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Workers in Taiwan overall have been suffering from long-lasting wage
stagnation since the mid-1990s. In particular, there seems to be little mo-
bility for the wages of Taiwanese workers to transit across wage quantile
groups. It is of interest to see if certain groups of workers, such as female,
lower educated and younger generation workers, suffer from the problem
more seriously than the others. This work tries to apply a systematic sta-
tistical approach to study this issue, based on the longitudinal data from the
Panel Study of Family Dynamics (PSFD) survey conducted in Taiwan since
1999. We propose the quantile transition regression model, generalizing re-
cent methodology for quantile association, to assess the wage status transition
with respect to the marginal wage quantiles over time as well as the effects of
certain demographic and job factors on the wage status transition. Estimation
of the model can be based on the composite likelihoods utilizing the binary, or
ordinal-data information regarding the quantile transition, with the associated
asymptotic theory established. A goodness-of-fit procedure for the proposed
model is developed. The performances of the estimation and the goodness-
of-fit procedures for the quantile transition model are illustrated through sim-
ulations. The application of the proposed methodology to the PSFD survey
data suggests that female, private-sector workers with higher age and educa-
tion below postgraduate level suffer from more severe wage status stagnation
than the others.

1. Introduction. Workers in Taiwan have been suffering from long-lasting wage stag-
nation since the mid-1990s. In particular, there seems to be little mobility for the wages of
Taiwanese workers to transit across wage quantile groups. It is believed that certain groups
of workers, such as the younger generation workers, are faced with this problem more seri-
ously than the others (Huang, Liu and Yang (2014); Chen and Kuo (2014), Haepp and Hsin
(2016), Li and Fang (2015); Lin, Chang and Lu (2017)). However, there still lacks systematic
investigation into the degrees of severity of wage stagnation across different subgroups of
workers. To examine the transition of personal earnings status across time, as well as how
the transition is related to demographic and job factors, we employ individual-level panel
data from the Panel Study of Family Dynamics (PSFD) survey conducted by the Center for
Survey Research at Academia Sinica in Taiwan. The PSFD is a face-to-face survey project
launched in 1999. The questionnaire contains general and elaborated questions on the in-
terviewee’s education, work, marriage, residence, income and expenditures, interaction with
family members, attitudes toward family values, etc. The core question modules, including
work, marriage, residence, income and expenditures and interaction with family members,
are retained in each follow-up questionnaire conducted annually through 2012. Since 2012,
follow-ups have been conducted on a biennial basis.
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Owing to its skewed nature, the (marginal) wage distribution at a time point is better cap-
tured by its quantiles at several quantile levels than by just its mean. When there exist covari-
ates that influence the marginal quantiles, quantile regression Koenker (2005), Koenker and
Bassett (1978) at several representative quantiles (e.g., median or quartiles) can be applied to
summarize the marginal wage distribution at each time point given the covariates. Also, given
the marginal quantiles, it is informative to trace the time dynamics of the wage distribution
through the transition of the wage status relative to the marginal wage quantiles over time. For
example, to study the wage stagnation issue, researchers may focus on workers continuously
having earnings below the 25% quantiles of the earnings distributions over time. Also, it may
be meaningful to find characteristics of the workers with wages below the 25% quantile of the
wage distribution at an initial time but with wages above the median of the wage distribution
10 years later; that is, the transition from the wage status below the 25% quantile to the wage
status above the 50% quantile over a 10-year period is of interest.

In this work, we propose quantile transition regression analysis which focuses on the tran-
sition of outcome statuses indexed by marginal outcome quantiles over time as well as the
effects of certain covariates on the outcome status transition. Mathematically, let Yij denote
the outcome for the ith subject at the j th time point and Xij the associated covariate vector
(j = 1, . . . , ni ≥ 2; i = 1, . . . ,m). We use the local odds ratio (LOR)

ψijk(τ1, τ2)

= P(Ỹij (τ1) = 1, Ỹik(τ2) = 1)P (Ỹij (τ1) = 0, Ỹik(τ2) = 0)

P (Ỹij (τ1) = 1, Ỹik(τ2) = 0)P (Ỹij (τ1) = 0, Ỹik(τ2) = 1)
(1.1)

= P {Yij ≤ qτ1(Yij ), Yik ≤ qτ2(Yik)}P {Yij > qτ1(Yij ), Yik > qτ2(Yik)}
P {Yij ≤ qτ1(Yij ), Yik > qτ2(Yik)}P {Yij > qτ1(Yij ), Yik ≤ qτ2(Yik)}

to assess the tendency of transition of outcome statuses between time points j and k (1 ≤
j < k ≤ ni) and quantile levels τ1 and τ2 ∈ (0,1), where, Ỹij (τ ) = I {Yij ≤ qτ (Yij )} with I (·)
the indicator function and, suppressing the conditioning on covariates, qτ (Yij ) = qτ (Yij |Xij )

denoting the τ th quantile of Yij given the covariates Xij , τ ∈ (0,1); P(·) should be inter-
preted as the conditional probability given the covariates. It can be seen that a larger value
of ψijk(τ1, τ2) indicates a lower tendency of transition across statuses of Yij and Yik , with
the outcome statuses defined in terms of the marginal outcome quantiles. We term such a
tendency of transition as the “quantile transition” between Yij and Yik which reflects how
the longitudinal outcomes transit across different locations in the marginal outcome distribu-
tions.

Li, Cheng and Fine (2014) first introduced the LOR similar to (1.1) for local association
analysis with bivariate data. Yang, Chen and Chang (2017) employed the LOR (1.1) to model
the covariance structure of longitudinal outcomes but only considered a single quantile level.
Compared to these existing analyses, the proposed quantile transition analysis based on (1.1)
is substantially more complicated since it involves multiple quantiles for longitudinal out-
come vectors of possibly different lengths. In literature, the “quantile dynamic model” (see,
e.g., Galvao (2011)), which is a quantile regression model for the outcome at a time point
that includes the time lag of the outcome as a covariate in addition to other covariates, has
been developed for assessing the influence of some past outcome on the quantiles of the
current outcome. Unlike the quantile transition analysis proposed in this work, the quantile
dynamic model cannot provide a direct assessment for the dynamics of the transition among
outcome quantiles over time which is of relevance in the wage stagnation study and many
other applications as mentioned above.

We propose two estimation procedures for the quantile transition regression analysis, ap-
plying the composite likelihood approach based on binary and ordinal codings for longitudi-
nal outcome statuses over multiple quantile levels, respectively. For the proposed estimators
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of the parameters in the quantile transition regression model, we obtain the asymptotic nor-
mality together with the asymptotic variances that can be explicitly estimated. Also, we pro-
pose a procedure for assessing the goodness of fit of a quantile transition regression model.

This paper is organized as follows. We introduce the proposed quantile transition regres-
sion model in Section 2.1, and the estimation procedures in Sections 2.2 and 2.3. Procedures
for testing modeling assumptions and goodness of fit are presented in Section 2.4. The simu-
lation examples and the analysis of Taiwan wage data based on the PSFD survey are reported
in Sections 3 and 4, respectively. The conclusions are presented in Section 5. The large sam-
ple properties of the proposed estimators are described in the Supplementary Material (Hsu
et al. (2020)).

