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The concept of integrating data from disparate sources to accelerate sci-
entific discovery has generated tremendous excitement in many fields. The
potential benefits from data integration, however, may be compromised by
the uncertainty due to incomplete/imperfect record linkage. Motivated by a
suicide risk study, we propose an approach for analyzing survival data with
uncertain event times arising from data integration. Specifically, in our prob-
lem deaths identified from the hospital discharge records together with re-
ported suicidal deaths determined by the Office of Medical Examiner may
still not include all the death events of patients, and the missing deaths can
be recovered from a complete database of death records. Since the hospi-
tal discharge data can only be linked to the death record data by matching
basic patient characteristics, a patient with a censored death time from the
first dataset could be linked to multiple potential event records in the sec-
ond dataset. We develop an integrative Cox proportional hazards regression
in which the uncertainty in the matched event times is modeled probabilis-
tically. The estimation procedure combines the ideas of profile likelihood
and the expectation conditional maximization algorithm (ECM). Simulation
studies demonstrate that under realistic settings of imperfect data linkage the
proposed method outperforms several competing approaches including multi-
ple imputation. A marginal screening analysis using the proposed integrative
Cox model is performed to identify risk factors associated with death follow-
ing suicide-related hospitalization in Connecticut. The identified diagnostics
codes are consistent with existing literature and provide several new insights
on suicide risk, prediction and prevention.

1. Introduction. In many fields of science, engineering and medicine, combining mul-
tiple datasets from disparate sources has made it possible to tackle important problems at an
accelerated rate through integrative statistical learning. These datasets cover overlapped or
interrelated measurements from individuals. In an ideal situation the multisource data should
pertain to the same set of fully identified individuals. For example, in a cancer study multi-
platform genetic data such as mRNA gene expression, DNA methylation and copy number
variation are available from each patient (Zhao et al. (2015)); an integrative analysis then
ensures a comprehensive coverage of genetic perspectives to understand the disease mech-
anism. In practice, however, more than often a unique identifier is not provided or does not
even exist to link multi-source or multi-platform datasets. This gives rise to the so-called
“data/record linkage” problem, that is, matching records from different sources that belong
to the same person or entity based on available characteristics of the entity (e.g., Winglee,
Valliant and Scheuren (2005)); see Harron, Goldstein and Dibben (2015) for a recent review.
Matching errors are bound to occur (Bohensky et al. (2010)), and the potential benefits from
data integration may be compromised. Therefore, in statistical analysis with integrated data
it is important to take into account the uncertainty due to imperfect linkage.
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Our research was motivated by the survival analysis of youth and young adult patients in
the State of Connecticut who were at elevated risk of suicide because of having been hospi-
talized for suicide attempt or intentional self-injury. Data from diagnosis were available from
the Connecticut Hospital Inpatient Discharge Data (HIDD). Deaths by suicide were deter-
mined from the Office of the Connecticut Medical Examiner (OCME). It has been revealed,
however, that suicidal death is often underreported in key Western countries (Pritchard and
Hansen (2015), Tøllefsen et al. (2016)). The death records identified from the OCME for
this group are incomplete because, first, suicide deaths may be underreported and, second,
they do not include deaths due to other causes. Hence, some patients with censored suicide
times might have died. While the missing deaths may possibly be recovered from a com-
plete mortality database of the state, the HIDD data can only be linked to the death records
by matching basic patient characteristics such as date of birth, gender, race and residential
zip code because there is no unique identifier to join the two datasets even before the data
were deidentified in order to protect patient privacy. Consequently, in the integrated data a
censored death time before matching could be linked to multiple possible death times in the
mortality data; see details in Section 2.

Figure 1 illustrates the data matching patterns in a general integrated survival analysis
setup similar to that in our suicide risk study. In Dataset I a positive number of subjects’ event
times are observed and known to be accurate (Case 1). For those subjects whose event times
are censored in Dataset I, their event times might be captured in Dataset II. After the linkage
process with partial identifiers, the event time of any subject who does not find a match in
dataset II is still censored (Case 2). As such, Case 1 and Case 2 consist of noncensored
and censored subjects, respectively, in a standard right censored data setting. Challenges are
brought by those subjects with one or more matches (Case 3); we are not sure which one, if
any, of the matched event times is the truth. The subjects in Case 3 can be further classified
into two types: Case 3a contains subjects whose true event time is included in the matched
records, and Case 3b contains subjects whose true event time is not included in the matched
records and, hence, is actually censored. This classification is unknown and has to be inferred
from the data. The task can be regarded as a missing data problem in which the indicators of
whether each matched record is true are missing.

FIG. 1. Illustration of the data matching patterns for studies with event time outcomes.
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Some efforts have been made to similar problems of mismeasured outcomes or uncertain
endpoints. Snapinn (1998) proposed a modification of the Cox proportional hazard model
(Cox (1972)) for nonfatal uncertain endpoints by assigning weights that represent the like-
lihood of each potential endpoint being true. The determination of the weights, however,
requires an additional diagnostic score and depends on a subjective estimation of the relative
frequency of true endpoints to false endpoints suggested by the endpoint committee or experts
in the therapeutic area. Richardson and Hughes (2000) proposed an estimation procedure for
the product limit estimate of survival function with no covariate based on the expectation
maximization (EM) algorithm (Dempster, Laird and Rubin (1977)) when a binary diagnosis
outcome was measured with uncertainty. The method was designed for discrete-time con-
texts where the time points of outcome testing were predetermined. Meier, Richardson and
Hughes (2003) extended the discrete proportional hazard model (Kalbfleisch and Prentice
(2002)) to mismeasured outcomes under a setting similar to Richardson and Hughes (2000)
but allowed covariate effects. In a more general setting regression methods have been devel-
oped for linked data where the response and covariates come from two databases (e.g., Hof
and Zwinderman (2012, 2015), Tancredi and Liseo (2015)). None of the existing works was
designed to handle the data integration problem in a survival analysis like ours.

We propose an integrative Cox proportional hazard model for data with uncertain event
time points. The uncertainty in the integrated survival data is modeled probabilistically where
the probabilities depend only on the relative hazards from the Cox model itself. The model re-
duces to the regular Cox model when there is no uncertain record. In contrast to the method of
Snapinn (1998), our method does not require any extra diagnostic variable or prior knowledge
on the initial probabilities indicating the true outcomes. The estimation procedure combines
the ideas of profile likelihood and the expectation conditional maximization (ECM) algo-
rithm. The proposed method is shown to outperform naive approaches in simulation studies
under realistic settings similar to the real data example. Using data obtained by integrating
the HIDD/OCME data and the mortality record data of the period 2005–2012 in Connecticut,
we apply the proposed approach to identifying risk factors associated with patient survival af-
ter suicide-related hospitalization. The identified diagnostic codes are mostly consistent with
existing results and provide several new insights on suicide risk prediction and prevention.

The rest of this paper is organized as follows: The settings for integrated survival data for
the Connecticut suicide risk analysis and the associated challenges are presented in Section 2.
In Section 3 we present the integrative Cox regression modeling framework. The estima-
tion procedure is developed in Section 4. The simulation studies are presented in Section 5.
A marginal screening analysis using the proposed integrative model for the Connecticut sui-
cide risk study is reported in Section 6. Section 7 concludes with a discussion. Implementa-
tion of the proposed methods is available in a package named intsurv for R (R Develop-
ment Core Team (2017)) which can be accessed at https://github.com/wenjie2wang/intsurv.

2. Integrated survival data of a patient group with elevated suicide risk. Suicide is
a serious public health problem in the U.S. Death by suicide is increasing among all age
groups in the U.S. with a 24% increase in suicide rates observed from 1999 to 2014. There
is a strong tendency for suicide attempters to make additional attempts after the initial sui-
cide attempt (Suominen et al. (2004)), and suicide attempt is a strong predictor of suicidal
death (Bostwick et al. (2015)). Understanding factors associated with suicide for patients
hospitalized due to suicide attempt is critical to a better allocation of selected prevention
efforts among those at elevated risk. An immediate challenge in statistical modeling is that
attributing death to suicide is not easy as suicidal death is often under-reported. For exam-
ple, Pritchard and Hansen (2015) showed that undetermined and accidental death was a main
source of the under-reported-suicides across different countries, including the US; Tøllefsen

https://github.com/wenjie2wang/intsurv
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et al. (2016) reported that, from re-evaluations of 1800 deaths in Scandinavia, 9% of the nat-
ural deaths and accidents were reclassified as suicides in the Norwegian data, and 21% of the
undetermined deaths were reclassified as suicides in the Swedish data.

