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This paper presents a general model framework for detecting the pref-
erential sampling of environmental monitors recording an environmental
process across space and/or time. This is achieved by considering the joint
distribution of an environmental process with a site-selection process that
considers where and when sites are placed to measure the process. The envi-
ronmental process may be spatial, temporal or spatio-temporal in nature. By
sharing random effects between the two processes, the joint model is able to
establish whether site placement was stochastically dependent of the environ-
mental process under study. Furthermore, if stochastic dependence is identi-
fied between the two processes, then inferences about the probability distri-
bution of the spatio-temporal process will change, as will predictions made
of the process across space and time. The embedding into a spatio-temporal
framework also allows for the modelling of the dynamic site-selection pro-
cess itself. Real-world factors affecting both the size and location of the net-
work can be easily modelled and quantified. Depending upon the choice of
the population of locations considered for selection across space and time
under the site-selection process, different insights about the precise nature of
preferential sampling can be obtained. The general framework developed in
the paper is designed to be easily and quickly fit using the R-INLA package.
We apply this framework to a case study involving particulate air pollution
over the UK where a major reduction in the size of a monitoring network
through time occurred. It is demonstrated that a significant response-biased
reduction in the air quality monitoring network occurred, namely the relo-
cation of monitoring sites to locations with the highest pollution levels, and
the routine removal of sites at locations with the lowest. We also show that
the network was consistently unrepresenting levels of particulate matter seen
across much of GB throughout the operating life of the network. Finally we
show that this may have led to a severe overreporting of the population-
average exposure levels experienced across GB. This could have great im-
pacts on estimates of the health effects of black smoke levels.

1. Introduction. This paper concerns preferential sampling (PS), where the
locations of sites selected to monitor a spatio-temporal environmental process Zst ,
s ∈ S , t ∈ T , depend stochastically on the process they are measuring. Thus PS is a
special case of response-biased sampling. The space-time point is defined (s, t) ∈
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S × T , with S denoting the spatial domain of interest and T the temporal domain.
Purely spatial processes (i.e., when |T | = 1), and purely temporal processes (i.e.,
when S is ignored) are two special cases.

Spatial network designers must specify a set of time points T ⊂ T at which to
observe Z and at each time t ∈ T , a finite subset of sites St ⊂ S at which to do so.
Generally the temporal domain T would be a finite set as, for practical reasons,
Z must be a time-averaged quantity. The designer may select the network sites in
a preferential way to meet specified objectives (Schumacher and Zidek (1993)),
although attaining those objectives may present its own challenges (Chang et al.
(2007)). Moreover, the suitability of the network for achieving its initial objectives
may decline over time as in the case of the air quality monitoring network for
Metro Vancouver (Ainslie et al. (2009)). In some cases, the objectives may not be
well prescribed in which case evidence suggests that in these cases administrators
may select monitoring sites preferentially (Shaddick and Zidek (2014)). Finally,
the data provided by networks for one purpose may be used for another purpose
and this may cause problems. For example, urban air pollution monitoring sites
provide the information needed to detect noncompliance with air quality standards
(EPA (2005), Loperfido and Guttorp (2008)). However, these measured values of
Z would tend to overestimate the overall levels of the air pollutant throughout S
and thus render the data unsuitable for assessing the impacts of Z on human health
and welfare. In such cases networks well designed for one purpose may be seen as
preferentially sampled when the data they yield are used for another purpose.

A variety of approaches can be taken for modelling PS and mitigating its ef-
fects in a spatio-temporal process framework. The choice of framework depends
on contexts and purposes. Section 2.1 reviews some of these approaches along
with their associated references. Two different situations are encountered. In what
might be called the retrospective approach all the process data are available for use
in assessing and mitigating the impact of PS at any given time t ∈ T . Such impacts
could, for example, distort estimates of model parameters, spatial predictions, tem-
poral forecasts, trends, and risk assessments. A special case is where |T | = 1 and
ZsT , s ∈ S is a random spatial field. Since data are not collected over time, strong
assumptions must be made about the preferential sampling process that yields the
network of sites. The data cannot be used to build an emulator of the actual selec-
tion process itself, since the requisite data are not yet available when the spatial
sites are selected. But it might be assumed that the future latent data does reflect
the past during the period under which the network was designed.

In the prospective case, the selection of network sites at time t ∈ T may be
based on process observations up to and including time t − 1. In this case, the
propensity to preferentially select sites at time t can be estimated without benefit
of having the data for time t . The temporal model can then be sequentially updated
at time t + 1 and the process model could adapt quickly to abrupt changes rather
than projecting long term trends.
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We develop a general modelling framework for the retrospective case, which
enables a researcher to determine if the locations of the monitoring sites that
form an operational network have been selected preferentially through time (i.e., if
response-biased selection occurred). Furthermore, unlike the case of spatial-only
data, our framework applied to spatio-temporal data allows for a site-selection pro-
cess emulator to be developed. The population of all site locations considered for
selection at any time t ∈ T is defined as P ⊂ S . P must be specified a priori, as
the model framework does not consider locations outside of the fixed (prespec-
ified) population P in the site-selection process. But within that framework both
static and mobile monitoring networks are admitted. Importantly, depending on the
choice of population P , different insights into the nature of PS can be explored.

Defining the population of sites considered for selection throughout (S × T )

has been an issue of fundamental importance for all previous work on PS. This
is especially true for the model framework introduced in this paper. Depending
on the choice of population, different insights into the nature of PS can be ob-
tained and spatial predictions may change dramatically. We consider two popu-
lations in this paper, however, more can be thought of and implemented to suit
the needs and knowledge of the researchers. In one case that population is con-
sidered to be all sites that have been deemed worthy of being monitored at some
times t ∈ T . We refer to these as the observed sites. In the other case, pseudo-sites
are also included uniformly throughout S . These have never been monitored but
are considered important for characterizing the field itself and for investigating
the impacts of PS. The name pseudo-sites follows from presence-only applica-
tions in statistical ecology, where such sites are often referred to as pseudo zeros
(Fithian and Hastie (2013), Warton and Shepherd (2010)). We opt for the name
pseudo-sites to distinguish these locations from the traditional “data-locations”
and “prediction-locations” terminology used in classical geostatistics. This is be-
cause in many applications, not all prediction locations can also be psuedo site
locations. For example there may be regions in A ⊂ S that we wish to predict the
field across, yet know with certainty that a site could not have been considered for
selection for reasons unrelated to the process being measured. This could be due
to the presence of a physical barrier (e.g., a mountain range) or a political barrier
(e.g., a militarised zone) making the placement of a monitoring site impossible.
Note that in all cases our population of sites P is finite. This is in contrast to the
spatial continuum assumed by point process models, although parallels between
the methodologies exist and are discussed at length in this paper.

A Bayesian model is introduced for the joint distribution of the response vector
(Yst ,Rst ). Rst is a binary response for the site-selection process, which is 0 or 1
according to whether or not a monitoring site is absent or present at the space-
time point (s, t) ∈ P × T , with P ⊂ S a fixed population of site locations under
consideration. The resulting model when fitted, identifies the effects of PS if any,
on inferences about the population mean of the process underlying Y . For brevity,
we denote this population’s mean by “P-mean”. By sharing random effects across
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the two processes, the stochastic dependence (if any) between Ys,t and Rs,t can
be quantified, and subsequently the model can adjust the space-time predictions
according to the nature of PS detected.