2. Quantile transition regression analysis.

2.1. The model. To assess covariate effects on the quantile transition (1.1), we extend the
quantile association model of Yang, Chen and Chang (2017) at a single quantile level to the
regression model for multiple quantile levels [τc, c ∈ L ≡ {1, . . . ,L}]:

log(ψijk(c1,c2)) = ZT
ijkα(c1,c2), c1, c2 ∈ L,(2.1)

where ψijk(c1,c2) = ψijk(τc1, τc2), Zijk is the covariate vector that may include a subset of
(Xij ,Xik) and other covariates expected to influence the quantile transition between Yij and
Yik and α(c1,c2) = α(τc1, τc2) is the covariate effect on the quantile transition associated with
quantile levels τc1 and τc2 . A larger positive (negative) α(c1,c2) value implies a higher ten-
dency to stay in (escape from) the initial outcome status at a later time, with the outcome
statuses at the initial and later times defined with respect to the outcomes’ marginal quantiles
at levels τc1 and τc2 , respectively. When suitable, we can impose certain restrictions on the
parameters α(c1,c2) to have a parsimonious model. For example, it may be reasonable to as-
sume that α(c1,c2) is constant for all c1, c2 ∈ L. Let α∗ = (αT

(1,1), . . . ,α
T
(L,L))

T, α the set of

distinct parameters in α∗ and write α∗ = CTα for a known constant matrix C formulating
the restrictions. The assumption α∗ = CTα can be confirmed by the hypothesis testing based
on the asymptotic distributional theory for the estimator of α∗, as mentioned in Section 2.4.1
and Section S.2 of the Supplementary Material (Hsu et al. (2020)).

To implement the quantile transition analysis, we also need to estimate marginal quantiles
qτ (Yij ) involved in Ỹij (τ ) = I {Yij ≤ qτ (Yij )}. For simplicity, we consider the linear quantile
regression model with qτ (Yij ) = XT

ijβ(τ ). When estimating the marginal quantile regression

parameter β = {β(τc)
T, c ∈ L} for multiple quantile levels, we solve the estimating equation

m∑
i=1

ni∑
j=1

(
IL ⊗ XT

ij

)T
V −1

ij hij = 0,(2.2)

where IL is the L×L identity matrix, ⊗ is the Kronecker product, hij = (hij (1), . . . , hij (L))
T

with hij (c) = 1 − �{δij (τc)} − τc and V ij is an L × L matrix whose (c1, c2) element
V ij [c1, c2] = cov{Ỹij (τc1), Ỹij (τc2)} = τc1 ∧ τc2 − τc1τc2 , where a ∧ b ≡ min(a, b). The es-
timating equation (2.2) uses the induced smoothing (Brown and Wang (2005); Yang, Chen
and Chang (2017)) to smooth the indicator function Ỹij (τ ) as 1 − �{δij (τ )}, where �(·) de-
notes the cumulative distribution function of the standard normal distribution, δij (τ ) = {Yij −
q̂τ (Yij )}/r̂ij (τ ) and r̂ij (τ ) is the estimated asymptotic standard error of q̂τ (Yij ) = XT

ij β̂(τ );
details about how to estimate the standard errors can be found in Yang, Chen and Chang
(2017). Besides, (2.2) uses working independence between outcomes at two time points but
accounts for the correlation across different quantile levels within the same outcome. With
the estimates β̂ for β , Ỹij (τ ) is then redefined as Ỹij (τ ) = I {Yij ≤ XT

ij β̂(τ )}.
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The proposed quantile transition analysis allows for time-varying coefficients in both
the marginal quantile and the quantile transition regression models. We consider the
marginal quantile regression model with time-varying coefficients as qτ (Yij ) = XT

ijβj (τ )

with βj (τ ) = A(τ )b(tj ), where tj is the time value for the j th time point, b(t) =
{b1(t), . . . , bK(t)}T is a vector of basis functions of time variable t and A(τ ) is the cor-
responding P × K unknown coefficient matrix with column vectors ak = (a1k, . . . , aPk)

T

for k = 1, . . . ,K . That is, the pth component of βj (τ ) is βjp(τ ) = ∑K
k=1 apkbk(tj ). Both

parametric and nonparametric basis functions can be used for b(t). In particular, piecewise-
constant and piecewise-linear time-varying coefficients can be considered. Note that the time-
varying coefficient quantile regression model given above can be rewritten as a conventional
quantile regression model with time-independent coefficients: qτ (Yij |X̃ij ) = XT

ijβj (τ ) =
X̃

T
ij ã(τ ), where X̃ij = b(tj ) ⊗ Xij is the expanded covariate vector of length P × K that

includes the “interactions” between the original covariates Xij and the time basis functions
b(tj ) and ã(τ ) is the P × K vector stacking the columns of A(τ ). Using the alternative rep-
resentation of the model, the proposed estimation procedure can thus be applied to the time-
varying coefficient quantile regression model in the same way as to the time-independent
coefficient model.

To consider the quantile transition regression model (2.1) with time-varying coefficients
αjk(c1,c2), note that there are two time variables (j, k) involved, which can be equivalently
represented as (j, k − j), namely an initial time and a time lag. So we consider the time
varying coefficient αjk(c1,c2) = A∗(τc1, τc2)b

∗(tj , sjk), where tj is the time value for the ini-
tial time point j , sjk = tk − tj is the value of time lag between the kth and j th time points,
b∗(t, s) is a vector of basis functions of the initial time and the time lag variables (t, s),
and A∗(τc1, τc2) is the corresponding coefficient matrix. Following the same arguments as
above for the marginal quantile regression model, the quantile transition regression with time
varying coefficients can be reexpressed as a quantile transition regression model with time-
independent coefficients but with the covariate vector Zijk expanded to include interactions
between the original covariates Zijk and the time basis functions for both the initial time and
the time-lag variables. The time-varying coefficient quantile transition model can be reex-
pressed as a time-independent coefficient model.

REMARK 1. It is of interest to see if there is a bona fide joint probability distribution
for Y i = (Yi1, . . . , Yini

)T that satisfies the association model (2.1) and, in addition, that the
marginal quantiles of Y i are given by qτc(Yij |Xij ) for 1 ≤ j ≤ ni and all c. For 1 ≤ j <

k ≤ ni , write Ỹij (c) = Ỹij (τc) = I {Yij ≤ qτc(Yij )} and μijk(c1,c2) = P(Ỹij (c1) = 1, Ỹik(c2) = 1)

which is a one-to-one function of ψijk(c1,c2). For given 0 ≤ wr ≤ 1 for r ∈ L2 = {1, . . . ,L2}
with

∑
r∈L2 wr = 1, consider εi = (εi1, . . . , εini

)T from a mixture of multivariate normal
distributions with the joint density

∑
r∈L2 wrφ(x;�r ), where φ(x;�) denotes a multivariate

normal density with zero mean and a ni × ni covariance matrix � whose diagonal elements
are ones. For 1 ≤ j < k ≤ ni , the (j, k) element �r [j, k] of �r for r ∈ L2 are the solutions
of the L2 equations∫ qc1