We focused on patients of age 15–30 with high suicide risk in Connecticut. This group of
patients consisted of those who were admitted to a hospital in Connecticut during fiscal years
2005–2012, due to suicide attempt or self-inflicted injury, survived and were discharged. The
entry time of each patient into the study is the time of last such discharge. The event time is
the time to death from all causes, including suicide, since the entry time. The cutoff date of
the HIDD is September 30, the end of fiscal year of 2012 which means that the patients were
followed up until this time. The OCME provided data on suicide deaths of this period, which
included a field for reporting source, that allowed accurate identification of the corresponding
patients in HIDD. Since the HIDD and OCME data only captured reported suicide deaths, we
acquired the complete mortality data of the same period from the Connecticut Department
of Public Health, aiming to recover the missing deaths through record linkage using basic
patient characteristics. The HIDD and OCME data lead to Dataset I while the mortality data
is Dataset II in Figure 1. We stress that here we set the terminal event as death from all causes
rather than only due to suicide. This is mainly because the cause of death is not available in
the mortality data so that it can not be recovered from data integration. On the other hand,
without data integration ignoring unreported suicidal deaths and deaths due to other causes
would jeopardize the validity of statistical results. Because suicide is a major cause of death
among young suicide attempters, death due to all causes stands as a valid terminal event to
study in our problem.

A total of 7304 patients were followed up until September 30, 2012. Among them, 4981
were white (2775 female and 2206 male) and 2323 were nonwhite (1304 female and 1019
male). Before matching, Case 1 consisted of 133 patients with confirmed suicide death from
the OCME, a censoring rate of 98.2%. For the 7171 patients with censored event times, we
made record linkage with the Connecticut state mortality database by date of birth, gender
and race. Since the death time had to happen after the discharge, we excluded any matched
event before the discharge date of each patient during the matching process. After matching,
Case 2 consisted of 6546 patients with no matched record while Case 3 consisted of 625
patients with at least one matched records. In Case 3, 584 patients had one match, 39 patients
had two matches and two patients had four matches; it was possible for each patient to be
still alive on September 30, 2012, in which case, the true death time is censored.

The HIDD data contained a large number of records on the characteristics of patients and
their previous hospital admissions. The research interest was to identify important diagnostic
categories associated with patient death. The diagnostics were recorded as ICD-9 diagnosis
codes or, more formally, ICD-9-CM (International Classification of Diseases, 9th Revision,
Clinical Modification). We grouped the ICD-9 codes by their three leading characters that
define the major diagnosis categories. Suicide attempts were identified by both ICD-9 exter-
nal cause of injury codes and other ICD-9 code combinations indicative of suicidal behavior
(Chen and Aseltine (2017), Patrick et al. (2010)). Other ICD-9 codes during the inpatient
hospitalization fell into 167 major diagnosis categories which led to 167 indicator variables.
Not all 167 indicators, however, can be used as covariates. Among them, 51 ICD-9 indicators
had quasicomplete separation (Albert and Anderson (1984)) in our data; that is, there was no
death event among those whose diagnosis included any of these ICD-9 categories. Although
they could be potentially useful in predicting survival and thus merit further investigation,
they cannot be considered as covariates in a Cox regression framework adopted in this work
since their coefficient estimates would tend to be negative infinite. To focus on the main idea,
we further filtered out another 58 ICD-9 indicators by restricting every cell of the cross table
of the diagnosis indicator and event indicator to be at least three. The remaining 58 ICD-9
codes were used in a marginal screening analysis; see Section 6.
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3. Integrative Cox model. Consider a random sample of n subjects who fall into the
three cases as illustrated in Figure 1. Let I1, I2 and I3 be the indices of the subjects in Cases
1, 2 and 3, respectively. For subject j ∈ I1, we observe the event time Vj . For subject j ∈ I2,
we observe the censoring time Cj . For subject j ∈ I3, the true event time Vj has sj ≥ 2 possi-
bilities, 0 < Vj,1 < · · · < Vj,sj−1 < Vj,sj , but we only observe 0 < Vj,1 < · · · < Vj,sj−1 < Cj

where Cj is the censoring time such that Cj < Vj,sj . The reason for Cj < Vj,sj is Case 3b
in Figure 1, where none of the matches is correct, so the actual death time must be after Cj .
Regarding subjects in Cases 1–2 as having only sj = 1 possibility with Vj,1 = Vj , we use a
unified notation for the observed data from subject j

(Tj,k,�j,k,xj ) : k ∈ {1, . . . , sj },
where xj is a p-dimensional vector of predictors, Tj,k = min(Vj,k,Cj ), �j,k = 1(Vj,k ≤ Cj)

and Cj is the censoring time. For Cases 1–2, �j,1 is the event indicator, and the notation is the
same as in standard right-censored data. For Case 3, we have sj ≥ 2; �j,1 = · · · = �j,sj−1 =
1 and �j,sj = 0 are indicators denoting that all the matches before Cj are possible events
and the last possibility is always censored. These notations will be used in the estimation
procedure.

The true event time Vj of subject j , j ∈ {1, . . . , n}, is assumed to follow a Cox model with
hazard function

(1) hj (t) = h0(t) exp
(
x�

j β
)
,

where h0(·) is an unspecified baseline function and β is a vector of unknown coefficient of
the covariate vector xj . Let Sj (t) = exp{−H0(t) exp(x�

j β)}, where H0(t) = ∫ t
0 h(s)ds, be

the survival function of subject j . The density function is then fj (t) = hj (t)Sj (t). In addi-
tion, we assume that the censoring time Cj has an unknown density function g(t), distribution
function G(t), survival function G(t) = 1 − G(t), does not depend on the covariates xj , and
is independent of the event times conditional on the covariates xj . The conditional indepen-
dence assumption of the censoring time is justified for our study because the censoring was
administrative.

We propose to model the uncertain records in a probabilistic way by introducing a vector
of truth indicator for each subject. For subject j , let Zj = (Zj,1, . . . ,Zj,sj ) be a random
vector from multinomial distribution Multi(1,π j ),

Zj,k =
{

1, Vj = Vj,k,or (Tj,k,�j,k) is the truth,

0, otherwise,

where k ∈ {1, . . . , sj }, ∑sj
k=1 Zj,k = 1, 0 ≤ πj,k ≤ 1 and

∑sj
k=1 πj,k = 1. As such, for each

subject j , j ∈ {1, . . . , n}, π j = (πj,1, . . . , πj,sj ) is the probability vector where πj,k =
Pr(Vj = Vj,k) (i.e., probability of the kth record being true). Clearly, for j ∈ I1 ∪ I2, we
have sj = 1 and πj,1 = 1, that is, Zj,1 = 1 with probability 1. For j ∈ I3, however, the truth
indicators can be regarded as missing. That Zj,k = 1, k ∈ {1, . . . , sj − 1} corresponds to Case
3a, Zj,sj = 1 suggests Case 3b.

Let T j = (Tj,1, . . . , Tj,sj ) and �j = (�j,1, . . . ,�j,sj ) with realizations tj = (tj,1, . . . ,

tj,sj ) and δj = (δj,1, . . . , δj,sj ), respectively. Let the set of all model parameters be θ =
{β,π, h0(·), g(·)} where π = (π1, . . . ,πn). Let zj be a realization of Zj . Given the truth in-
dicators, we assume that the distribution of the fake records is independent of the true record
and degenerates to a point mass at the point of the observed fake records. This assumption
allows us to get away with modeling the intractable distribution of the fake records (e.g., the
fake death times produced from imperfect data matching in our suicide risk study), so that
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the likelihood of (T j ,�j ) given Zk only depends on the likelihood of the true record. The
complete-data likelihood of (T j ,�j ,Zj ) from subject j turns out to be

(2) LC
j (θ) =

sj∏
k=1

{
πj,k

[
fj (tj,k)G(tj,k)

]δj,k
[
g(tj,k)Sj (tj,k)

]1−δj,k
}zj,k

.