Moreover it yields an emulator of the dynamic preferential site-selection pro-
cess as the operational monitoring network (denoted by St ) evolves over time. The
factors affecting the initial site placements can be allowed to differ from those af-
fecting the retention of existing sites in the network. The dynamic model allows
for an assessment of the degree to which preferentiality is determined not just by
stochastic processes underlying Y , but by other factors that might include, for ex-
ample, the administrative processes involved in the establishment of a monitoring
site. Two examples considered in this paper are political affinity for environmental
monitoring and budgetary constraints, in an attempt to emulate the site-selection
process, although more can be hypothesised and included. A key result described
in the paper is the ability to use the R-INLA software package with the SPDE ap-
proach (Lindgren, Rue and Lindström (2011), Rue, Martino and Chopin (2009),
Rue et al. (2017)) to fit the joint distributions proposed in our framework. This
ensures inference remains feasible, even for space-time applications with many
thousands of pseudo-site locations.

Finally, we fit our model framework to a real case study: a large scale air pol-
lution monitoring network in the UK that monitored black smoke (BS hereafter)
levels for more than 50 years. This provides an ideal data example for our model
since the network underwent a constant, dramatic redesign through time and fur-
thermore, the locations of the observed sites appear to largely underrepresent rural
regions of Great Britain (GB hereafter). We consider two populations P of sites.
First, we consider P1 to be the locations at which a site was operational at some
t ∈ T (i.e., observed sites only). Here, we ultimately wish to see the effects of PS,
if any, on estimates of the P1-mean, as well as to investigate if the network evolved
preferentially. Our second population P2 includes thousands of uniformly located
(“pseudo”) sites placed at a density of approximately 5 km throughout GB. Since
we uniformly cover GB, from this population we are able to assess if the observed
sites were preferentially placed within GB (i.e., S), and then preferentially retained
in the network. We can then evaluate the effects of PS on the P2-mean (i.e., the
average across GB). These two choices of the population help address two distinct
questions.

2. Modelling frameworks. This section describes a very general framework
in which PS can be explored depending on the purpose of that exploration. It begins
in Section 2.1 with a review of some existing theory.

2.1. Review of related work. Most work on PS is set in the geostatistical
framework where T consists of a single time point so for expository simplicity
we temporarily drop the subscript t in this context. In geostatistics PS has a long
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history. For example Isaaks and Srivastava (1988) describes the deleterious im-
pact to variogram estimates when “the data locations. . . are preferentially located
in high- or low-valued areas”, in particular because the “preferentially clustered
data” can lead to a “destructuring” of the variogram. In fact this concern about
clustered data goes back to Switzer (1977). Olea (2007) reviews the history of PS,
in particular with respect to the clustering due to it. However, interest in this topic
has spread to a variety of subject areas (see for example, Michalcová et al. (2011),
Zoltán et al. (2007)).

Interest in the statistical science community seems to have been sparked by the
paper of Diggle, Menezes and Su (2010) (hereafter DMS). DMS defines the PS of
a space-time field succinctly as the property [Z,S] �= [Z][S]. Here Z denotes the
spatial field and S the locations. The square bracket notation can be read as the
“probability distribution of”. DMS notes that when sampling is nonpreferential, S

can be regarded as fixed; inferences about Z and its distribution can then be based
on conditional distributions given S. The authors also note that non-PS differs from
“uniform sampling” when for a given sample size, every possible realization of S

is equally likely. DMS assumes that conditional on S and the Gaussian process Zs ,
s ∈ S, the measured values of Z denoted by Y are mutually independent Gaus-
sian random variables with mean μ + Zs . At the same time, conditional on Z, S

is assumed to be an inhomogeneous Poisson point process with intensity function
λ(s) = exp {α + βZs}, s ∈ S . The parameter β represents the degree of PS, with
β > 0, implying large values of Zs are associated with an increased chance of in-
clusion of a sample in a local neighbourhood around s in S. As noted by Professor
Dawid in his discussion of DMS, this model cannot represent the real site selec-
tion process since the network designers would not know anything about Z until
the sites had been established and their measured values were available. Thus this
model cannot be viewed as a site-selection emulator since perfect knowledge sur-
rounding Z prior to measurement cannot be assumed. Nevertheless in a post-hoc
analysis of those data, the PS model can be fitted and so capture the impact of the
real selection process on inferences made about Z and its probability distribution.

The inhomogeneous Poisson process model was used subsequent to the pub-
lication of DMS by other investigators in a similar way but in a fully Bayesian
model for inference. More specifically Gelfand, Sahu and Holland (2012) replaces
α + βZs in DMS’s intensity function by (in our notation) α + αT

1 Xs where X de-
notes a vector of observable covariates. This change makes the model more like
a possible model for the real process. Note that without the inclusion of the pro-
cess Zs inside the linear predictor of the Poisson process model, they assume a
missing-at-random missingness mechanism, with no further dependence existing
between the site locations and the underlying process Zs when conditioned on the
included covariates Xs . Thus this would no longer be considered PS by our earlier
definitions. Pati, Reich and Dunson (2011) also includes the covariate vector and
replaces α +βZs by α +αT

1 Xs +βξs so that the effect of the observable covariates
is incorporated in the PS model. The {ξs} are referred to as a “residual process” and
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so unlike DMS, these authors are not making PS depend directly on the process Z.
A second residual process η is added to the measurement model so conditional
on ξ , η, X and S the {Ys} are assumed to be independently distributed with mean
μ + αT

1 Xs + βξs + β1ηs . Thus it would seem that in effect that the process model
is being represented by Zs = αT

1 Xs + βξs + β1ηs while the potential PS derives
from only a subcomponent of that process.

The need to include covariates (predictors) is well recognized in DMS and its
ensuing discussions, so Gelfand, Sahu and Holland (2012) and Pati, Reich and
Dunson (2011) are welcome additions to the geostatistical literature on PS. But
none of these models include as we do in this paper, residual terms that represent
the ill-defined administrative and other processes involved in actual site selection.
These terms are not subcomponents of Z and yet the case study presented in this
paper suggests that these residuals play a significant role in PS. Additional work
has shown that a failure to properly account for these effects can lead to the over-
estimation of the magnitude of PS present (Watson (2019)). Furthermore the point
process model on which the above models are based will not be suitable in all
applications such as that in Conn, Thorson and Johnson (2017) about mapping
species abundance in ecology. That paper presents a general theory for PS where
S consists of a finite set of points and the response distributions are non-Gaussian
to include such things as count data.

2.2. A general retrospective modeling framework. In this section we introduce
the general model framework and its purpose, before implementing it on a real case
study in Section 4. First, we carefully define the population of locations s ∈ P ⊂
S to consider for selection at some or all t ∈ T . The size and placement of this
population may substantially affect the resulting inference. In many cases, either
the precise locations of all sites under consideration at each t ∈ T will be known,
or there will be a clearly defined population of locations at which interest lies
in estimating the space-time field and/or its corresponding population summary
statistics. This case is Population 1 (P1) considered in our later application. For
the second population (P2) used in our later analysis, we consider all possible
points s ∈ S to be the population.