−∞

∫ qc2

−∞
∑
r∈L2

wrφ2
(
x1, x2;�r [j, k])dx1 dx2 = μijk(c1,c2), c1, c2 ∈ L

subject to the condition that all �r ’s are positive definite, where qc = �−1(τc) and
φ2(x1, x2;ρ) is a standard bivariate normal density with correlation ρ. Then, the random
variables Yij = qτ (Yij |Xij ) + {εij − qτ (εij )} for 1 ≤ j ≤ ni would satisfy both the marginal
quantile regression models {qτc(Yij |Xij ), c ∈ L} and the quantile transition model (2.1). It
can thus be seen that the quantile transition can address local association imbedded in a
mixture distribution and hence is suitable for modeling a heterogeneous correlation structure.
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2.2. Composite binary likelihood. We first consider the estimation procedure for the
quantile transition model (2.1) based on the composite binary likelihood. The composite bi-
nary likelihood generalizes the alternating logistic regression approaches for clustered ordinal
outcomes (Carey, Zeger and Diggle (1993); Heagerty and Zeger (1996)) and for quantile as-
sociation (Yang, Chen and Chang (2017)). With given marginal quantiles, we estimate the
parameter α in model (2.1) by maximizing the composite likelihood based on the pairwise
conditional distributions of {Yij }:

LB(α) =
m∏

i=1

∏
1≤j<k≤ni

L∏
c1,c2=1

P(Ỹik(c2)|Ỹij (c1)),(2.3)

where Ỹij (c) = Ỹij (τc) for c ∈ L, P(Ỹik(c2)|Ỹij (c1)) = ξ
Ỹik(c2)

ijk(c1,c2)
(1 − ξijk(c1,c2))

1−Ỹik(c2) and

ξijk(c1,c2) = P(Ỹik(c2) = 1|Ỹij (c1)) having the form

(2.4) log
(

ξijk(c1,c2)

1 − ξijk(c1,c2)

)
= log(ψijk(c1,c2))Ỹij (c1) + νijk(c1,c2)

with νijk(c1,c2) a one-to-one function of ψijk(c1,c2) (Diggle et al. (2002), p. 145). The resulting
estimator of α is denoted by α̂B . Appendix A.1 provides some details for the estimation.

REMARK 2. As in Yang, Chen and Chang (2017), to pursue more stable computation
in maximizing (2.3), the induced smoothing technique is applied which approximates the
indicator Ỹij (τ ) with the smooth function 1−�{δij (τ )} and approximates the pairwise prod-
ucts of the indicator Ỹij (τ1)Ỹik(τ2) with the smooth function �{δij (τ1), δik(τ2);ρijk(τ1, τ2)},
where �(a, b;ρ) stands for the tail probability P(Z1 > a,Z2 > b) of a standard bivariate
normal (Z1,Z2) with correlation ρ and ρijk(τ1, τ2) is the estimated asymptotic correlation
of q̂τ1(Yij |Xij ) = XT

ij β̂(τ1) and q̂τ2(Yik|Xik) = XT
ikβ̂(τ2); see Yang, Chen and Chang (2017)

for details about the estimation of the asymptotic correlation.

2.3. Composite ordinal likelihood. Let Oij be the ordinal value of Yij classified by its
quantiles {qτc(Yij |Xij ), c ∈ L}; namely, Oij = c if qτc−1(Yij |Xij ) < Yij ≤ qτc(Yij |Xij ) for
c = 1, . . . ,L + 1, where qτ0(Yij |Xij ) ≡ −∞ and qτL+1(Yij |Xij ) ≡ ∞. In practice, the quan-
tiles {qτc(Yij |Xij ), c ∈ L} are estimated, and the Oij ’s are defined as above with the quantiles
replaced by their estimates q̂τ (Yij |Xij ) = XT

ij β̂(τ ). Alternatively to (2.3), we propose to es-
timate the quantile transition model (2.1) by maximizing the composite likelihood based on
the pairwise conditional distributions of {Oij }:

LO(α) =
m∏

i=1

∏
1≤j<k≤ni

P (Oik|Oij ),(2.5)

where

P(Oik|Oij ) =
L∑

c=1

I (Oik = c)pijk(c) =
L∏

c=1

(
pijk(c)

pijk(c+1)

)Ỹik(c) · (1 − Pijk(L)),

and pijk(c) = P(Oik = c|Oij ), Pijk(c) = P(Oik ≤ c|Oij ). Observe that

P(Oik ≤ c2|Oij = c1) = τc1

τc1 − τc1−1
ξ

(1)
ijk(c1,c2)

− τc1−1

τc1 − τc1−1
ξ

(1)
ijk(c1−1,c2)

with ξ
(1)
ijk(c1,c2)

= P(Ỹik(c2) = 1|Ỹij (c1) = 1) and P(Ỹik(c2) = 1|Ỹij (c1)) given in (2.4). The
estimator of α obtained by maximizing (2.5), denoted by α̂O , directly utilizes the ordinal-
data information induced by marginal quantiles and is expected to be be more efficient than
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the estimator obtained from the composite binary likelihood (2.3). The numerical studies in
Section 3 confirm this expectation. Kuk (2007) reported a parallel phenomenon for clustered
ordinal data.

Similar to α̂B , α̂O can also be obtained by the induced smoothing method mentioned
in Section 2.2 for stable computation; details are given in Appendix A.2. The large sample
properties of the estimators α̂B and α̂O for the quantile transition parameter α derived from
the composite binary and composite ordinal likelihoods, respectively, are described in Section
S.1 of the Supplementary Material (Hsu et al. (2020)). In particular, the asymptotic normality
of the estimators α̂B and α̂O is established, together with the closed-form estimators for the
asymptotic variances of the estimators.

2.4. Testing modeling assumptions and goodness of fit. We develop formal procedures
for testing modeling assumptions and evaluating goodness of fit for the proposed quantile
transition regression analysis.

2.4.1. Testing constancy of coefficients. As mentioned above, in practice we may impose
the restriction that the marginal quantile regression coefficients are equal across all or some of
the quantile levels. Similarly, the coefficients in the quantile transition model may be assumed
equal across all or some of the quantile level pairs. To test the adequacy of such modeling
constraints, we test the null hypothesis of the adequacy of the modeling constraints via the
asymptotic chi-square statistic which is based on the asymptotic normality results of the
proposed estimators obtained under the model without modeling constraints. When the null
hypothesis is rejected, we conclude that the modeling constraints are inadequate and do not
consider the model with such constraints. Details about the asymptotic chi-square test for the
adequacy of the modeling constraints are given in Section S.2 of the Supplementary Material
(Hsu et al. (2020)). For models that are not rejected by the asymptotic chi-square test, we can
further evaluate and compare the goodness of fit of the candidate models by the procedure
developed below.

As mentioned in Section 2.1, the time-varying coefficient quantile regression and quan-
tile transition models can be reexpressed as the corresponding time-independent coefficient
models with additional interaction terms between the covariate variables and the time basis
functions. The asymptotic chi-square test in Section S.2 of the Supplementary Material (Hsu
et al. (2020)) can be applied to test for the null hypothesis of zero coefficients for these inter-
action terms which is equivalent to the null hypothesis that the coefficients for the covariate
variables are constant over time, that is, the coefficients are time independent.

2.4.2. Goodness of fit. In this section we detail the goodness-of-fit procedure pro-
posed for evaluating and testing the adequacy of a quantile transition model. Write Ỹ i =
(Ỹ

T
i1(·), . . . , Ỹ

T
ini(·))

T with Ỹ ij (·) = (Ỹij (1), . . . , Ỹij (L))
T, and denote V i = cov(Ỹ i ) as the co-

variance matrix of Ỹ i . In V i , the elements corresponding to cov(Ỹij (c1), Ỹij (c2)) = τc1 ∧
τc2 − τc1τc2 and the elements corresponding to cov(Ỹij (c1), Ỹik(c2)) = μijk(c1,c2) − τc1τc2 for
c1, c2 ∈ L, where μijk(c1,c2) = P(Ỹij (c1) = 1, Ỹik(c2) = 1), is a function of ψijk(c1,c2). Let

s̃i = V
−1/2
i {Ỹ i − 1ni

⊗ (τ1, . . . , τL)T} be the standardized version of Ỹ i with the involved
parameters β and α given by their estimates from the specified models.