The derivation detail is available in Section 1 of the Supplementary Materials (Wang et al.
(2020)). All the possible realizations of Zj are zj = (1,0,0, . . . ,0), (0,1,0, . . . ,0), . . . ,

(0,0, . . . ,0,1). The observed-data likelihood contribution from subject j is then obtained
by summing out zj in (2):

(3) LO
j (θ) =

sj∑
k=1

πj,k

[
fj (tj,k)G(tj,k)

]δj,k
[
g(tj,k)Sj (tj,k)

]1−δj,k .

Let Y obs = {(t1, δ1,x1), . . . , (tn, δn,xn)} denote the observed data of the n independent sub-
jects. The likelihood for the observed data is then given by LO(θ) = ∏n

j=1 LO
j (θ).

Thus far the observed-date likelihood in (3) is derived from a missing data perspec-
tive, but it can also be understood in several different ways. Intuitively, for subject j each
of its sj records leads to a likelihood of the event time and the censoring time, that is,

[fj (tj,k)G(tj,k)]δj,k [g(tj,k)Sj (tj,k)]1−δj,k for k ∈ {1, . . . , sj }, and the LO
j (θ), the contribution

of subject j to LO(θ), is then constructed as a weighted sum with weights πj,k satisfying
0 ≤ πj,k ≤ 1 and

∑sj
k=1 πj,k = 1. From the perspective of finite mixture model, the πj,k’s are

the mixing probabilities, and the above likelihood form of each mixture component is a di-
rect consequence of our assumption that given the truth indicator the distribution of the fake
records degenerates such that the distribution of (T j ,�j ) only depends on the true record.
Interestingly, the proposed method is also connected to a trimmed likelihood approach (e.g.,
Hadi and Luceño (1997), Neykov et al. (2007)), for which, however, the optimization prob-
lem is combinatorial in nature and a naive exhaustive search is not feasible; see Section 4.4
for details. In contrast, the proposed probabilistic formulation allows us to develop an ECM
algorithm to conduct maximum likelihood estimation. We remark that our approach may al-
low potential incorporation of certain known missing mechanism of the true label through
imposing more structures on π j or modeling them using covariates. For instance, in some
applications it may be reasonable to assume that the prior probability of being censored is
the same for all the subjects with uncertain records. In this work, however, we focus on the
unconstrained situation.

4. Model estimation via an ECM algorithm.

4.1. Estimation procedure. The ECM algorithm is a variation of the powerful EM algo-
rithm for dealing with incomplete data (Meng and Rubin (1993)). It replaces the M-step of an
EM algorithm with multiple conditional maximization (CM) steps which are often compu-
tationally easier to handle. We propose a maximum likelihood estimation procedure for the
integrative Cox model following the architecture of the ECM in which the CM-steps utilize
a profile likelihood similar to the partial likelihood (Cox (1975)).

The complete-data loglikelihood can be decomposed into two parts which involve two ex-
clusive sets of parameters, respectively. Let Y mis = (z1, . . . ,zn) and Y = {Y obs,Y mis}. From
(2) the complete-data loglikelihood is

�(θ | Y ) = �
(
β,π, h0(·) | Y ) + �c

(
g(·) | Y )

,(4)
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where

�
(
β,π, h0(·) | Y )
=

n∑
j=1

sj∑
k=1

zj,k

{
logπj,k + δj,k logfj (tj,k) + (1 − δj,k) logSj (tj,k)

}
,

(5)

and

�c

(
g(·) | Y ) =

n∑
j=1

sj∑
k=1

zj,k

{
δj,k logG(tj,k) + (1 − δj,k) logg(tj,k)

}
.(6)

The second part �c(g(·) | Y ) only involves the nuisance distribution of the censoring time.
We compute the conditional expectations of the complete-data loglikelihood (4) given the

observed data Y obs and the set of parameter estimates θ (i) = {β(i),π (i), h
(i)
0 (·), g(i)(·)} at ith

iteration (i = 0,1, . . .) where θ (0) is the initial/starting estimate. Define

wj,k

(
θ (i)) := P

(
Zj,k = 1,T j ,�j | θ (i))

= π
(i)
j,k

(
h

(i)
j,kS

(i)
j,kG

(i)

j,k

)δj,k (
g

(i)
j,kS

(i)
j,k

)1−δj,k
,

where h
(i)
j,k = h

(i)
0 (tj,k) exp(x�

j β(i)) and S
(i)
j,k = exp{−H

(i)
0 (tj,k) exp(x�

j β(i))}, G
(i)

j,k =
G

(i)
(tj,k) and g

(i)
j,k = g(i)(tj,k). By Bayes’ rule we have

pj,k

(
θ (i)) := P

(
Zj,k = 1 | T j ,�j , θ

(i))
= wj,k(θ

(i))∑sj
k=1 wj,k(θ

(i))
.

(7)

Plugging (7) into (5) and (6), we obtain the E-step that involves two separate parts:

E�
{
β,π, h0(·) | Y obs, θ

(i)}
=

n∑
j=1

sj∑
k=1

pj,k

(
θ (i)){log(πj,k) + δj,k logfj (tj,k)

+ (1 − δj,k) logS(tj,k)
}

(8)

and

E�c

{
g(·) | Y obs, θ

(i)}
=

n∑
j=1

sj∑
k=1

pj,k

(
θ (i)){δj,k logG(tj,k) + (1 − δj,k) logg(tj,k)

}
.

(9)

The separation of the two terms in parameters facilitates the M-step. The first term (8)
can be handled by profiling out the nuisance parameters. Note that, for fixed β and π ,
the h0(t) maximizing the conditional expectation (8) is a discrete function that is posi-
tive only at possible event times and zero anywhere else. Let Yj,k(t) = 1(tj,k ≥ t) and
Nj,k(t) = zj,k1(tj,k ≤ t, δj,k = 1). Then, the true number of events by time t is N(t) =∑n

j=1
∑sj

k=1 Nj,k(t). Let dN(t) denote the number of true events at time t . Let Ñj,k(t; θ (i)) =
pj,k(θ

(i))1(tj,k ≤ t, δj,k = 1) and Ñ(t; θ (i)) = ∑n
j=1

∑sj
k=1 Ñj,k(t; θ (i)) which are the con-

ditional expectation of Nj,k(t) and N(t) given Y obs, evaluated at θ (i), respectively. Then,
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dÑ(t; θ (i)) = E{dN(t)|Y obs, θ
(i)} is the jump size of Ñ(t; θ (i)) at time t . Equation (8) can be

rewritten to allow tied event times as follows:

E�
{
β,π, h0(·) | Y obs, θ

(i)}
= ∑

t∈T

[
−h0(t)

n∑
j=1

sj∑
k=1

Yj,k(t)pj,k

(
θ (i)) exp

(
x�

j β
) + dÑ

(
t; θ (i)) logh0(t)

]
(10)

+
n∑

j=1

sj∑
k=1

pj,k

(
θ (i))[δj,kx

�
j β + logπj,k

]
,

where T = {tj,k | δj,k = 1, k ∈ {1, . . . , sj }, j ∈ {1, . . . , n}} is the collection of all observed
possible event times.

Given β and π , the baseline hazard h0 only appears in the first term of (10), and the
maximizer is

ĥ0(t) = dÑ(t; θ (i))∑n
j=1

∑sj
k=1 Yj,k(t)pj,k(θ

(i)) exp(x�
j β)

,

which is nonzero only for those t ∈ T , similar to the “Breslow estimator” (Breslow (1974)).
Further, for fixed β it is easy to check that π

(i+1)
j,k = pj,k(θ

(i)) maximizes (10) by Lagrange
multipliers method. Plugging these estimators back into (10), we get a profile likelihood in
terms of β

E�
{
β, π̂, ĥ0 | Y obs, θ

(i)}
= ∑

t∈T

{−dÑ
(
t; θ (i))[1 − log dÑ

(
t; θ (i))]} +

n∑
j=1

sj∑
k=1

pj,k

(
θ (i)) logpj,k

(
θ (i))

+ p�
(
β | θ (i)),

where

p�
(
β | θ (i)) =

n∑
j=1

sj∑
k=1

∫ ∞
0

I
(
β, t | θ (i)) dÑj,k

(
t; θ (i)),

I
(
β, t | θ (i)) = x�

j β − log

(
n∑

l=1

sl∑
m=1

Yl,m(t)pl,m

(
θ (i)) exp

(
x�

l β
))

,

(11)

is the only part involving β . This profiling approach is similar to the partial likelihood of Cox
(1975) except that the distribution of the censoring time comes into play through pj,k’s and
dÑj,k’s. The estimator β̂ of β is obtained by maximizing (11). Once β̂ has converged, ĥ0(·)
and π̂j,k’s can be updated.