Computational considerations lead us, for Population 2, to approximate this by
the placement of pseudo-sites in a high density regular grid, thus placing a psuedo
site approximately every 5 km in S . This is similar in flavour to the discretized
computational lattice used in the log Gaussian Cox Process (LGCP hereafter) ap-
proach by DMS (Diggle, Menezes and Su (2010)). In fact, as the density of pseudo-
sites under consideration in S increases, the resulting logistic regression likelihood
converges towards a (scaled) Poisson point process likelihood. Parameter estimates
and their standard errors converge to those from the Poisson point process too.
However, the accuracy of this approximation depends on the density and place-
ment of the pseudo-sites (Fithian and Hastie (2013), Warton and Shepherd (2010)).
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We discuss this in depth later. The LGCP idea has also been considered further, but
the need to explicitly add a third likelihood to the joint model to capture the reten-
tion process in spatio-temporal applications may make this approach less desirable
in some scenarios (Watson (2019)).

Note that the space-time field represented as Zi,t in previous work, is repre-
sented in our model framework as a sum of latent random effects. This is done to
allow the site-selection process to have independent stochastic dependencies with
each of the components making up the space-time field. We let P denote the set
of site locations in the population and define M to be the number of sites (i.e.,
M = |P|). Note the interpretation of the P-mean differs substantially across these
populations. The P1-mean can be interpreted as the network average, while the
P2-mean can be interpreted as the GB-average (the mean of the space-time field
across GB).

We let Yi(t) denote a spatio-temporal observation process (continuous, count,
etc.) at site i, that is at location si ∈ P ⊂ S, at time t ∈ T . We let Ri(t) denote
the random selection indicator for site si ∈ P at time t , with 1 meaning the site
was operational at this time. We let t1, . . . , tN denote the (finite) N observation
times, and let ri,j ∈ {0,1} denote the realisation of Ri(tj ) for site si ∈ P at time tj ,
i ∈ {1, . . . ,M}, j ∈ {1, . . . ,N}. The subscript j will act as a pointer to the desired
time. Then our general model framework can be written as follows:

(Yi,j |Ri,j = 1)� fY

(
g(μi,j ), θY

)
, fY � density,

g(μi,j ) = ηi,j = xT
i,jγ +

q1∑
k=1

ui,j,kβk(si , tj ),

Ri,j � Bernoulli(pi,j ),

h(pi,j ) = νi,j = vT
i,jα +

q2∑
l=1

dl

q1∑
k=1

wi,j,l,kβk

(
si , φi,l,k(tj )

)

+
q3∑

m=1

w	
i,j,mβ	

m(si , tj ),

βk(si , tj )� (possibly shared) latent effect with parameters θk,

k ∈ {1, . . . , q1},
β	

m(si , tj )� site-selection only latent effect with parameters θ	
m,

m ∈ {1, . . . , q3},

 = (

θY ,α,γ ,d, θ1, . . . , θq1, θ
	
1, . . . , θ

	
q3

)
� Priors,

xi,j ∈R
p1,ui,j ∈ R

q1,vi,j ∈ R
p2,Wi,j ∈R

q2×q1,w	T
i,j ∈ R

q3 .
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The above framework is set up to allow for a large degree of modelling flexibil-
ity for spatial, temporal and spatio-temporal applications. Note that the two func-
tions g and h are known as link functions. These relate the expected value of the
response to the linear predictor. Popular choices of h for the Bernoulli likelihood
are the logit, complementary log-log and probit functions. In our later analysis, we
will generate our zeros (or pseudo-sites) with an approximately constant intensity
across S . Thus in our case the logit link is the suitable choice for link function since
it exploits a natural connection between the conditional logistic regression and the
loglinear Poisson point process model we are approximating when we condition
on the total count (Baddeley, Rubak and Turner (2015)).

We now dissect the model term-by-term. First, consider the observation pro-
cess Y . We allow for any distribution to be chosen as the likelihood for the ob-
servation process. This allows a range of different data types (e.g., continuous,
count, etc.,) to be modelled, including those that exhibit a range of features such
as skewness, heavy tails and/or overdispersion. In the linear predictor ηi,j , we may
include a linear combination of fixed covariates xi,j with a linear combination of
q1 latent effects βk(si , tj ). These q1 random effects can include any combination
of spatially-correlated processes (such as Gaussian [Markov] random fields), tem-
porally correlated processes (such as autoregressive terms), spatio-temporal pro-
cesses and IID random effects. Note that we include the additional fixed covari-
ates ui,j to allow for spatially-varying coefficient models, as well as both random
slopes and/or scaled random effects to be included. The flexibility here allows for
areal data to be modelled too, simply by changing the definition of si from being a
point to representing a well-defined area.

Next, we consider the site-selection process Ri,j . As before, in the linear predic-
tor νi,j , we may include a linear combination of fixed covariates vi,j with a linear
combination of latent effects. This time, however, the latent effects appearing in the
observation process Yi,j are allowed to exist in the linear predictor of the selection
process Ri,t . This sharing of the latent effects across the two processes allows for
stochastic dependence to exist between the two processes and hence enables us to
investigate whether we have a missing-not-at-random mechanism. Note that the
matrix Wi,j is fixed beforehand, and allows for q2 linear combinations (possibly
scaled by covariates) of the latent effects from the Yi,j process to be copied across.
The parameter vector d determines the degree to which each shared latent effect
(or combination of) affects the R process and therefore measures the magnitude
and direction of stochastic dependence between the two models term-by-term. We
denote this term by d in recognition of the landmark paper by Diggle, Menezes
and Su (2010). Finally, as seen in Pati, Reich and Dunson (2011), we allow q3 la-
tent effects, independent from the Yi,j process to exist in the linear predictor. This
allows us to extract as many sources of variation from the site-selection process
as possible, reducing the risk of overestimating the magnitude of the dl terms, and
thus the stochastic dependence between the two processes.
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For added flexibility we allow temporal lags in the stochastic dependence. This
allows the site-selection process to depend upon the realised values of the latent
effects at any arbitrary time in the past, present or future. Thus this framework
allows for both proactive and reactive site-selection to occur. For example, if for a
pollution monitoring network, site-selection were desired near immediate sources
of pollution (say for exceedance detection), then we may view as reasonable, a
model that allows for a dependence between the latent field at the previous time
step as a site-selection emulator. In this case, we would select as the temporal lag
function, φi,l,k(tj ) = tj−1. We define this to be reactive selection, where placement
depends only on past realisations of the space-time field. Say instead, site place-
ments were desired near areas forecast to increase in industrialisation (and hence
pollution emission). Then a model allowing for dependence with future values of
the latent process may be suitable. To achieve this we would select φi,l,k(tj ) > tj .
We define this to be proactive site selection. Models with mixtures of reactive and
proactive site selection could also be admitted and fit under this framework since
a unique temporal lag function φi,l,k(t) is allowed for each latent effect shared
between the linear predictors.

Also of interest is the possibility of setting wi,j,l,m = 0 for some values of the
subscripts to allow for the directions of preferentiality to change through time.
For example, the initial placement of the sites might be made in a positively (or
negatively) preferential manner but over time the network might be redesigned so
that sites were later placed to reduce the bias. To capture this, it would make sense
to have a separate PS parameter d estimated for time t = 1 and for times t > 1 to
capture the changing directions of preferentiality through time. This can easily be
implemented. Furthermore, we may wish to set wi,j,l,m = 0 for certain values of
the subscripts to see if the effects of covariates and/or the effects of preferential
sampling differs between the initial site placement process and the site retention
process.

Clearly the above modeling framework has potential for overfitting and model
nonidentifiability among others things. Thus careful choice of prior distributions,
linear constraints on the latent effects (e.g., sum-to-zero constraints) and ex-
ploratory analysis is vital to fully utilize this model framework.