When a quantile transition model is adequately specified, the resulting V i will capture well
the actual correlation structure in Ỹ i , and hence all the ni × L elements s̃il of the standard-
ized outcome s̃i will essentially be uncorrelated with one another. For 1 ≤ l < l′ ≤ ni × L,
let ĉor(s̃·l , s̃·l′) be the Pearson correlation coefficient based on the paired data {(s̃il, s̃il′); i ∈
Mll′ } with Mll′ the set of subjects for whom both s̃il and s̃il′ are available and pll′ be the cor-
responding p-value of the hypothesis testing for zero correlation obtained from the Student’s
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t distribution (Kendall and Stuart (1973)). Denote by κ the number of (l, l′) pairs for which
the size of Mll′ is sufficiently large (e.g., > 30) and p(1) the smallest one among the κ p-
values pll′’s. For balanced longitudinal data with ni = n, κ = (

nL
2

)
and the size of Mll′ = m

for all the (l, l′) pairs. The proposed goodness-of-fit measure for the quantile transition model
is given by

T = κp(1),(2.6)

where a larger value of T would suggest a better goodness of fit for the considered model.
Further, following the Bonferroni method of multiple testing, we may use T as a goodness-
of-fit test statistic and reject the null hypothesis that the quantile transition model is adequate
when T < α with α a prespecified significance level.

3. Simulations.

3.1. Performance of the proposed estimators. We conduct simulations to examine the
performances of the estimators proposed in Sections 2.2 and 2.3 for the quantile transi-
tion model parameters. The two covariates are generated as Xij1 ∼ Ber(0.5) and Xij2 ∼
Uniform(0,1), 1 ≤ j ≤ ni , 1 ≤ i ≤ m, m = 100 or 200. Two scenarios are considered for
generating the outcome data. In Scenario 1, Yij = 0.5 + 0.5Xij1 + Xij2 + εij (1 ≤ j ≤ ni ,
1 ≤ i ≤ m), where (εi1, . . . , εini

)T = (1 − zi)εi(1) + ziεi(2), zi ∼ Ber(0.5), ni = 3 or 5 for all
i and εi(c) follows the mixture multivariate normal distribution for c = 1,2. Details of the
error distribution is given in Section S.7 of the Supplementary Material (Hsu et al. (2020)).

The marginal quantile regression model for Yij is correctly specified in the analysis as
qτ (Yij |Xij ) = β0(τ ) + β1Xij1 + β2Xij2, where only the intercept is allowed to vary with the
quantile level τ and the other regression parameters are assumed to be constant across the
quantile levels. The true parameter values are given as β0(τ ) = 0.5 + qτ (εij ), β1 = 0.5 and
β2 = 1. We consider τ ∈ (0.2,0.8), and the true intercept parameter values in the marginal
quantile regression are β0(0.2) = −0.34 and β0(0.8) = 1.34. The quantile transition analysis
assumes the model log(ψijk(c1,c2)) = zijk,1α1 +zijk,2α2 with zijk,1 = 1/|k−j | and zijk,2 = zi

which is a correctly specified model. The true parameter values are α1 = 2, α2 = −0.5 when
ni = 3 and are α1 = 1.8, α2 = −0.5 when ni = 5.

In Scenario 2 the outcome data are generated from Yij = qτ (Yij |Xij ) + {εij − qτ (εij )} for
1 ≤ j ≤ 4, and qτ (Yij |Xij ) = β0(τ )+βj,1Xij1 +βj,2Xij2, where β0(τ ) is a time-independent
intercept, βj,1 = a11 +a12I (j ≥ 3) with a11 = 0.5 and a12 = 0, and βj,2 = a21 +a22I (j ≥ 3)

with a21 = 1 and a22 = 0, and (εi1, . . . , εi4)
T follows a mixture multivariate normal distribu-

tion. Details of the error distribution is given in Section S.7 of the Supplementary Material
(Hsu et al. (2020)).

In the analysis of the simulated data, the models

qτ (Yij |Xij ) = β0(τ ) + (Xij1,Xij2)βj , with βj = Ab(j),

log(ψijk(c1,c2)) = αjk(c1,c2) = A∗(τc1, τc2)b
∗(j, k − j)

(3.1)

are considered with quantile levels τ, τc1, τc2 ∈ (0.25,0.50), the piecewise-linear basis func-
tions b(j) = {1, I (j ≥ 3)} and b∗(j, k − j) = {1, I (j ≥ 2), I (k − j ≥ 2) × (k − j)}, A a
constant coefficient matrix independent of quantile level and A∗(τc1, τc2) a coefficient matrix
depending on quantile levels. As mentioned in Section 2.1, the models (3.1) can be reex-
pressed time-independent coefficient models as

qτ (Yij |Xij ) = β0(τ ) + β1Xij1 + β2Xij2 + β3Xij1I (j ≥ 3)

+ β4Xij2I (j ≥ 3),

log(ψijk(c1,c2)) = α0(τc1, τc2) + α1(τc1, τc2)I (j ≥ 2)

+ α2(τc1, τc2)I (k − j ≥ 2) × (k − j).

(3.2)
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TABLE 1
Simulation results (×102) for Scenario 1 with true parameter values β0(0.2) = −0.34, β0(0.8) = 1.34,

β1 = 0.5, β2 = 1, α1 = 2, α2 = −0.5 and α1 = 1.8, α2 = −0.5 for ni = 3 and ni = 5, respectively

m = 100 m = 200

Bias ESE ASE CP Bias ESE ASE CP

ni = 3
β̂0(0.2) −0.37 14.82 14.16 92.0 0.35 10.37 10.25 92.8
β̂0(0.8) −0.14 14.21 14.05 93.6 0.08 10.42 10.19 93.2
β̂1 −0.07 10.45 10.53 94.1 0.02 7.53 7.63 95.2
β̂2 0.33 18.70 18.19 92.7 −0.41 13.67 13.17 92.9

α̂B1 2.69 37.82 38.79 94.7 2.18 27.36 28.02 94.8
α̂O1 −1.86 35.87 37.40 95.4 −2.08 25.93 26.87 95.1

α̂B2 −3.35 50.08 50.00 94.3 −2.60 34.96 35.87 94.3
α̂O2 −0.02 47.08 48.42 95.4 −0.47 33.37 34.67 94.7

ni = 5
β̂0(0.2) −0.34 11.83 11.39 92.6 −0.09 8.26 8.13 93.7
β̂0(0.8) 0.04 11.70 11.44 93.7 −0.14 8.32 8.14 94.4
β̂1 0.10 8.68 8.40 93.5 0.21 6.06 6.01 94.4
β̂2 0.61 14.29 14.40 95.1 −0.06 10.60 10.41 94.3

α̂B1 3.15 30.79 30.67 93.8 4.21 22.18 21.93 95.1
α̂O1 −0.41 28.78 28.70 93.5 0.90 20.88 20.54 95.2

α̂B2 −2.74 30.62 32.03 94.5 −1.69 22.58 23.02 95.1
α̂O2 −1.40 29.49 30.91 94.7 −0.44 21.68 22.22 94.9

ESE: empirical standard error, ASE: asymptotic standard error, CP: coverage of 95% C.I.