Maximizing the second part (9) involves nonparametric maximum likelihood estimator of
the censoring distribution function G(·). We characterize the censoring time by its hazard
function hc(·). Similar to h0(t), the hc(·) that maximizes (9) is nonzero only at the observed
censoring times. By the assumption we made, the only possible censoring time for each
subject is its last record time. For j ∈ {1, . . . , n}, define Cj(t; θ (i)) = pj,sj (θ

(i))1(tj,sj ≤
t, δj,sj = 0) and C(t; θ (i)) = ∑n

j=1 Cj(t; θ (i)). Let dC(t; θ (i)) be the jump size of C(t; θ (i))

at time t . Then, we may rewrite (9) to allow tied censoring times as follows:

E�c

(
g(·) | Y obs, θ

(i))
= ∑

t∈C

{
dC

(
t; θ (i)) loghc(t) − hc(t)

n∑
j=1

sj∑
k=1

pj,k

(
θ (i))Yj,k(t)

}
,
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Algorithm 1 Estimation procedure for integrative Cox model with uncertain event records.
(The dependence of πj,k’s, Ñj,k’s, dÑ(t), and dC(t) on θ is dropped for ease of notation)

initialize β and π ;
repeat

for j = 1,2, . . . , n do � Update Ñj,k(t)’s
for k = 1,2, . . . , sj do

Ñj,k(t) ← πj,k1(tj,k ≤ t, δj,k = 1);
end for

end for
for each t ∈ T do � Update ĥ0(·)

h0(t) ← dÑ(t)∑n
j=1

∑sj
k=1 Yj,k(t)πj,k exp(x�

j β)
; H0(t) ← ∑

s≤t

h0(s);

end for
for each t ∈ C do � Update ĥc(·)

hc(t) ← dC(t)∑n
j=1

∑sj
k=1 Yj,k(t)πj,k

; Hc(t) ← ∑
s≤t

hc(s),

end for
for j = 1,2, . . . , n do � Update π̂j,k’s

for k = 1,2, . . . , sj do

Sj,k ← exp
{−H0(tj,k) exp

(
x�

j β
)}; Gj,k ← exp

{−Hc(tj,k)
};

wj,k ← πj,k[hj,kSj,kGj,k]δj,k [gj,kSj,k]1−δj,k ; πj,k ← wj,k∑sj
k=1 wj,k

;

end for
end for
β ← arg maxp�(β|θ) � Update β̂

until Convergence

where C = {tj,sj | δj,sj = 0, j ∈ {1, . . . , n}} is the collection of all observed censoring times.
Maximizing it with respect to hc(t) gives

ĥc(t) = dC(t; θ (i))∑n
j=1

∑sj
k=1 pj,k(θ

(i))Yj,k(t)
.

Therefore, for every record time tj,k , we have

Ĝ(tj,k) = exp
{
− ∑

t≤tj,k

ĥc(t)

}
= exp

{
− ∑

t≤tj,k

dC(t; θ (i))∑n
l=1

∑sl
m=1 pl,m(θ (i))Yl,m(t)

}

and ĝ(tj,k) = ĥc(t)Ĝ(tj,k).
We summarize the ECM estimation procedure in Algorithm 1. In our numerical studies we

stop the algorithm if ‖β(i) − β(i−1)‖/‖β(i) + β(i−1)‖ < 10−6 and ‖π (i) − π (i−1)‖/‖π (i) +
π (i−1)‖ < 10−8.

4.2. Initialization. Since the maximum likelihood estimation problem here is noncon-
vex, it may admit multiple local maxima. Therefore, we recommend setting multiple initial
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values of β and π to help identify a good solution, as allowed by the available computational
resources. In particular, we propose two simple but pragmatic initialization procedures that
work well even with limited resources.

The first procedure is as follows:

(i) Fit a regular Cox model on all the certain records (Cases 1–2) and use the estimated
coefficients to initialize β; initialize Ŝj,k with the fitted survival function evaluated at tj,k ;
initialize ĥj,k with a nearest left neighbor interpolation of the fitted hazard function (if no left
neighbor, use nearest right neighbor).

(ii) Switching event and censoring for all the certain records (Cases 1–2), estimate the
hazard function for censoring by the Nelson–Aalen estimator (without covariates) and obtain

the corresponding survival function estimate; initialize Ĝj,k with the fitted survival function
evaluated at tj,k ; initialize ĥc(tj,k) with a nearest left neighbor interpolation of the fitted
hazard function (if no left neighbor, use nearest right neighbor).

(iii) Plug ŵj,k = h∗
j,kŜj,kĜj,k , where h∗

j,k = δj,kĥj,k + (1 − δj,k)ĥc(tj,k), into (7) as wj,k

and initialize πj,k as the resulting pj,k .

In the above procedure letting ĥ∗
j,k = 1 in step (iii) leads to a simpler alternative, which puts

more weights to the uncertain event times before the censoring time, and thus may work
better when Case 3a is estimated to have a larger size than Case 3b. This gives a second
initialization procedure.

The two initialization procedures were applied in the simulation studies presented in Sec-
tion 5, and the results were satisfactory in most scenarios.

4.3. Inference. In an EM or ECM algorithm, generally, standard error (SE) estimates
for the parameter estimates cannot be easily produced along with the estimation procedure.
A few approaches have been proposed for estimating the asymptotic covariance matrix for
parameters of interest, including the supplemented EM (SEM) algorithm (Meng and Rubin
(1991)), the profile likelihood approach (Murphy and van der Vaart (2000)), numerical dif-
ferentiation methods based on forward difference and Richardson extrapolation (Jamshidian
and Jennrich (2000)) and their variants with profiling (Xu, Baines and Wang (2014)). Un-
fortunately, none of these methods is readily applicable to our case. In our work we use
the bootstrap (Efron (1979, 1981)) method that performs resampling at the subject level for
survival data for making inference. Efron (1981) proposed the SE be estimated as sample
standard deviation of bootstrap estimates, or based on inter-quantile range and normal ap-
proximation. The p-values from the Wald test for testing the significance of each regression
coefficient can then be computed.

4.4. Connection with trimmed likelihood. We show that the proposed method is closely
connected to a trimmed likelihood approach which offers an intuitive understanding of our
method from the robust estimation perspective. The trimmed likelihood (Hadi and Luceño
(1997), Rousseeuw (1984), Neykov et al. (2007)) is a general approach for conducting ro-
bust maximum likelihood estimation in the presence of outliers in which the observations are
trimmed according to their contributions to the likelihood function. Our probabilistic model-
ing approach via ECM provides an efficient way for targeting the computationally infeasible
trimmed likelihood estimator.

Recall the observed-data likelihood formulation given in (3). Denote

rj,k(β) = [
fj (tj,k)G(tj,k)

]δj,k
[
g(tj,k)Sj (tj,k)

]1−δj,k ,

where j ∈ {1, . . . , n}, k ∈ {1, . . . , sj }. For ease of notation, here we do not explicitly write
out the dependency of rj,k(β) on the observed data and assume other unknown quantities
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h0(·) and g(·) have been profiled out. (In fact, the above can be regarded as a general survival
modeling formulation in this section.) Then, the proposed maximum likelihood estimator can
be expressed as

(β̂, π̂) ∈ arg max
β,π

n∏
j=1

( sj∑
k=1

πj,krj,k(β)

)
.(12)

Here, each π j is a probability vector, and there is no additional structural constraint on π .
Now, for each j , define rj,(sj )(β) as the largest order statistic of rj,k(β), k = 1, . . . , sj . Then,
a trimmed likelihood estimator can be constructed as

β̃ ∈ arg max
β

n∏
j=1

rj,(sj )(β).(13)

Intuitively, (13) shows that the optimal β is reached when for each patient with uncertain
records only the most plausible record (as judged by having the largest log-likelihood value
among all the records) contributes to the overall log-likelihood function and the rest all get
trimmed. Interestingly, it can be verified that the two methods in (12) and (13) share the same
set of global solutions.

LEMMA 4.1. The β̂ from solving (12) is a solution of (13) and vice versa.