3. Case study: The data. Annual concentrations of BS were obtained from
the UK National Air Quality Information Archive (www.airquality.co.uk). Set up
in 1961, this was the world’s first coordinated archive of national air pollution
monitoring networks. While it was being established the network increased in size
and the initial growth was quite rapid; from 800 sites in 1962, 1159 sites in 1966
to 1275 sites in 1971 (see Figure 1). After this initial period the overall size of the
network declined due to rationalisation and in response to changing levels of air
pollution; in 1976 there were 1235 operational sites, 563 in 1986, 225 in 1996 and
65 in 2006.

http://www.airquality.co.uk
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FIG. 1. A plot showing the number of the monitoring sites that are operational at each year and
have data capture of at least 75%. Note that a total of 1466 sites were operational at some point in
time.

Site locations (at a 10 m resolution) and annual average concentrations of BS
(μgm−3) were obtained from monitoring sites. For the reasons given by Shaddick
and Zidek (2014), we restrict ourselves to only the sites operating between April
1966 and March 1996 and with data capture of at least 75%, equivalent to 273 days
a year (as stated in the EC directive 80/779/EEC (Colls (2002))). The locations of
all these sites (i.e., the population P1 considered in this paper) can be seen in
Figure 2. It can be seen immediately that a high density of sites are located near
many major industrial cities such as London and the Midlands, with almost no
sites located in the relatively sparsely populated north of Scotland.

The decline in concentrations during this time period was most dramatic. An-
nual recorded network means fell from 80 μgm−3 in 1966 to 31 in 1976, 19
in 1986, 9 in 1996 and 5 μgm−3 in 2006. Figure 3 shows a random sample of
site-specific log-transformed annual BS levels. Concentrations of BS were typi-
cally highest in areas where the use of coal for domestic heating was relatively
widespread, such as in parts of Yorkshire and within large cities.

Along with these large changes in concentrations, the dramatic changes in the
size of the network can be seen in Figure 1 which shows the number of opera-
tional sites with at least 75% data capture vs. year within the chosen study period.
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FIG. 2. A plot of Great Britain, with the locations of the observed sites, and hence P1 shown.

The initial increase in the size of the network can clearly be seen followed by the
long-term reduction in the number of sites over time. Also evident is the marked
reduction of the network in the early 1980s when there was a dramatic reduction
in the number of sites of almost 50% as the network was reorganised owing to
falling urban concentrations. With such a dramatic drop in the size of the network,
one must ask how the network reduction was chosen. Figure 3 shows a plot of a
random sample of 30 sites’ (log-transformed) black smoke trajectories. From this
plot there appears to be evidence that the sites that remained in the network until
the end were those providing the highest measurements. Thus we can see clear
evidence for a response-biased network reduction process (i.e., PS).

Thus we have a dataset that exhibits three interesting features:

1. A high density of monitoring sites near major industrious regions, and hence
near potential sources of BS. Conversely, an underrepresentation of the rural areas
of Northern Scotland, Wales and Cornwall (Figure 2), and hence areas with low
expected BS.
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FIG. 3. A plot showing the mean black smoke level on the log transformed scale for 30 randomly
chosen sites. Missing line segments indicate the site was offline that year.

2. A large change in concentrations of BS throughout the period of study, re-
sulting in a rapidly evolving latent spatio-temporal process (Figure 3).

3. A network whose size dramatically changes through time (Figure 1).
4. A network that underwent a biased redesign through time (Figure 3), with

the sites providing the smallest BS readings being dropped from the network.

These four features provide the perfect opportunity for the model framework to
both detect and attempt to correct for the effects of preferential sampling made
within the network. In particular, depending on our choice of P , we are investi-
gating whether or not informative dropout/inclusion occurred in the operational
network St through time, and/or whether the network of observed sites is repre-
sentative of Great Britain (GB) as a whole.

Note that the same exploratory analysis was conducted as in Shaddick and Zidek
(2014), and a quadratic temporal effect was found suitable to both fit the data and
also provide a noncomplex relationship to explain the observed decline in (log
transformed) concentrations over time. Variograms were constructed for each year
separately and for the average over all years, both on the original data and on the
residuals from the temporal model; a spatial model from the Matern class seemed
an appropriate choice.

4. Modelling. We build one model from the general framework introduced
in Section 2. We fit and present the results from three implementations of this
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model to display the features of the modelling framework. The three implemen-
tations are developed through a combination of imposing strict constraints on the
PS parameters (i.e., by imposing point mass priors on the d parameter vector), and
changing the population under consideration. These three implementations clearly
demonstrate the ability of the model framework to both detect, and adjust for, PS.
Furthermore, they highlight the components of the model involved with the PS
detection and correction, and help to demystify the method away from being a
black-box approach.

The joint model developed incorporates the effects of selection by sharing the
random effects present in the observation process with the site-selection process.
In particular, the selection process is allowed to use information from both spa-
tially varying Gaussian processes and spatially-uncorrelated site-specific effects,
to determine the site selection probabilities each year. If preferential sampling is
detected, then this model should help to de-bias predictions of the P1 and P2-
means relative to those reported from the raw data, by moving their point predic-
tions against the direction of preferentiality. The magnitude of this movement is
dependent upon: the flexibility of the model, the magnitude of the estimated PS
parameters dβ , db, and the choice of P . This fact is clearly demonstrated by the
results from the three implementations.

The same joint model, and computational mesh is used across all three im-
plementations. The differences seen in the results come only from the different
assumptions placed upon the site-selection processes and populations. In the first
implementation, the site-selection process is forced to be independent from the
pollution process in the first implementation through the point mass prior at 0 im-
posed on dβ , db. In other words we constrain the PS parameters to be zero. Conse-
quently the subsequent inference from this model will ultimately be equivalent to
the inference from a model without any site-selection process component. In the
second and third implementations, we remove this constraint, and two different
choices of P are made to address two alternative scenarios.

All modelling is performed in R-INLA with the SPDE approach (Lindgren,
Rue and Lindström (2011), Rue, Martino and Chopin (2009), Rue et al. (2017)).
This enables the rapid computation of approximate Bayesian posterior distribu-
tions for both the model variables and latent effect predictions. It does this by ap-
proximating the spatio-temporal processes with a Gaussian Markov random field
(GMRF) representation by solving an SPDE on a triangulation grid. Details can be
found in Lindgren, Rue and Lindström (2011). Due to the large size of the dataset
and the desired spatial prediction, MCMC approaches without sophisticated ap-
proximations would be infeasible. This is due to the computationally expensive
operation of inverting large, dense spatial covariance matrices being required at
each MCMC iteration to evaluate the likelihood. The SPDE approach, by develop-
ing a GMRF representation to the spatial fields, only requires the computationally
cheaper operations of computing the inverse and the determinants of sparse preci-
sion matrices—a task that is made possible with numerical sparse matrix libraries.
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4.1. Data cleaning. A few data cleaning steps were carried out before fitting
the models. Due to the right skewness of the black smoke observation distribu-
tion, we applied the natural logarithmic transformation to the values to make the
observation distribution more Gaussian in shape. Since the natural logarithm is
a nontranscendental function, meaning in particular that its series representation
contains an infinite series of powers of its argument, we first divided each value
by the mean of all the recorded black smoke levels to make the response dimen-
sionless. This ensures not only that the inference remains valid, but also readily
interpretable as they are in effect compared to a natural origin. Next, we scaled the
Eastings and Northings coordinates by the standard deviation of the Eastings, and
rescaled the years to lie in the interval [0,1] to stabilise the temporal polynomials
used in later analysis.