The models (3.2) are indeed correct models for the data generated under Scenario 2, with the
true parameter values β0(0.25) = −0.17, β0(0.50) = 0.5, β1 = 0.5, β2 = 1, β3 = 0 and β4 =
0, {α0(τc1, τc2), τc1, τc2 ∈ (0.25,0.50)} = (1.09,1.07,1.07,1.00), {α1(τc1, τc2), τc1, τc2 ∈
(0.25,0.50)} = (1.04,1.14,1.14,1.00) and {α2(τc1, τc2), τc1, τc2 ∈ (0.25,0.50)} =
(−0.2,−0.2,−0.2,−0.2). Since the true value of α2(τc1, τc2) is constant across the quan-
tile level pairs, in the analysis we simplify the models (3.2) assuming α2(τc1, τc2) = α2 for
τc1, τc2 ∈ (0.25,0.50).

The simulation results based on 1000 replicates for m = 100 and 200 are shown in Tables 1
(Scenario 1) and 2 (Scenario 2). We can see that both estimators, the composite binary like-
lihood and the composite ordinal likelihood estimators, proposed for the quantile transition
model (2.1) have negligible finite sample bias. In addition, for both estimators the averages of
the standard error estimates over simulations are close to the simulation standard deviations,
and the coverage probabilities of the 95% confidence intervals derived from the asymptotic
normality are close to the nominal value. This confirms the adequacy of the asymptotic the-
ory in the Supplementary Material (Section S.1; Hsu et al. (2020)). The estimator α̂O , based
on the composite ordinal likelihood, exhibits higher efficiency in inference than the estimator
α̂B based on the composite binary likelihood, as expected. On the other hand, the estimator
α̂B has better efficiency in computation than the estimator α̂O . For instance, completing 1000
replicates for α̂B and α̂O in Scenario 1 with ni = 3 and m = 100 takes 21 and 61 minutes,
respectively, in an ordinary personal computer.

3.2. Performance of the goodness-of-fit procedure. To examine the performance of the
goodness-of-fit procedure proposed in Section 2.4.2, we assume that the marginal quantile
regression is correctly specified, and three candidate quantile transition models are to be
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TABLE 2
Simulation results (×102) for Scenario 2. The true parameter values are: β0(0.25) = −0.17, β0(0.5) = 0.5,
β1 = 0.5, β2 = 1, β3 = 0 and β4 = 0; α0(0.25,0.25) = 1.09, α0(0.25,0.50) = 1.07, α0(0.50,0.25) = 1.07,

α0(0.50,0.50) = 1.00, α1(0.25,0.25) = 1.04, α1(0.25,0.50) = 1.41, α1(0.50,0.25) = 1.41,
α1(0.50,0.50) = 1.00, α2 = −0.2

m = 100 m = 200

Bias ESE ASE CP Bias ESE ASE CP

β̂0(0.25) 0.27 13.11 12.40 91.2 0.25 8.94 8.95 94.1
β̂0(0.50) −0.33 12.55 12.12 93.5 −0.23 8.75 8.76 94.8
β̂1 0.00 12.94 12.78 93.7 −0.05 9.18 9.12 94.1
β̂2 0.05 19.82 18.92 92.7 −0.19 14.21 13.71 94.1
β̂3 −0.41 16.62 16.25 92.9 −0.07 11.79 11.73 94.4
β̂4 0.54 19.76 19.63 93.3 0.04 14.83 14.36 94.5

α̂B

α̂0(0.25,0.25) −5.18 37.73 40.68 96.3 −1.66 27.81 29.05 96.0
α̂0(0.25,0.50) −3.87 36.07 39.04 95.8 −1.33 26.92 28.08 96.0
α̂0(0.50,0.25) −3.44 36.84 38.44 95.5 −0.81 26.59 27.69 95.6
α̂0(0.50,0.50) −1.23 32.17 34.28 96.3 1.43 23.41 24.79 96.2
α̂1(0.25,0.25) −3.23 44.06 49.15 95.9 −3.19 32.93 35.23 94.9
α̂1(0.25,0.50) −5.99 46.79 49.76 95.6 −4.65 34.46 36.14 96.8
α̂1(0.50,0.25) −7.01 47.17 48.71 94.4 −6.03 34.69 35.48 95.2
α̂1(0.50,0.50) −6.28 39.56 41.23 95.8 −4.24 27.22 29.89 96.2
α̂2 1.21 9.70 10.01 95.5 0.12 6.98 7.28 95.5

α̂O

α̂0(0.25,0.25) −6.22 37.10 40.09 96.1 −2.89 27.41 28.57 95.7
α̂0(0.25,0.50) −5.13 35.26 38.46 96.1 −2.62 26.51 27.66 95.6
α̂0(0.50,0.25) −4.52 36.20 37.84 95.7 −2.15 26.00 27.21 95.8
α̂0(0.50,0.50) −2.17 31.76 33.68 95.9 0.29 23.02 24.39 94.6
α̂1(0.25,0.25) −2.67 43.44 48.13 96.1 −2.43 32.33 34.53 95.1
α̂1(0.25,0.50) −5.43 45.87 48.62 95.8 −4.11 33.97 35.29 96.3
α̂1(0.50,0.25) −6.91 46.40 47.73 94.6 −5.45 33.98 34.83 94.6
α̂1(0.50,0.50) −5.84 38.91 40.36 95.9 −3.46 26.71 29.31 96.1
α̂2 1.77 9.33 9.86 94.7 0.78 6.82 7.17 95.2

ESE: empirical standard error, ASE: asymptotic standard error, CP: coverage of 95% C.I.

compared and tested with respect to their goodness of fit to the data simulated from Scenario
1 of Section 3.1 with ni = 3. The candidate models are: Model 1: log(ψijk(c1,c2)) = α(c1,c2);
Model 2: log(ψijk(c1,c2)) = α0 +α1z

∗
ijk +α2zi , where z∗

i12 = 0 and z∗
ijk = 1 for (j, k) �= (1,2);

and Model 3: log(ψijk(c1,c2)) = α0 +α1I (k − j = 2)+α2zi . Note that Model 3 is the correct
model with the true parameter values α0 = 2, α1 = −1 and α2 = −0.5.

The goodness-of-fit measure T proposed in Section 2.4.2 is applied for evaluating the
adequacy of the three candidate models; recall that a larger T value indicates a better fit.
Table 3 presents the percentages (among 1000 simulations) for each candidate model whose
T value is the largest among those from the three candidate models. We see that the goodness-
of-fit measure T nicely picks up the adequate quantile transition model, no matter which
estimation (α̂B or α̂O ) is used; the performance enhances when the sample size increases.
Table 3 also presents the percentages of the proposed goodness-of-fit test rejecting the null
hypothesis that the model under consideration is adequate, namely, the type I error rates
(powers) of the goodness-of-fit test when the model under consideration is correct (incorrect).
We see that the goodness-of-fit test, based on T using either α̂B or α̂O , has adequate type I
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TABLE 3
The percentage (%) over 1000 simulations of each model whose T value is the largest among those of the three
candidate models, with the T value calculated based on the composite binary likelihood (TB ) or the composite
ordinal likelihood (TO ) estimation. Also reported are the percentage (%) over 1000 simulations of each model

whose goodness-of-fit test based on T rejects the null hypothesis of the model being adequate

m = 100 m = 200

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

TB 13.8 17.4 68.8 4.0 9.1 86.9
TO 12.4 17.0 70.6 3.6 8.5 87.9
Test, TB 18.9 20.0 5.9 41.6 40.3 5.6
Test, TO 18.7 19.4 5.6 41.6 39.1 4.8

error rates close to the desired 5% level, and the powers of the goodness-of-fit test increase
with the sample sizes.