For each πj = (πj,1, . . . , πj,sj ), we have π̂ j = arg maxπj

∑sj
k=1 πj,krj,k(β̂), because given

β = β̂ the problem in (12) is separable in each set of π j . Then, the maximum can be attained
at π̂j,k0

j
= 1 and π̂j,k = 0 for k �= k0

j where k0
j ∈ arg maxk rj,k(β̂). It follows that the maximum

value of the objective function in (12) can be written as
∏n

j=1 rj,(sj )(β̂) which clearly reveals

that β̂ is a maximizer of the trimmed likelihood problem in (13). On the other hand, let π̃j

be that π̃j,k0
j
= 1 and π̃j,k = 0 for k �= k0

j , where k0
j ∈ arg maxk rj,k(β̃) with some abuse of

notation. Then it can be seen that {β̃, π̃} is necessarily a solution of (12).
In practice, however, finding the global solution of the trimmed likelihood problem is in-

feasible via a naive exhaustive search approach. For example, in our suicide risk study an
exhaustive search amounts to fit 2584 × 339 × 52 many Cox models. In contrast, our prob-
abilistic modeling approach can be regarded as an efficient way for targeting the trimmed
likelihood estimator via the ECM algorithm with carefully constructed initial values.

5. Simulation study.

5.1. Simulation settings. Our simulation settings were designed to mimic the data inte-
gration process in the survival analysis of patients admitted to hospital due to unsuccessful
suicide attempts in Connecticut. As shown in Figure 1, n1 is the number of subjects with
events observed for certain from Dataset I (Case 1); n2 is the number of subjects whose
true event time is included in the matched event times (Case 3a); n3 is the number of sub-
jects whose true event time is censored but for whom some false event times are matched
(Case 3b); n4 is the number of subjects whose event times are censored for certain since no
match is found from Dataset II (Case 2). As such, n = ∑4

i=1 ni is the total sample size, and
n2 + n3 + n4 is the number of subjects that are censored before data matching.

We define a few quantities for designing the experiment: censoring rate of dataset I before
matching (CR1) is CR1 = 1 −n1/n; matching rate (MR) is MR = (n2 +n3)/(n2 +n3 +n4);
correct matching rate (CMR) CMR = n2/(n2 + n3). MR is the proportion of subjects having



62 WANG, ASELTINE, CHEN AND YAN

TABLE 1
Summary of different simulation settings. The number of subjects in Group 1 is fixed at n1 + n2 = 200

Group 1 Group 2

n1 n2 n3 n4
Scenario # CR1 MR CMR (Case 1) (Case 3a) (Case 3b) (Case 2) n OCR

1 30 70 20 189 11 46 24 270 26
2 30 70 80 161 39 9 21 230 13
3 60 40 20 178 22 84 160 444 55
4 60 40 80 136 64 17 122 339 41
5 90 10 20 167 33 117 1350 1667 88
6 90 10 80 118 82 24 953 1177 83

CR1: Censoring rate before matching (%); MR: Matching rate (%); CMR: Correct matching rate (%); OCR:
Oracle censoring rate (%).

matched records among subjects whose event times are censored from Dataset I; CMR is the
proportion of the subjects whose true event time is contained in the matched event times.
In all the settings we set MR = 1 − CR1, assuming that the lower the CR1, the more likely
that Dataset I misses true events among the censored records. The number of subjects who
actually had events was fixed at n1 + n2 = 200 to keep an approximately same benchmark
performance from oracle models under different settings.

Three levels of CR1 were considered, that is, CR1 ∈ {30%,60%,90%}, corresponding to
moderate, heavy and severe censoring, respectively. Two levels of CMR were considered, that
is, CMR ∈ {20%,80%}; the larger the CMR, the more valuable information can be potentially
recovered from Dataset II. Given (CR1,MR,CMR) and with the condition n1 + n2 = 200,
the values of ni ’s, i = 1, . . . ,4 were then completely determined. Table 1 summarizes the
sample size and its decomposition into the four cases and for each of the six simulation
scenarios determined by the combinations of CR1 and CMR.

For ease of data generation, we divide the subjects into two groups: Group 1 contains
those whose true event times are included in the observed data, not necessarily certain though
(Case 1 and Case 3a); Group 2 contains those whose true event times are not in the observed
data (Case 2 and Case 3b). Define oracle censoring rate (OCR), OCR = (n3 + n4)/n, the
proportion of Group 2 in the sample which is unobserved but completely determined for each
setting after the values of ni’s are determined. Our strategy was to generate true event time
and censoring time for all subjects for a given OCR. First, identify subjects in Case 3a from
Group 1, identify subjects in Case 3b from Group 2 and then generate fake event times for
those in Case 3a and Case 3b, respectively.

The true event times were generated from Cox model (1) with a Weibull baseline hazard
function. Four independent covariates were included in the model; the first three were from
the standard normal distribution and the fourth was from the Bernoulli distribution with rate
0.5. All four true regression coefficients were set to be 1. The censoring time was generated
from the uniform distribution over (0.5,12.5). The Weibull-shape parameter was set to be 2, 1
and 0.7 for the moderate, heavy and severe censoring scenarios in terms of CR1, respectively.
The Weibull-scale parameter was tuned in each setting so that the OCR determined in that
setting is attained on average.

To identify Case 3a subjects from Group 1 and Case 3b subjects from Group 2, we treated
the data uncertainty as a missing-label problem. The labels are observed for the n1 + n4
subjects in Cases 1–2 but are missing for the n2 + n3 subjects in Case 3. Two missing mech-
anisms were considered for the labels, missing completely at random (MCAR) and missing
not at random (MNAR). In the MCAR mechanism the probability of a label being missing
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was completely random, regardless of the underlying true event time. In the MNAR mech-
anism the probability of a label being missing was proportional to the true event time; the
longer the true event time, the more likely a subject was identified as Case 3a from Group 1
or Case 3b from Group 2. Such decomposition ensures that the sample size decomposition of
each simulated data closely matches its corresponding setting in Table 1.

The last step was to generate fake event times for subjects in Case 3. For subjects in Case
3a, their censoring times were observed and true event times were included in the matches.
The number of additional fake event times was set to be zero or one with probability 0.9
and 0.1, respectively. In other words, the possible records for each of them consisted of
one observed censoring time, one true event time and one additional fake event time with
probability 0.1. For subjects in Case 3b, their true event times were censored, and the number
of fake event times was set to be one or two with probability 0.9 and 0.1, respectively. In
other words, each of them had one observed censoring time, one or two fake event times with
probability 0.9 or 0.1, respectively. Each fake event time was generated from Cox model (1)
with one extra covariate in addition to the existing four covariates, conditional on that the
fake event time was less than the censoring time (Nadarajah and Kotz (2006)). This extra
covariate took value −1 or 1 with equal probability, and its coefficient was set to be 3.

5.2. Competing methods and evaluation metrics. Three competing methods were con-
sidered, multiple imputation (MI) and two naive approaches. MI was originally introduced
by Rubin (1987) for nonresponse in surveys which imputes every missing value multiple
times with draws from certain distribution and summarized the results from the multiple ver-
sions of the complete data. In our setup the missing values are the truth indicators. Given a
simulated dataset, we imputed 200 times the truth indicators for the subjects in Case 3 and
took the average of the coefficient estimates from fitting the regular Cox model with each
imputed data as the final estimates. Specifically, in each imputation and for each subject the
truth indicator vector was generated from a multinomial distribution, where the probability
of censoring was set to be proportional to n4/(n1 + n4), and the remaining probability was
equally split among the uncertain event records. The two naive approaches were based on
the regular Cox model as well. The first (denoted by C.Cox) fits the regular Cox model to
Dataset I, which treats all subjects in Case 3 as censored, completely ignoring integration
with Dataset II. C.Cox may give biased estimator for not considering the events missed by
Dataset I. The second approach (denoted by U.Cox) excludes those subjects with multiple
event times after matching with Dataset II (Case 3) and fits the regular Cox model with the
remaining subjects with unique records (Case 1 and Case 2). The data used by U.Cox is a
subset of that used by C.Cox. By removing subjects in dataset I whose event times were not
uniquely recorded, U.Cox may give less efficient but unbiased estimation under MCAR.

The proposed integrative Cox model is denoted by I.Cox. We also included two oracle pro-
cedures where the true event indicators are known a priori, the oracle Cox model (O.Cox) and
the oracle Weibull model (O.Weibull). They give the best achievable performances, infeasible
in practice but can be used as references in comparison.