4.2. Observation process. The following model for the observation process
is used for all three implementations seen shortly. The specification follows from
Shaddick and Zidek (2014) and is formulated as follows. Let Yi,j denote the ob-
served log black smoke ratio at site i, situated at si , at time tj , i ∈ {1, . . . ,M},
j ∈ {1, . . . ,N}. Let t	j denote the j th time-scaled observations that lie in the in-
terval [0,1]. Let Ri,j denote the random selection indicator for site i at time tj .
Let Ri,j = 1 or 0 depending on whether or not the site was operational in that year
and provided the minimum number of readings outlined earlier. Note that there are
1466 sites that record at least one annual reading, and N = 31.

(Yi,j |Ri,j = 1) � N
(
μi,j , σ

2
ε

)
,

μi,j = (
γ0 + b0,i + β0(si)

)
+ (

γ1 + b1,i + β1(si )
)
t	j + (

γ2 + β2(si)
)(

t	j
)2

,[
βk(s1), βk(s2), . . . , βk(sm)

]T �IID N
(
0,�(ζk)

)
for k ∈ {0,1,2},

[b0,i , b1,i] �IID N(0,�b), �b =
[
σ 2

b,1 ρb

ρb σ 2
b,2

]
,

�(ζk) = Matern(ζk),

θ = (
σ 2

ε , γ, ζk, σ
2
b,1, ρb

)
� Priors.

The choice of the observation process model is explained as follows. The
sources of variation can be broken up into three components: global variation,
independent site-specific variation and smooth spatially correlated variation. To
ensure model identifiability, we enforced sum-to-zero constraints on all random
effects (β and b), and furthermore we did not estimate spatially-uncorrelated ran-
dom effects b at locations with no observations. Note that in the notation of Sec-
tion 2, the b and βk(si ) terms are examples of the β(s, t) latent effects and thus
q1 = 5. For readability we choose to separate the notation for these effects. Note
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that, while the b terms are assumed independent between sites, the terms b0,i , b1,i

are assumed a priori to be a realisation from a (possibly correlated) multivariate
Gaussian distribution with covariance matrix �b.

The global temporal trend is captured by the γk terms since these parameters
remain constant across the sites. As in Shaddick and Zidek (2014), when compar-
ing various models for the first (nonjoint) implementation, more complex tempo-
ral relationships (such as splines) were not favoured by multiple model selection
criteria including DIC. Second, the independent site-specific variations are cap-
tured by the IID random intercepts and random slopes (b0,i , b1,i). In geostatistical
terms, the b terms act as nugget effects for their corresponding βk(s) terms. The
(nugget-free) βk(s) terms then capture the smooth spatially-correlated variation.
Models without the b terms showed large residual site-specific errors. Thus it ap-
pears that small-scale factors may be a large source of variability in the measured
black smoke trajectories, independent from the regional location alone. Note that
separate spatially-correlated Gaussian fields for each year were tested (i.e., using
a separate β0,j (s) field for each year), but did not improve the model fit.

The intuition behind the short scale b terms in the model is as follows. An
observation tower close to a large source of black smoke (e.g., a road, a polluting
factory or a power station) would likely yield a much higher annual reading than
placing it say half a kilometer away from such a source. Since this spatial scale
is much smaller than that captured by the βk(s) processes, these differences will
not be accounted for without either including covariates that capture the causes of
these effects (e.g., distance from the nearest pollutant source), or by allowing each
site to have it’s own deviation from the smoothly predicted field via either a fixed
or random, site-specific effect. Note that spatially-uncorrelated random quadratic
slopes b2,i were not found to improve the model fit with respect to DIC under the
first implementation and actually led to a large instability in the predictions of sites
that took fewer measurements. It appears that the inclusion of these terms led to
some overfitting.

The choice of priors for the hyperparameters θ were made to make them as
weakly informative as possible and hence to reduce their effects upon the poste-
rior results, but also to bound their values inside sensible limits. Despite the fact
that previous analyses have been made on this dataset, we only use vague infor-
mation from these results when constructing the priors. We discuss the details of
the chosen priors in the Supplementary Material (Watson, Zidek and Shaddick
(2019)).

4.3. Site-selection process. The following model for the site-selection pro-
cess is used for all three implementations with the aim of emulating the complex
decision-making processes that occurred when setting up the monitoring network.
Let: Ri,j denote the random selection indicator for site i at time tj ; Let Ri,j = 1 or
0 depending on whether or not the site was operational in that year and provided
that the minimum number of readings outlined earlier is attained. Let ri,j ∈ {0,1}



GENERAL THEORY FOR PERENTIAL SAMPLING 2677

denote the realisation of Ri,j for site i at time t	j , i ∈ {1, . . . ,M}, j ∈ {1, . . . ,N}.
Finally, si denotes the location (the scaled Eastings and Northings coordinates) of
site i. The model is then:

Ri,j � Bernoulli(pi,j ),

logitpi,1 = α0,0 + α1t
	
1 + α2

(
t	1

)2 + β	
1(t1)

+ αrepIi,2 + β	
0(si )
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[
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(
t	1

)]
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[
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t	1

) + β2(si )
(
t	1

)2]
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ρa, σ

2
a
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,
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α,db, dβ, ρa, σ

2
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]
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The first rows of the linear predictors comprise the global effects of time on
the log odds (and thus eventually the probability) of selection. We allow for a
quadratically changing global log odds of selection with time, and allow for a
global first-order autoregressive deviation from this quadratic change (denoted by
β	

1(tj )). This term represents the change in time of both the political and public
moods regarding the need for maintaining the overall network size. New govern-
ments may well prioritise public spending on the environment in different ways
and furthermore, the public’s approval of environmental spending likely changes
in light of new knowledge. Additionally, large changes in the size of the public
monitoring network can be seen around 1982 (see Figure 3). Here a sharp de-
crease in the size of the network occurred, reducing the number of sites by almost
half. The smooth quadratic effect of time clearly would not suffice to capture this
short term trend and thus a random effect seems compelling, especially one that is
able to adequately capture this short term change (i.e., overdispersion), such as the
autoregressive term we used.
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The second rows of the linear predictors represent the site-specific factors in-
fluencing the log odds ratio in favour of a site’s inclusion in the network Sj at
time tj . First, αret represents what we call the “retention effect”. This term reflects
how the probability a site is selected in a given year changes, conditional upon its
inclusion in the network in the previous year. Since large costs can be incurred in
setting up monitoring sites at new locations, it is plausible that network designers
would favour the maintenance of existing sites over their replacement at new site
locations, even if the conditions at other sites (represented by the other terms in
the linear predictor) are more favourable. In fact, it is this indicator variable that
determines whether or not the linear predictor corresponds to the site-placement
process or the site-retention process. If we wanted to investigate the possibility
that the effects of PS or covariates were different between the two processes, then
we could include additional product terms between the various effects and ri,j−1
to capture this change. Here, we share all parameters across the two processes and
allow only a unique intercept to exist between the processes. This is discussed in
depth later.

In contrast, αrep captures the repulsion effect. Ii,j denotes an indicator variable
that determines whether or not another site in the network placed within a distance
c from site i was operational at the previous time tj−1. Plausibly network design-
ers would not want to place sites close to an existing site. Conversely, there may
be unmeasured regional confounders affecting the localised site-selection proba-
bilities (e.g., population density) that may lead to additional clustering that cannot
be explained by the model without the inclusion of the confounder. This parameter
should help to capture any additional clustering that may be present. We choose
the hyperparameter c to be 10 km.