In Section S.3 of the Supplementary Material (Hsu et al. (2020)), we provide simulation
results for the performance of the proposed estimators under lower and higher quantiles. The
results reveal that the proposed estimators still work reasonably well for lower and higher
quantiles, such as 5% and 95% quantiles, although a larger sample size is required for the
asymptotic normality theory to work well. In Section S.4 of the Supplementary Material (Hsu
et al. (2020)), we provide more simulation results confirming the adequacy of the proposed
goodness-of-fit procedure.

4. Analysis of the wage data in Taiwan.

4.1. The wage data. The wage data used in the analysis are from the PSFD survey whose
details have been given in the Introduction section. The sample used in our analysis con-
sists of two groups of respondents in the PSFD survey who were first interviewed in 2003
and 2009, respectively. The corresponding birth years of these two cohorts are 1964–76 and
1977–82. These two cohorts of 1152 and 2179 individuals, respectively, are referred to as the
older and younger generations in our analysis.

The observed longitudinal wage data for the younger and older generations in the PSFD
survey are unbalanced, where the number ni of observations per subject ranges from two to
12. The unbalanced data for a subject is mainly of an intermittent style due to accidentally
missing the interview visits. Also, there exists no significant difference in baseline character-
istics such as gender, age generation and job type among subjects with different missing data
patterns. The total number of observations amounts to 19,052 up to the year of 2016. Obser-
vations with no job or no earnings from work are removed from the analysis. The resulting
analytical sample contains 16,222 wage observations, in which 7444 and 8778 observations
belong to the older and younger generations, respectively.

4.2. The marginal quantile and quantile transition models. Our main goal is to examine
how the wages of Taiwanese workers transit across the wage quantiles during the follow-
up years as well as the factors associated with the transition. For a time point (year), we
consider wage statuses classified by wage quantiles at levels 25%, 50% and 75%. The quantile
transition regression analysis proposed in Section 2 is applied to the longitudinal wage data
from the PSFD survey.

First, we obtain wage quantile estimates over the follow-up years conditional on demo-
graphic, job-, eduction- and heath-related covariates. We use the consumer price index (CPI)
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adjusted real hourly earnings, in units of thousand New Taiwan Dollars (NTD), as the out-
come variable in our analysis. According to our study interests and following our preliminary
analyses, the covariates considered for the marginal earnings quantile regression include re-
spondent’s gender (female vs. male), generation (younger vs. older), age (years), education
(high school, vocational school, university, postgraduate vs. below high school), employment
status (government/public-sector employee, private-sector employee vs. employer/self em-
ployed), job (service industry, blue collar vs. white collar), health condition (moderate/poor
vs. good) and residential area (rural vs. urban); the former two are time-fixed while the others
are time-varying covariates. We apply the linear quantile regression as mentioned in Sec-
tion 2.1 to estimate the marginal earnings quantiles given the covariates, with the regression
coefficients estimated from the estimating equation (2.2).

When applying the quantile transition regression model (2.1) to the PSFD wage data, the
covariates considered in the model for the wage status transition between two time points
include gender, generation, age, education, employment status and time lag between the two
time points (years) where the time-varying covariates, except for the time lag in the model,
take on the values at the earlier time point. The composite binary and composite ordinal
likelihood approaches proposed in Sections 2.2 and 2.3 are applied to make inference on the
quantile transition regression model.

The time variable in the analysis of the PSFD wage data is the calendar year minus 2003
(the starting year of the PSFD study) and takes integer values from 0 to 13; the time lag
variable takes integer values from 1 to 13. Following Section 2.1, in addition to the time-
independent coefficient models, we also consider time-varying coefficient models for the
marginal quantile and the quantile transition models. We consider piecewise-constant time-
varying coefficients in the marginal quantile regression coefficients using the basis functions
b(t) = {I (t ∈ Ik);k = 1,2,3} with the time intervals I1 = [0,5), I2 = [5,10), I3 = [10,13].
Similarly, the quantile transition regression coefficients are also time-varying and given by
the basis functions b(t, s) = {I (t ∈ Ik), I (s ∈ Ul);k, l = 1,2,3}, where (t, s) are the initial
time and the time lag for the two time points considered and the time intervals Ik are given
as above and the time-lag intervals are U1 = [1,5), U2 = [5,10), U3 = [10,13]. The choice
of the time and time-lag intervals as above, which are roughly five-year intervals, is based on
the consideration of the full follow-up period of the analysis as well as the fact that the wage
quantile transition over five-year periods is of our main interest. We also consider piecewise
constant intervals of shorter (roughly three years) or longer (roughly seven years) lengths.
In addition, we employ linear basis functions, namely, the basis function in the marginal
quantile regression is b(t) = t and the basis functions in the quantile transition model are
b(t, s) = {t, s} with (t, s) defined as above. All these time-varying coefficient models result
in models with time effects (i.e., estimated coefficients for the interaction terms between
the covariates and the time basis functions, see Section 2.1 for details) being virtually null,
as revealed by the asymptotic chi-square test in Section 2.4.1 and Section S.2 of the Sup-
plementary Material (Hsu et al. (2020)). We thus report only the analysis results from the
time-independent coefficient models.

For the time-independent coefficient marginal quantile and quantile transition models, we
apply the asymptotic chi-square test proposed in Section S.2 of the Supplementary Material
(Hsu et al. (2020)) to see whether simpler models with constant coefficients across different
quantile levels (or quantile level pairs in the quantile transition model) can be considered.
To streamline the testing procedure, we apply the asymptotic chi-square test in a variable-
wise manner, namely, we test the constancy of coefficients across quantile levels (quantile
level pairs) for one covariate variable at a time. When the constancy of the coefficients for
a covariate variable is tested, the coefficients for all the other covariate variables are left as
unconstrained. When the null hypothesis of constant coefficients is rejected for one covari-
ate variable, the coefficients for that variable across different quantile levels (quantile level
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pairs) are set to different coefficient parameters; otherwise, the coefficients for that variable
across different quantile levels (quantile level pairs) are set to a single parameter. After all
the covariate variables have been tested, the resulting final model is further confirmed by the
goodness-of-fit procedure mentioned in Section 2.4.2.