We measured the estimation performance by the �2-norm of (β̂ −β0), that is, ‖β̂ −β0‖ =
[(β̂ − β0)

�(β̂ − β0)]1/2, where β0 is the underlying true coefficient vector and β̂ is its es-
timator. In addition, we estimated the baseline survival functions from the purposed I.Cox
model and two naive Cox methods, and compared them with the true parametric curve over
a tense time grid from 0 to 12 with step size of 0.1. For each subject with multiple records,
the estimated probabilities π̂ j from the proposed I.Cox model can be used to identify the true
record. We used the Bayes’ rule to select the record with the largest estimated probability;
by comparing to the underlying truth, we computed the correct identification rate of the true
records among the subjects having uncertain records. The experiment was replicated 1000
time under each setting and the results were then averaged.
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TABLE 2
Comparison on parameter estimation performance through mean of 100 × ‖β̂ − β0‖ (with the standard

deviation given in parenthesis)

# O.Weibull O.Cox I.Cox U.Cox C.Cox MI

MCAR
1 18.0 (7.3) 20.7 (8.6) 22.4 (9.7) 24.9 (9.9) 81.1 (22.0) 81.0 (9.9)

2 17.5 (7.7) 20.8 (8.9) 22.1 (9.6) 23.4 (10.0) 139.7 (14.7) 80.8 (11.0)

3 18.5 (7.9) 19.7 (8.7) 23.6 (10.2) 22.3 (9.2) 55.9 (17.2) 81.2 (9.9)

4 18.6 (7.6) 20.3 (8.7) 22.8 (10.1) 26.0 (11.4) 107.7 (15.9) 94.2 (12.0)

5 18.0 (8.0) 18.2 (8.1) 20.6 (9.0) 20.2 (9.0) 30.5 (12.3) 39.5 (11.7)

6 18.4 (8.2) 18.8 (8.3) 22.2 (9.8) 30.1 (12.6) 51.8 (12.3) 51.4 (11.3)

MNAR
1 18.0 (7.3) 20.7 (8.6) 22.4 (9.4) 27.6 (10.6) 48.4 (21.0) 81.5 (10.0)

2 17.5 (7.7) 20.8 (8.9) 22.4 (9.7) 24.4 (10.4) 79.9 (20.9) 55.2 (11.5)

3 18.5 (7.9) 19.7 (8.7) 22.5 (10.2) 22.9 (9.7) 27.1 (11.8) 86.4 (8.9)

4 18.6 (7.6) 20.3 (8.7) 23.2 (10.2) 24.2 (10.7) 38.3 (15.0) 51.6 (12.0)

5 18.0 (8.0) 18.2 (8.1) 21.1 (9.2) 20.7 (9.3) 21.1 (9.0) 40.2 (9.3)

6 18.4 (8.2) 18.8 (8.3) 23.5 (10.3) 30.2 (13.0) 27.3 (11.3) 30.1 (10.8)

MCAR: Missing completely at random; MNAR: Missing not at random.

5.3. Simulation results. Table 2 summarizes the simulation results on parameter estima-
tion. As expected, the two practically-infeasible oracle approaches perform the best which
provide benchmarks for comparison. The I.Cox method and the U.Cox method appear to
have a clear advantage over the C.Cox method and the MI method under most settings. The
disadvantage of the C.Cox method is expected; subjects in Case 3a are mistakenly treated as
censored which increases the variance in estimation due to less events and introduces bias
due to the mistakenly treated censoring. Its performance is even worse in MCAR settings
because in the MNAR setting longer survival time is more likely to be uncertain, such that
the true event time is more likely to be close to the censoring time than under MCAR. The MI
method performs worse than the C.Cox method in the setting with lower CMR under MNAR,
unlike in other settings where they are less different because the imputation does not account
for the informative missingness and lower CMR means higher noise in data integration.

Between I.Cox and U.Cox, it appears that the I.Cox method either substantially outper-
forms U.Cox, or has comparable performance as compared to U.Cox. Specifically, when
CR1 is moderate (30%) and MR is high (70%), I.Cox outperforms U.Cox with more advan-
tage in the MNAR case than in the MCAR case. When CR1 is heavy (60%) with 40% MR,
I.Cox outperforms U.Cox in the cases where CMR is 80% and in the MNAR case with 20%
CMR; otherwise, it has a close but slightly worse performance than U.Cox. Lastly, under
severe CR1 (90%) and low MR (10%), I.Cox outperforms U.Cox when CMR is 80% and has
a slightly worse performance when CMR decreased to 20%. It is not surprising that I.Cox
does not always outperform U.Cox, because the potential gain from data integration depends
on the quality of both the original data (Dataset I) and the matching data (Dataset II). Indeed,
I.Cox did not outperform U.Cox in Scenario 3 and Scenario 5 when CR1 is high and CMR is
very low. In general, data integration is beneficial when the original data misses a substantial
amount of true event records and thus may have inadequate or biased information for model
estimation, and/or when the correct information that can be recovered by the matching data
“exceeds” the accompanying noise/false information.

Figure 2 presents a visual comparison on the estimation of the baseline survival function
from I.Cox and two naive Cox methods in different settings under MCAR. The true baseline
survival curves are included. The I.Cox clearly performs the best overall, and in most cases
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FIG. 2. Mean of the estimated baseline survival function in various simulation settings when true record labels
are missing at random (MCAR).

the mean of its baseline survival function estimates over 1000 replications is close to the
corresponding true curve. In contrast, both U.Cox and C.Cox, especially the latter, may lead
to substantial overestimation of the survival probabilities. We have also checked the variation
of the estimated survival curves from these methods and I.Cox performs satisfactorily. See
Section 2 of the Supplementary Materials (Wang et al. (2020)) for an example plot of mean
survival curves with pointwise 95% empirical confidence intervals and similar results under
MNAR.

Table 3 reports the mean correct identification rate for all the subjects with uncertain
records in Case 3 from the survival analysis with the I.Cox method. The rate ranges from
80.0% to 94.2% which means that the true records can be correctly identifies by the I.Cox
model for at least 80% of subjects having uncertain records in all cases. We remark that in
practice the main focus of such integrative analysis is still on the estimation and inference of
β; one should be cautious on using the estimated probabilities to identify the true records as
the empirical evidence from our simulation study is certainly limited.

To check the performance of I.Cox in making inferences about the unknown covariate
coefficients in comparison with U.Cox and O.Cox, we used bootstrap with 1000 bootstrap
samples. The confidence intervals based on sample standard deviation and interquantile pro-

TABLE 3
Mean correct identification rates in percentage for subjects in Case 3 under different simulation settings

Scenario

1 2 3 4 5 6

MCAR 85.7 89.5 83.1 83.8 80.4 80.0
MNAR 87.5 88.6 90.5 85.5 94.2 86.0
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TABLE 4
Summaries of point estimate, standard error, and empirical coverage of 95% confidence intervals for two

covariate coefficients

# Method β̂1 SE(β̂1) ESE(β̂1) CP(β̂1) β̂4 SE(β̂4) ESE(β̂4) CP(β̂4)

MCAR
1 I.Cox 1.02 0.088 0.089 94.8 1.02 0.171 0.170 94.9

U.Cox 0.94 0.086 0.088 87.0 0.93 0.162 0.168 92.2
O.Cox 1.01 0.082 0.085 94.6 1.01 0.156 0.155 94.8

2 I.Cox 1.02 0.088 0.087 94.9 1.02 0.166 0.170 94.3
U.Cox 1.01 0.095 0.094 95.7 1.01 0.176 0.184 94.0
O.Cox 1.01 0.084 0.084 95.9 1.01 0.157 0.161 94.7

3 I.Cox 1.03 0.089 0.092 93.0 1.04 0.177 0.180 93.2
U.Cox 0.96 0.086 0.087 91.4 0.96 0.164 0.163 94.1
O.Cox 1.01 0.081 0.085 93.7 1.01 0.154 0.154 95.2

4 I.Cox 1.03 0.086 0.088 94.1 1.02 0.170 0.172 95.1
U.Cox 1.05 0.099 0.096 94.5 1.04 0.192 0.189 95.2
O.Cox 1.01 0.081 0.081 95.1 1.00 0.157 0.157 95.5

5 I.Cox 1.03 0.082 0.083 92.6 1.01 0.167 0.167 94.7
U.Cox 1.02 0.084 0.085 94.3 1.03 0.164 0.161 95.3
O.Cox 1.01 0.077 0.078 94.9 1.01 0.150 0.149 95.4