Finally, there may be a larger motivation to place more/fewer sites in certain
areas of the UK throughout T , that cannot be explained by the other terms in
the model. This could be due to population density or due to increased/decreased
political incentives in this area. We attempt to capture such spatially-varying area
effects in the β	

0(s) field. This can be viewed as a spatially-correlated correction
field similar to that used by Pati, Reich and Dunson (2011). Note that this is fixed
in time with the aim of avoiding identifiability issues.

While it may appear that we have included a lot of effects in the site-selection
process, it is of paramount importance to adequately capture and remove as many
sources of variability from the site-selection process as possible. The preferential-
ity parameters should therefore only act upon the residual signal, after such effects
have been removed. Since we are dealing with a large quantity of spatio-temporal
data, we are able to learn the temporal features affecting site-selection and thus we
can attempt to emulate the true process itself. This is in stark contrast with the spa-
tial setting. By removing large sources of variability from the site-selection process
first, we reduce the risk of overestimating the stochastic dependence between the
selection and observation processes and hence reduce the risk of overadjusting our
parameter estimates and predictions.
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The third and final rows of the linear predictor represent the preferentiality pa-
rameters of the selection process, following the work of Diggle, Menezes and Su
(2010). We decided to separate the preferentiality into two sources: small-scale
deviations from the localised average black smoke levels, and the medium-scale
regional deviations from the UK-wide annual black smoke levels. Following the
paper by Diggle et al., we denote the two parameters by db, dβ respectively. Since
we have constrained both the [b0,i , b1,i] terms and the βk(s) processes to sum to
zero, the terms being multiplied by db, dβ represent deviations from the P-mean.
Both of these effects are allowed to affect site selection independently. The inter-
pretation of these PS parameters depends largely upon the choice of the population
P . All PS effects detected are after controlling for the other site-selection effects.

In consideration of the discussions following Diggle, Menezes and Su (2010),
for j > 1 site selections made at time tj involve estimated black smoke levels
based on observations made at the previous time tj−1. Thus in our model we do
not assume the network designers formulate sight selection decisions based on
black smoke forecasts into the future or for the current unobserved year, but on
predicted quantities at the previous time step. Therefore in our framework, we
model the site-selection as being reactive for times tj : j > 1. Using the notation
from 2.2, φi,l,k(tj ) = tj−1 ∀i, l, k and tj > 1. If the true selection mechanism is
believed to be different, then the change of paradigm is trivial. For computational
savings, we base the site selection at time 1 to be based on the estimated field
at time 1 (i.e., φi,l,k(t1) = t1). Our choice of priors are discussed in depth in the
Supplementary Material.

4.4. Three implementations. For Implementation 1 we constrain the PS pa-
rameters db, dβ to equal 0. Thus Implementation 1 incorporates the prior assump-
tion that no stochastic dependence between the site-selection process and the ob-
servation process was present and thus that no PS occurred. A direct result of this
independence assumption is that the posterior distribution of the observations pro-
cess Y is the same, regardless of the specification of either the site-selection model
terms, or the choice of the population of sites P to consider for selection. Thus
the results from Implementation 1 will simply match the typical spatio-temporal
analyses conducted in practice, ignoring site-selection. This will be used as our
baseline for comparison.

For Implementation 2, we remove the zero constraints on the PS parameters,
imposing instead weakly informative Gaussian priors with mean 0 and variance
10. For Implementation 2, we consider only the 1466 observed site-locations for
selection at each time t ∈ T . We define this as Population 1, P1 and thus M =
|P1| = 1466. Population 1 is shown as the red circles in Figure 2.

For Implementation 3, we replace the zero constraints with the same Gaussian
priors, but consider a different population of sites for selection at each year, P2.
For P2 thousands of pseudo-sites are also considered for selection at each time
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FIG. 4. A plot of the locations of all sites considered for selection in Population 2. The locations
are shown as blue dots, many of which are in regions of low human population density.

step along with the observed sites from P1. We ensure the locations of the pseudo-
sites are uniformly distributed throughout Great Britain (GB) and placed with high
density. It has been shown that estimates and corresponding standard errors of all
(nonintercept) parameters converge toward those of the equivalent inhomogeneous
Poisson point process as the number of pseudo-sites tends towards infinity, so long
as the density of the points is uniform (in probability) (Fithian and Hastie (2013),
Warton and Shepherd (2010)). Thus there is some duality with the approach of
DMS (Diggle, Menezes and Su (2010)) and our Implementation 3. The locations
of P2 are shown in Figure 4.

For Implementation 2 we aim to see if the network evolved preferentially. That
is, out of the observed sites, were sites added and dropped from the network in
a manner that was dependent upon the value of the latent black smoke process
and hence missing not at random (MNAR). Under Population 1, since we do not
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consider locations within the unsampled regions for selection, no additional in-
formation is being added to the unsampled regions. Hence we do not expect the
estimates of BS to change much at these locations unless estimates of the site-
trajectories and hence the P1-mean change. Furthermore, we are unsure if the joint
model will substantially adjust estimates of the P1-mean, even if PS is detected.
This is since results from a small simulation study we conducted suggest that if we
have a case where we fit an inflexible temporal model to a dataset whose sites have
a long average consecutive lifetime, estimates will remain largely the same due to
the overdetermined nature of the problem. In fact, the sites in the dataset provide
an average of 12 consecutive years of readings, with the minimum consecutive
lifetime of a site being six years. Additionally the deviation from the quadratic
trend is typically small (Figure 2). Thus we may expect only a small change to the
results seen from Implementation 1.

For Implementation 3 we investigate if the network of operational sites at each
time St : t ∈ T is being located throughout GB (S) in a preferential manner. Thus
the interpretation of preferential (i.e., response-biased) network evolution is lost
under this choice of population. Instead, these PS parameters dβ , db now measure
the degree to which the operational network (St ) is preferentially located in S
through time T . This is due to our second population P2 covering S uniformly
and hence considering each point s ∈ S as being equally likely to be sampled a
priori. This is unlike Population 1, which did not include large areas of unsampled
Scotland, Wales and Cornwall for selection at each time t ∈ T . Thus Population 2,
by adding additional information to the unsampled regions via the site-selection
process, should inform the joint model about the appropriate adjustment of BS
estimates in the unsampled regions according to the nature of PS detected. Put
differently, the joint model will extrapolate any associations detected between the
site-selection process and the underlying latent effects into the unsampled regions.

In fact, hidden away in the details of Implementation 3 is the fact that the
Bernoulli random variable models two processes simultaneously. Implementa-
tion 3 can be considered as being a joint model with three processes: an observation
process, an initial site-placement process and a site-retention process. The latter
two are fit using only one Bernoulli likelihood. The initial site-placement pro-
cess is fit using a conditional logistic regression approximation to a log-Gaussian
Cox process, and is similar to that seen in Diggle, Menezes and Su (2010). The
site-retention process is modeled as a Bernoulli random variable. Inside the linear
predictor of the Bernoulli likelihood, the indicator variable ri,(j−1) points the lin-
ear predictor towards the site-placement process when it is equal to 0 or towards
the site-retention process when it is equal to 1. In our example, we only allow for
a unique intercept to exist across the two processes, sharing the remaining param-
eters. Thus we assume that the effects of all the covariates and the effects of PS
are constant across the two processes. This assumption can be relaxed by includ-
ing interaction effects between ri,(j−1) and the other parameters, including the PS
parameters.
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Note that care is required to ensure that only the pseudo-sites contribute a zero
to the Bernoulli likelihood for the site-placement process across all years. Fur-
thermore, for our application, we must ensure that only the sites that have been
removed from the network in year j contribute a zero to the Bernoulli likelihood
for the site-retention process at year j . This ensures that no site in the network
was ever reinstalled after its removal, a fact seen in our data. Clearly, then, the
choice of zeros here is application-dependent. Additional details are given in the
Supplementary Material.