4.3. Results and main empirical findings. The estimated coefficients for the marginal
quantiles and quantile transition regression models, determined by the procedures in the pre-
vious section, are reported in Tables 4 and 5, respectively. It is seen from Table 4, or Figure 1,
that the 25%, 50% and 75% quantiles of real hourly earnings of female workers are sig-
nificantly lower than those of males. Also, after adjusting for age, the younger-generation
workers have lower earnings quantiles than do the older-generation workers. The earnings
quantiles are observed to increase with age but decrease with age squared, revealing a con-
cave pattern of the relationship between age and earnings. The earnings quantiles of higher-
educated workers are significantly higher. According to the test procedure mentioned in the
end of the last subsection, the linear age and the university education level effects are deter-
mined to be nonconstant across quantile levels, with both effects being positive and increas-
ing with quantile levels. Workers in moderate or poor health condition tend to have lower
quantiles of earnings. Compared to those of white-collar workers, earnings quantiles are sig-
nificantly lower for service industry and blue-collar workers. In addition, earnings quantiles
of workers residing in rural areas are significantly lower than those of workers residing in ur-

TABLE 4
Parameter estimates and standard errors for marginal quantile regression analysis of the real hourly earnings

(in thousand NTD) in Taiwan with quantile levels (0.25,0.50,0.75)

Marginal quantile regression β̂ × 102 SE ×102 p-value

Intercept (0.25) 11.46 0.72 0.00‡

Intercept (0.50) 14.16 0.71 0.00‡

Intercept (0.75) 17.47 0.73 0.00‡

Gender (female vs. male) −2.61 0.24 0.00‡

Generation (younger vs. older) −1.78 0.31 0.00‡

Age (0.25) 0.38 0.05 0.00‡

Age (0.50) 0.56 0.05 0.00‡

Age (0.75) 0.83 0.05 0.00‡

Age2 −0.01 0.00 0.00‡

Education (vs. below high school)
high school 1.77 0.49 0.00‡

vocational school 4.32 0.52 0.00‡

university (0.25) 6.33 0.57 0.00‡

university (0.50) 7.22 0.60 0.00‡

university (0.75) 7.95 0.69 0.00‡

postgraduate 10.86 0.64 0.00‡

Employment status (vs. emplyer/self-employed)
government/public-sector employees 1.77 0.65 0.01‡

private-sector employees 0.10 0.51 0.84
Job (vs. white collar)

blue collar −2.00 0.33 0.00‡

service industry −1.22 0.22 0.00‡

Health condition (moderate/poor vs. good) −0.50 0.11 0.00‡

Residential area (rural vs. urban) −1.26 0.23 0.00‡

‡ p-value < 0.01; † p-value < 0.05; ∗ p-value < 0.1
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TABLE 5
The composite binary likelihood (α̂B ) and composite ordinal likelihood (α̂O ) estimates and standard errors, in

parentheses, for the quantile transition regression analysis of the wage data in Taiwan with quantile levels
(0.25,0.50,0.75)

Quantile transition regression α̂B × 102 (SE ×102) α̂O × 102 (SE ×102)

Intercept (0.25, 0.25) 139.47‡ (27.74) 135.51‡ (22.70)

Intercept (0.25, 0.50) 122.01‡ (27.33) 120.51‡ (22.14)

Intercept (0.25, 0.75) 112.43‡ (27.63) 113.18‡ (22.58)

Intercept (0.50, 0.25) 135.70‡ (27.80) 131.55‡ (22.60)

Intercept (0.50, 0.50) 127.04‡ (27.42) 123.35‡ (22.26)

Intercept (0.50, 0.75) 124.07‡ (27.40) 122.27‡ (22.22)

Intercept (0.75, 0.25) 128.54‡ (28.29) 126.87‡ (23.57)

Intercept (0.75, 0.50) 132.48‡ (27.88) 130.37‡ (22.72)

Intercept (0.75, 0.75) 146.45‡ (27.88) 144.45‡ (22.49)

Gender (female vs. male) 44.38‡ (10.88) 47.61‡ (8.92)

Generation (younger vs. older) −1.90 (12.08) 13.41 (9.81)

Age (year) 7.69‡ (1.25) 8.37‡ (0.98)

Time lag (year) −11.05‡ (0.97) −10.90‡ (0.92)

Education (vs. below high school)
high school 1.12 (20.41) −25.84 (16.46)

vocational school −6.98 (21.33) −35.80† (17.07)

university 39.32 (24.10) 2.29 (18.64)

postgraduate −4.29 (26.10) −55.68‡ (20.82)

Employment status (vs. employer/self employed)
government/public-sector employees 14.06 (21.53) 36.95† (17.01)

private-sector employees 34.86† (15.71) 60.03‡ (12.68)

‡ p-value < 0.01; † p-value < 0.05; ∗ p-value < 0.1.

ban areas. Government/public-sector employees have significantly higher earnings quantiles
than workers of other types of employment status.

Table 5 displays results for regression analysis of the quantile transition of earnings sta-
tuses. Both analyses, based on the composite binary and composite ordinal likelihoods, show
that, compared to male workers, female workers are more likely to stay in the same earn-

FIG. 1. Quantiles at levels (0.25,0.50,0.75) of real hourly earnings (in thousand NTD) for urban blue-collar
workers of 26 to 36-years-old, university education level and good health condition, by their gender and genera-
tion, based on the marginal quantile regression model shown in Table 4.
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ings status over time with respect to the covariate-adjusted marginal earnings quantiles. The
tendencies of earnings status transition are not significantly different between younger- and
older-generation workers. Also, as the age of a worker increases the likelihood of being stuck
in the same earnings status becomes higher. The likelihood of transition into some other
earnings statuses increases with time, as revealed by the estimated coefficient of the time lag.
Compared to those who are employers/self employed and government/public-sector employ-
ees, private-sector employees are more likely to get stuck in the same earnings status over
time. Also, workers with postgraduate education are found to be more likely to escape from
the previous earnings status in the composite ordinal likelihood analysis. The other factors,
such as job, health condition and residential area have no significant effects on the quan-
tile transition and, hence, are excluded from the model. We have confirmed that the model
presented in Table 5 is adequate by applying the goodness-of-fit evaluation procedure pro-
posed in Section 2.4.2. The model has the goodness-of-fit measure T = 0.45, and the null
hypothesis of the model, being adequate, cannot be rejected at 5% significance level.

Based on the the composite ordinal likelihood estimates, for different gender, generation
and employment status groups, Figure 2 displays the tendencies of stagnation of earnings
status over time, given by the conditional probabilities that the wage is below the τ th quintile
after some years given that the wage is initially below the τ th quantile with initial age 26 years
and university education level. We can see that female and younger generation workers are
associated with higher degrees of earnings status stagnation than male and older generation
workers, in particular, for earnings statuses corresponding to lower earnings quantile levels.
Also, private-sector employees suffer from earnings status stagnation more seriously than
workers of other employment types, in particular, for earnings statuses corresponding to lower
earnings quantile levels. For example, the probability that female, younger generation and
private-sector workers, who were initially in the lowest 25% wage group, still remain in the
lowest 25% wage group 12 years later is as high as 45%, while the corresponding quantile
transition probability for male, older generation and private-sector workers is 35%.

In Section S.6 of the Supplementary Material (Hsu et al. (2020)), we provide the analysis of
the PSFD wage data based on the quantile dynamic regression model, which is the same as the
marginal quantile regression model considered in Table 4 but further includes the real hourly
earnings at the previous time point as a covariate in the model. The covariate effects obtained
from the quantile dynamic model are similar to those shown in Table 4. The coefficient for
the previous earnings reveals that the quantiles of the current real hourly earnings are highly
associated with the previous earnings. However, the results from this model cannot reveal
information about how the earnings status at a time point, defined with respect to the earnings
quantiles at that time, is related to the past earnings statuses, such as the quantile transition
probabilities mentioned at the end of the last paragraph.