6 I.Cox 1.04 0.085 0.088 91.7 1.04 0.163 0.170 93.4
U.Cox 1.09 0.106 0.105 87.7 1.10 0.199 0.196 93.0
O.Cox 1.00 0.080 0.078 95.5 1.01 0.152 0.154 94.9

MNAR
1 I.Cox 1.02 0.088 0.088 95.6 1.02 0.172 0.168 95.6

U.Cox 0.91 0.086 0.086 80.5 0.91 0.162 0.165 90.3
O.Cox 1.01 0.082 0.085 94.6 1.01 0.156 0.155 94.8

2 I.Cox 1.02 0.088 0.089 94.1 1.02 0.167 0.173 94.7
U.Cox 0.96 0.092 0.095 92.3 0.95 0.175 0.183 92.7
O.Cox 1.01 0.084 0.084 95.9 1.01 0.157 0.161 94.7

3 I.Cox 1.04 0.088 0.090 92.4 1.04 0.170 0.169 94.2
U.Cox 0.95 0.087 0.090 89.2 0.95 0.164 0.163 93.3
O.Cox 1.01 0.081 0.085 93.7 1.01 0.154 0.154 95.2

4 I.Cox 1.03 0.087 0.089 94.1 1.02 0.170 0.173 95.0
U.Cox 1.00 0.094 0.095 95.6 1.00 0.192 0.188 95.3
O.Cox 1.01 0.081 0.081 95.1 1.00 0.157 0.157 95.5

5 I.Cox 1.04 0.082 0.083 91.8 1.04 0.161 0.162 95.1
U.Cox 1.03 0.084 0.085 93.3 1.04 0.165 0.165 94.8
O.Cox 1.01 0.077 0.078 94.9 1.01 0.150 0.149 95.4

6 I.Cox 1.06 0.086 0.087 89.9 1.06 0.164 0.175 93.3
U.Cox 1.08 0.103 0.104 88.2 1.11 0.202 0.209 92.1
O.Cox 1.00 0.080 0.078 95.5 1.01 0.152 0.154 94.9

SE: Standard error estimate; ESE: Empirical standard error from point estimates; CP: Coverage probability (%)
of 95% confidence intervals.

duced estimates in good agreement, and we report those based on sample standard deviation.
The results of point estimate, SE, and empirical coverage percentage for the coefficient of
one continuous covariate and the binary covariate are summarized in Table 4. The bootstrap
SE estimates appear to be close to the empirical SEs of the coefficient estimates in most of
the settings. The coverage rate of 95% confidence intervals constructed from the SE estimates
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and normal approximation is close to the nominal level in most cases. The worst cases are for
β1 under MNAR when the censoring of Dataset I is severe.

We have explored the asymptotic behaviors of the I.Cox estimator empirically. Following
the original sample size decomposition given in Table 1, we increase the total sample size to
two, four, eight and 16 times under each original setting. The results show that the mean of
‖β̂ −β0‖ decreases as the sample size increases, and the rate of convergence is approximately
the square root of the sample size. We have also done simulation studies with fixed total
sample size, and the results are similar to what we have presented. More details are available
in Sections 3 and 4 of the Supplementary Materials (Wang et al. (2020)).

6. Survival analysis of the Connecticut data. We conducted a marginal screening anal-
ysis using I.Cox over the aforementioned 58 indicators of ICD-9 categories with three demo-
graphic variables, age, male, (vs. female) and White (vs. nonWhite) always included in the
model. That is, each ICD-9 indicator was included as the fourth variable in the screening
process. The inference results were obtained based on 1000 bootstrap samples, following the
procedure detailed in Section 4.3. After the p-values of all the ICD-9 indicators were gathered
from the marginal models, the Benjamini–Hochberg procedure (Benjamini and Hochberg
(1995)) was applied to control the false discovery rate (FDR) at 5%. For comparison we re-
peated the same analysis using C.Cox, which ignored matching, and U.Cox which discarded
all the uncertain events from matching.

The coefficient estimates for male and White from all the marginal models were significant
at 5% level. Males were at significantly higher risk of death than females, and whites were at
significantly higher risk than nonwhites. These findings of disparity in gender and race agree
well with existing studies (e.g., Kung, Pearson and Wei (2005), Pena et al. (2012)). The age
effect was less significant compared with gender and race. Most estimates for the coefficient
of age from the marginal models were significantly greater than zero at 10% level, providing
mild evidence that the survival time after suicide attempt tends to decrease with age for the
patients in the study (age 15–30).

The screening analysis of ICD-9 codes revealed interesting and insightful results. By con-
trolling the FDR at 5% for the results from each method, neither C.Cox nor U.Cox identified
any significant ICD-9 category; in contrast, I.Cox identified four ICD-9 categories to be sig-
nificantly associated with the risk of death after unsuccessful suicide attempt. The p-values
for coefficient estimates of the four ICD-9 indicators are reported in the upper part of Table 5.
The coefficient for ICD-9 code 292 was significantly positive, indicating that patients with
drug-induced mental disorder had significantly higher risk than others after controlling for
age, gender and race. Patients with borderline personality disorders (ICD-9 code 301) were
also found to have a significantly higher risk of death. These results are supported by several
studies, for example, Harris and Barraclough (1997), Lieb et al. (2004) and McGirr et al.
(2007), among others. The I.Cox model also suggests that patients with dyspnea respiratory
abnormalities and chest pain (ICD-9 code 786) had significantly higher risk. In the literature
chest pain was reported to have positive association between psychiatric illness and panic dis-
order by Katon et al. (1988) and Fleet et al. (1996), respectively, which provided a possible
explanation. Patients having postsurgical acquired absence of organ and other postprocedu-
ral status (ICD-9 code V45) were also under higher risk of death which may or may not be
directly related to suicide.

We also checked the screening results without FDR control. The additional ICD-9 codes
with unadjusted p-values under 5% are reported in the lower part of Table 5. For example,
the effect of disorders of lipoid metabolism indicated by ICD-9 code 272 was identified by
I.Cox. The positive association between suicidal behavior and lipid metabolism in depressive
disorders was reported by Koponen et al. (2015). Overall, various mental disorders, psycho-
logical issues and drug dependence and abuse appear to be associated with shortened survival
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TABLE 5
Selected ICD-9 categories by I.Cox and their brief descriptions. Columns 2–4 reports p-values (unadjusted) of
coefficient estimates from I.Cox, C.Cox and U.Cox methods, respectively, where the significance is indicated by

asterisk and the sign of estimates is given in subscripts

ICD-9 I.Cox C.Cox U.Cox Description

Significant ICD-9 codes under 5% FDR control
786 0.000∗+ 0.004+ 0.002+ Dyspnea, respiratory abnormalities and chest pain
V45 0.000∗+ 0.088+ 0.045+ Postsurgical acquired absence of organ and other

postprocedural status
292 0.001∗+ 0.007+ 0.007+ Drug-induced mental disorders
301 0.002∗+ 0.069+ 0.066+ Borderline personality disorder

Additional ICD-9 codes with individual p-value under 5%
780 0.010∗+ 0.178+ 0.169+ Alteration of consciousness, convulsions and sleep

disturbances
299 0.019∗+ 0.050∗+ 0.035∗+ Pervasive developmental disorders
298 0.036∗+ 0.075+ 0.044∗+ Other nonorganic psychoses
304 0.041∗+ 0.014∗+ 0.011∗+ Drug dependence (such as opioid type, cocaine or

cannabis)
966 0.041∗+ 0.140+ 0.129+ Poisoning by anticonvulsants drugs
E98 0.043∗− 0.046∗− 0.065− Poisoning by analgesics, tranquilizers with undetermined

reason
272 0.046∗+ 0.139+ 0.094+ Disorders of lipoid metabolism
070 0.053+ 0.008∗+ 0.008∗+ Chronic viral hepatitis C
V65 0.143+ 0.027∗+ 0.047∗+ Counseling on substance use and abuse
874 0.338+ 0.029∗+ 0.063+ Open wound of neck without mention of complication
969 0.421− 0.027∗− 0.024∗− Poisoning by antidepressants, antipsychotics and

neuroleptics

I.Cox: Integrative Cox model; C.Cox: Regular Cox model fitted to dataset I before matching; U.Cox: Regular Cox
model fitted to data with matched records removed.

time after unsuccessful suicide attempts. Therefore, by taking the data uncertainty into con-
sideration and utilizing information from the second data source, the proposed I.Cox method
reveals much more insightful results than the naive approaches.

