in Barghi et al. (2017). Here, af-
ter correcting for multiple testing with the Benjamini–Hochberg procedure (Benjamini and
Hochberg (1995)), we focused on 30 SNPs shown in the Manhattan plot (Supplementary
Material (Spitzer, Pelizzola and Futschik (2020)), Figure S7). As can be seen, the order of
the SNPs differs considerably between T 1s&d

CMH and TCMH. This can be explained by the differ-
ences in coverage values between SNPs which correctly contribute to the variance only with
our method.

5. Discussion. With population genetic applications in mind, we propose modified test
statistics for the chi-square and the CMH tests in scenarios with overdispersion, that is, more
variance in the data than considered by the original tests. Compared with the classical ver-
sions of these tests that are still commonly applied, our approach does not require simula-
tions to find a cutoff for the test statistic. Our proposed approach can also be used instead
of Fisher’s exact test which faces the same problems in this context. Our inclusion of proper
variance terms leads to a better performance both with respect to power and type I error. Us-
ing the classical tests does not even lead to a proper ranking of the SNPs as the amount of
overdispersion varies between the SNPs. While more sophisticated testing procedures have
also been proposed, they are usually considerably more time consuming, especially when
applied on a genome-wide scale.

While overdispersion is also known in other applications (such as complex surveys), our
underlying model requires a different adaptation of the test statistics. In a first step, we there-
fore expressed the test statistics in dependence of the variances of entries in the contingency
tables. Using this general form, suitable tests can be obtained in any situation with overdis-
persion provided that the required variances can be properly estimated. As a special case, we
then derived explicit formulas for the adapted test statistics for use in different types of E&R
experiments under scenarios including all or some of the components of variance: actual
sampling, pool sequencing and genetic drift.

Our test statistics do not only provide a more appropriate error control but have also con-
siderably larger power than the classical tests combined with computer simulations such as
proposed in Orozco-terWengel et al. (2012).
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As the power of our tests increases with the sequencing coverage, Ne, and allele sam-
ple size, experimenters could use our results on power to set up their experimental design.
For more detailed recommendations on experimental design, see, for example, Kofler and
Schlötterer (2014).

Compared with more sophisticated methods, our adapted tests have approximately the
same power but need much less computation time, which is an important factor when the
whole genome is scanned for traces of selection. Our tests are, for example, 105 times faster
than the LLS method by Taus, Futschik and Schlötterer (2017).

When sequence data is available for two time points only, our tests are not always con-
servative for very small allele frequencies in the base population. This problem is related to
inaccuracies of the normal approximation of proportions close to zero and one. In this case,
we propose a correction of the p-values based on simulations under the null model. Notice,
however, that this additional correction is usually not needed when data is available also at
intermediate time points, as supported by our simulated scenarios. Therefore we recommend
experimenters to sequence intermediate generations, if the budget allows for it.

Besides E&R experiments, the presented tests are also applicable in other situations. For
instance, with GWAS using data from pool sequencing there are two sampling steps but no
drift. When testing for differences between traits with the chi-square or the CMH test, the
variance estimators presented in line 3 of Tables 3 and 4 should therefore be used.

Another application would be tests for population specific adaptation. A typical scenario
in this context is the split of one population into two separate populations which are then kept
under different conditions for a number of generations. Our tests can be used to check whether
differences in allele frequencies between the two populations go beyond what is expected by
drift and sampling noise. The modifications needed for T 1s&d

χ2 are explained in the Appendix.
The other tests can be dealt with analogously. For an application, see Tobler, Hermisson and
Schlötterer (2015) where population specific adaptation is considered for Drosophila in a hot
and a cold environment in order to study thermal adaptation.

With appropriate estimates of the drift variance, our tests can also be used for the compar-
ison of allele frequencies in natural (sub)populations in order to detect loci under selection.
The latter scenario is, for example, considered by Beaumont and Balding (2004) as well as
Foll and Gaggiotti (2008) that have developed hierarchical Bayesian models for the situation.

We implemented the adapted tests in an R package called ACER which can be down-
loaded at https://github.com/MartaPelizzola/ACER. The source code is additionally found in
the Supplementary Material to this paper (Spitzer, Pelizzola and Futschik (2020)).

Our results suggest that our adapted test statistics provide fast, reliable and powerful meth-
ods to detect selection. Hence, they have the potential to considerably facilitate the inference
of selected loci in population genetics, in particular in the context of E&R.

APPENDIX: TESTING FOR POPULATION SPECIFIC ADAPTATION WITH THE
CHI-SQUARE TEST

Here, capital letters indicate random variables (except from Ne).
Suppose population 1 and population 2 stem both from the same base population. Assume

that population 1 has evolved for t1 generations and population 2 has evolved for t2 genera-
tions. We assume that one sampling step was involved to obtain allele frequency counts. The
adapted chi-square test (2) may be used with the allele frequencies from the evolved popu-
lations 1 and 2. In the following, we state formulas for the required variance estimators ŝ2

1
and ŝ2

2 .
To obtain drift variance estimates, we assume that the base population has also been se-

quenced. Let p0 be the allele frequency of allele 1 in the base population, X01 the correspond-
ing counts of allele 1 and x0+ the total number of allele counts from the base population.

https://github.com/MartaPelizzola/ACER
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Furthermore, p̂1 and p̂2 are estimators of E[P1|p0] and E[P2|p0], respectively, also σ̂ 2
drift1

and σ̂ 2
drift2 are estimators of Var(P1|p0) and Var(P2|p0), respectively.

Analogous to the variance estimator for the evolved population in line 2 of Table 3 (but
with a different notation), we can estimate ŝ2

1 and ŝ2
2 as

(A1) ŝ2
1 = x1+

(
p̂1(1 − p̂1) + (x1+ − 1)σ̂ 2

drift1
)
,

and

(A2) ŝ2
2 = x2+

(
p̂2(1 − p̂2) + (x2+ − 1)σ̂ 2

drift2
)
.

Analogous to equations (6) and (7), we can set the estimators for p̂1 and p̂2 as

p̂1 =
X01
x0+ + X11

x1+
2

,(A3)

p̂2 =
X01
x0+ + X21

x2+
2

,(A4)

and the respective estimators for the variance as

σ̂ 2
drift1 = X01(x0+ − X01)

x2
0+

(
1 −

(
1 − 1

2Ne

)t1
)
,(A5)

σ̂ 2
drift2 = X01(x0+ − X01)

x2
0+

(
1 −

(
1 − 1

2Ne

)t2
)
.(A6)
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