5. Conclusions. Motivated by the desire to realize which groups of workers in Taiwan
suffer more seriously from the wage stagnation problem, this study considers a regression
model for the quantile transition which quantifies the degrees of transition from a quantile
level to another for the outcomes between two time points. Based on the PSFD survey data,
the proposed quantile transition analysis demonstrates that, compared to male workers, fe-
male workers in Taiwan have lower quantiles of real earnings and lower probabilities of
transition across earnings statuses defined in terms of marginal covariate-adjusted earnings
quantiles. The younger generation, who were born between 1977 and 1982, have a lower
quantile of real earnings adjusting for age and other covariates than the older generation born
between 1964 and 1976. Besides, private-sector employees are more likely to get stuck in
the same earnings status over time compared to the government/public-sector employees and
employers/self-employed workers. Higher age and education below postgraduate level are
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FIG. 2. Conditional probabilities of earnings status stagnation over time and different quantiles by gender,
generation, and employment status, with age fixed at 26 years initially and education level fixed at university.

also associated with higher risks of wage stagnation. The proposed statistical methodology
helps identify some critical demographic and job-related factors associated with long-term
stagnation of earnings status.

The model employed in the current work extends the previous ones coping specifically
with bivariate data (Li, Cheng and Fine (2014)) and longitudinal data at a single quantile
level (Yang, Chen and Chang (2017)). We propose two estimators for the regression coeffi-
cients in the quantile transition regression model based, respectively, on the composite binary
and composite ordinal likelihoods. Both estimators are consistent, provided that the quantile
transition regression model is correctly specified. The estimator from the composite ordi-
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nal likelihood is more efficient in inference than that from the composite binary likelihood.
Simulation results in the Supplementary Material (Section S.5; Hsu et al. (2020)) also show
that, when the quantile transition regression model is subject to moderate model misspecifi-
cation, the composite ordinal likelihood results in more accurate estimates of the local odds
ratio (LOR) for the quantile transition. On the other hand, the composite binary likelihood
estimator is more efficient in computation than the composite ordinal likelihood estimator.
Asymptotic theory developed for the proposed composite binary and ordinal likelihood es-
timators facilitates interval estimation and hypothesis testing regarding the significance of
the regression parameters in the quantile transition model. In particular, certain modeling as-
sumptions, such as constant coefficients over quantile levels and/or time, can be tested via the
asymptotic distribution theory for the proposed estimators. Also, a goodness-of-fit procedure
is proposed for evaluating and testing the adequacy of a quantile transition model.

In some applications extreme quantiles are of interest. Yet, the extension of our quan-
tile transition analysis to the latter setting would require results and methods from extreme
value theory (de Haan and Ferreira (2006)), via extremal quantile regression (Chernozhukov
(2005)) and is beyond the scope of the current work.

The methodology introduced in this paper is restricted to a discrete set of predetermined
quantile levels. It is of interest to examine the quantile transition over a continuum of quantile
levels which may require extensions of the method in Frumento and Bottai (2016) to the
quantile transition. We will investigate such an extension in our future work.

APPENDIX: DETAILS FOR PARAMETER ESTIMATION

A.1. The estimating equation for αB . Following Yang, Chen and Chang (2017), the
maximizer of LB(α) can be obtained by the solution to the estimating equation

UB(α) =
m∑

i=1

CZT
i wi = 0,(A.1)

where Zi = (Z∗T
i12,Z

∗T
i13, . . . ,Z

∗T
i1ni

,Z∗T
i23, . . . ,Z

∗T
i(ni−1)ni

)T, Z∗
ijk = IL2 ⊗ ZT

ijk with IL2 the

L2 × L2 identity matrix, wi = (wT
i12,w

T
i13, . . . ,w

T
i1ni

,wT
i23, . . . ,w

T
i(ni−1)ni

)T with

wijk = (wijk(1,1),wijk(1,2), . . . ,wijk(1,L),wijk(2,1), . . . ,wijk(L,L−1),wijk(L,L))
T

and

wijk(c1,c2) = Ỹij (c1)Ỹik(c2) − ξ
(1)
ijk(c1,c2)

Ỹij (c1) + dijk(c1,c2)(Ỹik(c2) − ξijk(c1,c2)),(A.2)

where ξ
(1)
ijk(c1,c2)

= P(Ỹik(c2) = 1|Ỹij (c1) = 1), and dijk(c1,c2) = ∂νijk(c1,c2)/∂ log(ψijk(c1,c2)).
Through the induced smoothing technique, the smoothed version of (A.1) is given by

ŨB(α) =
m∑

i=1

CZT
i w̃i = 0,(A.3)

where w̃i is defined analogously to wi in (A.1) with wijk(c1,c2) replaced by

w̃ijk(c1,c2) = gijk(c1,c2) − ξ
(1)
ijk(c1,c2)

gij (c1) + dijk(c1,c2)(gik(c2) − ξijk(c1,c2)),

with gij (c1) = 1 − �{δij (c1)}, gijk(c1,c2) = �{δij (c1), δik(c2);ρijk(c1,c2)} for 1 ≤ i ≤ m, 1 ≤
j ≤ ni , c1, c2 ∈ L, with δij (c) = δij (τc), ρijk(c1,c2) = ρijk(τc1, τc2). The estimator α̂B can be
obtained as the solution of (A.3).
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A.2. The estimating equation for αO . Taking logarithm of (2.5) and differentiation
with respect to α leads to the following estimating equation for α:

UO(α) =
m∑

i=1

∑
1≤j<k≤ni

(
∂P ijk(·)

∂α

)T
S−1

ijk(Ỹ ik(·) − P ijk(·))

=
m∑

i=1

CZT
i ui = 0,

(A.4)

where P ijk(·) = (Pijk(1), . . . ,Pijk(L))
T, Ỹ ik(·) = (Ỹik(1), . . . , Ỹik(L))

T, Sijk is an L × L ma-
trix whose (c1, c2) element Sijk[c1, c2] = Pijk(c1∧c2) − Pijk(c1)Pijk(c2), ui = (uT

i12,u
T
i13, . . . ,

uT
i1ni

,uT
i23, . . . ,u

T
i(ni−1)ni

)T with

uijk = (
uT

ijk(1,·),uT
ijk(2,·), . . . ,uT

ijk(L,·)
)T

,

uijk(c,·) = diag{eijk(c,·)}
{

τc

τc − τc−1
S−1

ijk(c)(Ỹij (c) − Ỹij (c−1))(Ỹ ik(·) − P ijk(c,·))

− τc

τc+1 − τc

S−1
ijk(c+1)(Ỹij (c+1) − Ỹij (c))(Ỹ ik(·) − P ijk(c+1,·))

}
,

(A.5)

and eijk(c,·) = (eijk(c,1), . . . , eijk(c,L))
T with eijk(c1,c2) = ξ

(1)
ijk(c1,c2)

(1 − ξ
(1)
ijk(c1,c2)

) ×
(1 + dijk(c1,c2)) and dijk(c1,c2) defined in (A.2). In the above, Sijk(c) and P ijk(c,·) are defined
as Sijk and P ijk(·), respectively, with Oij set to c, Ỹij (0) = 0 and Ỹij (L+1) = 1.

A smoothed version ŨO(α) = ∑
i CZT

i ũi of UO(α) in (A.4), similar to ŨB(α) in (A.3),
can also be obtained by the induced smoothing method mentioned in Remark 2 of Section 2.2.
The estimator α̂O can be obtained as the solution of ŨO(α) = 0.
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SUPPLEMENTARY MATERIAL

Asymptotic theory, asymptotic chi-square test, and additional simulation studies and
data analysis (DOI: 10.1214/19-AOAS1304SUPP; .pdf). A PDF document providing the
asymptotic theory, the asymptotic chi-square test for the adequacy of the modeling con-
straints, and additional simulation studies and data analysis.
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