We then turned our attention to joint modeling to check the estimation and predictive power
of the joint model with all the identified ICD-9 categories. Table 6 summarizes the refitted
I.Cox model with the three demographic variables (age, gender and race) and the four signif-
icant ICD-9 indicators identified from marginal screening. The coefficient estimates of male,

TABLE 6
Coefficient estimates from joint model including significant ICD-9 categories from marginal screening by I.Cox

with FDR controlled at 5%

Predictor β̂ exp(β̂) SE(β̂) z Pr(> |z|)
Demographics
Age 0.12 1.22 0.11 1.11 0.269
Male 1.81 6.11 0.32 5.63 0.000
White 2.18 8.86 0.38 5.78 0.000
ICD-9 Code
786 1.54 4.67 0.36 4.23 0.000
V45 1.68 5.34 0.57 2.95 0.003
292 0.69 1.98 0.31 2.21 0.027
301 0.60 1.82 0.24 2.48 0.013
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White and four ICD-9 indicators were all significantly positive at 5% level, consistent with
the results from screening while coefficient estimate of age was insignificant. Because neither
of the naive Cox methods suggested any significant ICD-9 category with FDR controlled at
5% from marginal screening, their joint models only included the three demographic vari-
ables. We checked that the coefficient estimates were all significant at 5%.

For the three joint models resulting from I.Cox and two naive methods, we performed
an out-of-sample comparison analysis on their prediction performance. (We excluded age
in the joint model of I.Cox since it was insignificant.) Specifically, we randomly split the
patients into a training set and a test set. Patients having events and patients having censoring
times were put in different strata so that the training set and the testing set had about the
same censoring rate. For U.Cox, patients in Case 1 and Case 2 were randomly selected into
training set with probability 0.8; for C.Cox, patients having certain event times (Case 1) and
the remaining patients having censoring times in Dataset I were randomly selected into the
training set, separately, with probability 0.8; for I.Cox, patients in Case 1, Case 2 and Case
3 were randomly selected into the training set, respectively, with probability 0.8, 0.8 and 1.
As such, for each method the testing set only consisted of patients whose records are certain
(Case 1 and Case 2) which makes an objective evaluation of fitted models possible. In each
split a fitted model using the training set was used to predict the survival outcomes of patients
in the testing set and classify them to a high risk group and a low risk group based on their
risk scores. By comparing the group classification to the actual outcomes, we computed the
receiver-operator characteristics (ROC) curve of the survival outcomes. The random split
procedure was repeated 1000 times and the results were then averaged.

Figure 3 presents the ROC curves (on the left panel) and the curves (on the right panel)
showing the relationship between the size of the high risk group and the proportion of subjects
having observed suicide death that were captured in the high risk group. Here, the ROC
curves are based on binary classification using the predicted risk scores; this is motivated by
the clinical setting of a suicide prevention program where a group of patients with high risk of
suicidal death is identified and subsequently monitored for suicide prevention. We remark that
one may also use a time-dependent ROC analysis (Heagerty and Zheng (2005)) to quantify
the prediction performance of a survival model. On average, the area under curve (AUC) was
0.825 for I.Cox, 0.761 for C.Cox and 0.757 for U.Cox. Therefore, the I.Cox model provided a
better prediction on survival outcomes than both of the naive methods overall. The results on
the right panel converted the ROC curves based on the censoring rate and showed that in order

FIG. 3. Out-of-sample comparison of the prediction performance on survival outcomes of I.Cox and the naive
methods using random splitting.
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to capture 60% of the patients having observed events, the size of the high risk group needed
was 10.6% on average for I.Cox, much less than the sizes, 23.8% and 24.3%, for C.Cox and
U.Cox, respectively. Translating to the real clinical setting, this means that in order to capture
60% of the patients that would die, using I.Cox allows us to achieve this by monitoring only
10.6% of all the patients while using the native Cox methods will require 25%, a much larger
population.

7. Discussion. We studied a general survival modeling setup with integrated data in
which the survival outcome, that is, the time to certain event of interest, needed to be cap-
tured from multiple datasets through record linkage. Such problems are especially prevalent
in medical research and healthcare analytics. Some commonly encountered events of interest
include occurrence of disease, hospital readmission after discharge and death following cer-
tain diagnostics or treatment. However, patients’ medical records are often scattered among
many healthcare providers and government agencies. These datasets are generally deidenti-
fied to protect patient privacy, but, due to limitations in the current healthcare system, the
deidentification of each dataset is often done separately before data integration, causing the
aforementioned record linkage issues. To the best of our knowledge, building a healthcare in-
formation exchange system to connect healthcare providers is still largely an ongoing effort.
Moreover, analyzing uncertain survival or time-to-event data is challenging due to censor-
ing. When the censoring rate is high, for example, the event is rare, the information on event
times can be quite limited and the results could become sensitive to inaccuracies and anoma-
lies in event times. Therefore, properly handling the uncertainty in event times holds the key
to ensure the validity of statistical inference.

Data integration with partial identifier is a double-edged sword in integrative statistical
analysis. As a powerful tool to combine information from multiple sources, integrative anal-
ysis with probabilistic uncertainty modeling needs to be applied with care depending on the
degree of imperfectness or noise. Imperfect data integration introduces noise and sometimes
errors into the integrated data, the consequence of which could outweigh the potential gain
in integrative data analysis. Although it is difficult to provide a specific guideline on when to
use integrative analysis, we suggest that practitioner always perform out-of-sample analysis
to evaluate and compare different methods whenever possible. To ensure the evaluation is
objective, only the data without uncertainty should be used in testing.

Our case study has an additional distinguishing feature in that it is the outcome variable
(survival time) that is obtained from data integration. This is, in contrast to other integrative
data analysis settings, where usually predictors or features are obtained from multiple data
sources. In our application we obtained insightful results on potential risk factors associated
with death following suicide attempt which otherwise would have been missed by the naive
approaches. Compared with the method of Snapinn (1998), our method is more attractive in
that it does not require additional diagnostic variables or prior knowledge on the characteri-
zation of the truth indicators.

Several directions are worth pursuing for future research. The standard errors of the es-
timates cannot be easily produced along with the proposed estimation procedure. Although
bootstrap is shown to perform well, the method would be more attractive in practice if a less
computationally intensive inference approach were available. Under realistic settings of im-
perfect data linkage, the proposed method is shown to outperform several naive approaches.
A natural theoretical question of interest is to quantify how the potential gain from data in-
tegration is associated with the quality of the original data and the match data. Our model
framework is flexible and can be further extended to other survival models such as paramet-
ric survival models and competing risk models. Other extensions include the modeling of
censoring times with covariates and the incorporation of certain known missing mechanism
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of the label of true endpoint. In our application we adopted a marginal screening approach to
identify important predictors; it would be interesting to extend the proposed method to con-
duct variable selection with high-dimensional predictors through regularized estimation. The
rareness of suicide attempt brings many challenges in its modeling and prediction, including
the occurrence of quasicomplete separation; these issues will need to be carefully studied in
the future.

It is promising to further explore the trimmed likelihood formulation to better understand
the robustness of the proposed approach and design better algorithm to target its global opti-
mal solution. This formulation also sheds light on the consistency of the resulting estimator
of the proposed method through the perspective of robust estimation and outlier detection. It
shows that at least two conditions, regarding the proportion and magnitude of the “outliers”—
fake records—are required. First, the proportion of patients with uncertain records should be
under control, for example, (n2 + n3)/n → c for some 0 ≤ c < 1 as n → ∞. Second, the
fake records have to be distinguishable from the true one; for example, for patient j we need
k∗ = arg maxk rj,k(β

∗) for n sufficiently large, where the k∗th record is the truth and β∗ de-
notes the true coefficient vector. A thorough investigation of the theoretical properties of the
proposed method along this direction is of interest.
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SUPPLEMENTARY MATERIAL

Supplementary materials “Integrative survival analysis with uncertain event times in
application to a suicide risk study” (DOI: 10.1214/19-AOAS1287 SUPP; .pdf). We provide
detailed derivations of the likelihood formulation, additional supporting tables/figures from
simulation studies, and discussions on the properties of the proposed method.
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