The ability of our joint model to adjust estimates of the pollution process at a
point s depends upon the distance of the point from the nearest monitoring site
in the network. For pseudo-sites further from an observed site than the effective
range of the spatially varying β processes, essentially all the degrees-of-freedom
of the spatially-varying quadratic terms βk(s) are available for use in fitting the
site-selection process to make the posterior probability of repeated nonselections
(i.e., the ri,j = 0’s) of the pseudo-site high. Since we have no black smoke obser-
vations here, the fitting of the quadratic slopes to these pseudo-sites is therefore
an underdetermined problem. Thus we would expect the estimates of black smoke
here to be different. For pseudo-sites very close to an observed site (i.e., well within
the effective range), we would expect the estimates at the pseudo-site locations to
remain largely unchanged, since the problem remains overdetermined. For pseudo-
sites within the effective range of, but not immediately next to an observed site, we
expect estimates to change moderately since the problem is weakly determined.

4.5. Model identifiability issues. When fitting a model this large, issues
around model identifiability commonly arise, namely the possibility of the data
providing information about the model parameter values through the likelihood.
We assessed these issues with two approaches. First, we enforced sum-to-zero
constraints on all the random effects to ensure they are simply localised deviations
about a global trend. As discussed in the Supplementary Material, we placed PC
priors (Fuglstad et al. (2019), Simpson et al. (2017)) on the Matern parameters of
the Gaussian processes to provide some prior information on the range and scale,
while reducing the possibility of overfitting the data.

To confirm that we had fully resolved the model identifiability issues, we then
conducted a small simulation study. We sampled the data from various models
similar in form to the joint model introduced in Sections 4.2 and 4.3 to see if the
posterior estimates of both the parameters and the space-time field covered the
true values. Interestingly, for a much smaller dataset, we found no identifiability
issues except for the range parameter on the β	

0(s) process. Here the mean squared
error of the point estimates of this parameter were very high relative to the other
parameters, although the nominal coverage levels and bias remained good. This
could be a sign of identifiability issues surrounding this effect, or perhaps could
be due to the difficulty with estimating a Matern field using only small amounts of
binary point data. All other parameter estimates in the simulation studies, as well
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as posterior predictions were good. Of most interest was the model’s capability to
detect the preferentiality parameters dβ , db with high precision, negligible bias and
with posterior credibile intervals attaining nominal coverage levels.

Interestingly, we experience the same difficulties with identifying the β	
0(s) pro-

cess in our case study. Our estimated marginal distributions for the range parameter
of the β	

0(s) process in the UK black smoke case study were all found to have 95%
posterior credible intervals all around (0.03,1.18). Given that we scaled the coor-
dinates, this range of estimates covers a range of distances from very small up to
very large. Hence it appears the model encounters difficulties with estimating this
parameter. Importantly, the posterior means of the standard deviation of this effect
were around 0.03 with 95% credible intervals lying in the region of between 0.00
and 0.08. Thus ultimately this effect has minimal impact upon the model fit.

We also assessed the ability of the joint model framework under simulated
PS settings to de-bias estimates of site-specific trajectories and network averages
(equivalent to the P1–mean). Two such simulation studies considered distinct tem-
poral trends. The first fixed the temporal component to be rigid, the second allowed
for a flexible nonlinear trend. In particular, we saw that under a rigid (spatially-
varying) linear slopes model, when the average of the consecutive lifetimes of the
sites is high, the bias induced in the site-specific estimates and the P1-mean that
occurs from ignoring the site-selection process is almost zero. This is due to the
problem of being overdetermined—only a few observations of the process at each
site are required for the model to accurately forecast/backcast estimates through-
out T . This is similar to what is seen in the case of the UK black smoke dataset.
Conversely, when the temporal trend is highly nonlinear and the average consecu-
tive lifetimes of the sites are short, the biases in parameter estimates, site-specific
predictions and estimates of the P1-mean through time can all be high if we ignore
the site-selection process. This phenomena is well understood in the joint longi-
tudinal mixed models literature—the higher the measurement error and the more
nonlinear the subject-specific trajectories, the more inference can change under a
joint model. To provide a “highly nonlinear” trend, we opted to use an independent
realisation of a Matern field for each of the 30 simulated “years”. The insights from
these two scenarios help explain the results seen shortly in Implementation 2. They
also hint that changes to inference under Implementation 2 P1 would be highest
for applications with mobile monitoring sites.

5. Results. We focus our attention upon the following issues and objectives:

1. Do Implementations 2 and/or 3 detect that, within the network of observed
sites (i.e., Population 1), the sites have been preferentially added and removed even
after controlling for the various covariates included in the site-selection process?
If so, has this been done based upon short-range, site-specific deviations from the
regional mean black smoke, and/or medium-range regional deviations from the
annual P-mean?
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2. When considering Implementation 3, does the model detect that the network
of operational sites St have been preferentially located within GB (S) through
time, even after controlling for the various covariates included in the site-selection
process?

3. Do estimates of the black smoke annual means in GB (i.e., the P2-mean)
change significantly when we consider the stochastic dependence between the
placement of the sites and the black smoke field?

4. If we backcast and/or forecast the predictions at all observed site locations
(i.e., s ∈ P1) at all times, how do the estimated black smoke levels differ between
the operational (St ) and offline sites (SC

t )? Do these differences change in time,
and if so, does the apparent priority of site placement change through time?

5. Given the original purpose of the air quality network for monitoring the
progress achieved by the Clean Air Act in reducing the population exposure lev-
els to both black smoke and sulphur dioxide (McMillan and Murphy (2017)), if
we average the estimated black smoke field across Great Britain’s population, do
the estimated population-average exposure levels change between the implemen-
tations?

6. Considering the 1980 EU black smoke guide value of 34 μgm−3, how does
the estimated proportion of GB exceeding this value change through time? What
are the differences across the three implementations? Furthermore, how do esti-
mates of the proportion of the population exposed to BS levels above this value
change under the three implementations?

In this section we refer to some secondary plots found in the Supplementary
Material. When this occurs we will put a 	 superscript above the figure number
(e.g., Figure 1	).

5.1. Implementation 1—assuming independence between Y and R. If we as-
sume independence between Y and R, the posterior results about the observation
process Y from Implementation 1 are identical to those that would have been dis-
covered from fitting only the observation process (i.e., fitting only the Y model).
As expected, especially high values of black smoke are predicted to exist around
the North West and Yorkshire areas of England in 1966. This area covers the ma-
jor cities of Liverpool, Manchester, Leeds and Sheffield, all industry-heavy cities at
the time under study. By 1996 the relative levels of black smoke in these areas are
far reduced and exceeded by the Greater London area. Counterintuitively, however,
the estimated black smoke levels in the Scottish Highlands, an area with almost no
manufacturing or industry are predicted to be relatively high (see Figure 1	) across
all time periods. This is a direct consequence of the absence of monitoring sites in
this area (see Figure 2), along with a lack of informative covariates included in the
observation process Y for this region.

A typical location in the unsampled regions of the Scottish Highlands, Cornwall
and The Borders sees their distance to the nearest site in P1 typically exceeding
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FIG. 5. Implementation 1. In green are the BS levels averaged over sites that were selected in P1
(i.e., operational) at time t . In contrast, those in red are the BS levels averaged over sites that were
not selected in P1 (i.e., offline) at time t . Finally, in blue are the BS levels averaged across Great
Britain. Also included with the posterior mean values are their 95% posterior credible intervals. If
printed in black-and-white, the green band is initially the lower line, the red band is the upper line
and the blue band is initially the middle line.

the estimated spatial ranges of the random fields. Consequently, model-estimates
in such areas essentially equal the average of the observed pollution levels (i.e.,
the P1-mean). This feature can immediately be seen to be problematic since it is
likely that the true black smoke levels will be below the P1-mean in these regions.
Similar effects are seen in Cornwall and the Borders. As well, large standard errors
(i.e., posterior pointwise standard deviations) for the predicted black smoke levels
are found in these regions due to their lack of monitoring sites (see Figure 1	).

Next, we consider the model-estimated black smoke levels for all the observed
site locations (i.e. Population 1) in Figure 5 at every time point. To investigate
Objective 4, for each t ∈ T we split the observed sites into the operational sites
St and offline sites SC

t . The set of operational sites St are defined to be the sites
in Population 1 that recorded the minimum number of observations that year. The
set of offline sites SC

t are defined to be the sites in Population 1 that failed to
record this minimum number of observations that year. Note that St ∪ SC

t = P1
and St ∩ SC

t = ∅.
Here we can see that from Implementation 1, that it appears the sites were ini-

tially placed in regions with below-average black smoke levels between 1966–
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1980 (see Figure 5). This is inferred from the posterior mean black smoke levels—
they are significantly lower for the operational sites compared with the estimated
GB-average. The lack of additional information for the unsampled regions of GB
makes the estimates in these areas equal to the P1-mean and thus the GB-average
is nearly identical to the P1-mean. Over time, the posterior means for the black
smoke levels at the operational and offline sites converge, before the direction of
preferentiality changes in 1982. The latter was the year a major network redesign
was initiated, removing almost half of the operational sites (see Figure 1). Here
we see strong evidence the sites that remained in the network after this redesign
were in locations with black smoke levels above the P1-mean. This is due to the
posterior mean black smoke levels being significantly higher for the operational
sites compared with the offline sites.

Thus from looking at the results from Implementation 1 alone, we gain some
insight about Issues 1 and 4. It appears that the sites were preferentially sampled in
almost all time periods. Initially the operational sites appear to have been placed in
regions with black smoke levels below the P1-mean, before being placed in regions
with levels above the P1-mean after the major network redesign in 1982. These re-
sults are significant with respect to 95% credible intervals. However, doubts have
been cast about the predicted black smoke levels in regions of GB known to have
little industry or population density—two major sources of black smoke. Since
these regions cover large percentages of the surface area of GB, the effect of over-
estimating the predictions in these areas would be a marked increase in the esti-
mated GB-average black smoke level. Implementation 3 attempts to rectify this
problem by extending the definition of P into these regions.

5.2. Implementation 2—P1. Firstly, we consider the posterior parameter esti-
mates for the two sources of preferentiality (see Table 1). These are denoted by dβ ,

TABLE 1
A table showing the posterior mean and standard deviations for parameter estimates for the three

implementations. Note that the top row estimates of β0 have been transformed back onto the
original data scale

Parameter Implementation 1 Implementation 2 Implementation 3

dγ 0 (0) 0.62 (0.17) 2.77 (0.01)
db 0 (0) 0.06 (0.04) 0.12 (0.01)

β0 96.50 94.94 21.87
(trans scale) 1.15 (0.02) 1.13 (0.01) −0.34 (0.09)

ρb −0.77 (0.02) −0.76 (0.02) −0.78 (0.00)

αret – 6.18 (0.06) 6.47 (0.06)
αrep – 0.08 (0.11) 0.82 (0.10)
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db, the medium-range and short-range preferentialities respectively. Only the for-
mer effect dβ was detected to be significantly nonzero with a posterior estimated
value of 0.66 and a 95% posterior credible interval of (0.34,0.99). The posterior
estimate of the short-range preferentiality was 0.06 with a 95% posterior credible
interval of (−0.01,0.15). Thus in both cases the direction of preferentiality was
positive, suggesting that year-by-year, the site placements are positively associ-
ated with the relative levels of black smoke at the site location, especially with the
regional-average level.

Interestingly, however, despite this reasonably strong evidence of preferential
sampling, the posterior predictions of black smoke levels are almost identical to
those from Implementation 1. Figure 5	 and Figure 2	 both appear strikingly sim-
ilar to those from Implementation 1 (Figure 5 and Figure 3). In particular, no ob-
vious changes in the estimated BS levels are seen across the unsampled regions of
the Scottish Highlands or the foot of Cornwall. Furthermore, the posterior mean
black smoke level averaged across GB remains largely the same throughout time
relative to the predictions from Implementation 1.

Thus it appears that despite the joint model detecting preferential sampling un-
der Population 1, little-to-no change in the posterior estimates is seen in either the
GB-average levels or the individual site-specific BS trajectories. This is in stark
contrast with the observed de-biasing of the regional mean witnessed shortly un-
der Implementation 3. The explanation for these two results may be best explained
in terms of the two different populations P1, P2 of sites under consideration for
selection.

For P1, since the sites considered for selection at each time t are only the loca-
tions in which an operational site is placed at any time t ∈ T , no information about
the selection of sites has been added to the never-sampled regions in S . Conse-
quently, when estimating the levels of black smoke via the estimation of the latent
Gaussian fields in these regions, we have no additional information about the pos-
sible values they could take. Thus, model-based estimates in these unsampled re-
gions will tend towards the predicted global mean levels, which in this case is pre-
cisely the P1-mean (the average taken across the network of observed locations).
Furthermore, given the high average lifetime of the monitoring sites, estimates of
the site-specific trajectories and hence the P1-mean barely change under the joint
model due to the overdetermined nature of the estimation. This is in stark con-
trast with P2 or when a point process approach is taken. These place zero counts
throughout the domain S and hence add additional information into the never-
sampled and hence underdetermined regions. The lack of change in estimates of
the P1-mean is not a problem with the model. The quadratic model showed good
model fit and we therefore see the inability of the model to change the longitudinal
trajectories at the observed site locations for this dataset as proof of the model’s
robustness—we would almost certainly be concerned if the estimates changed dra-
matically at the site locations.
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If instead, when forming our predictions of black smoke at these never-sampled
locations, the model had the additional information that no site was selected here at
this time (i.e., Ri,j = 0 at site si ∈ S \P1), then this would provide the model with
additional information about the likely values of black smoke at this location. For
example, if preferential sampling were detected by the model, such that locations
in regions with above average black smoke were estimated to have a site with
higher probability (i.e., if dβ > 0), then knowledge that a site was not placed at
a given location would provide (albeit only slight) evidence for the model that
the black smoke level here is below the operational network average. Suppose
instead that we have a whole region such as the Highlands, with no monitoring
sites present at any time. Estimates of black smoke across this region could then be
considerably below the average of the predicted levels at the observed site locations
throughout time, depending upon the magnitude of PS detected. This idea of filling
the region with zeros to indicate nonselection is the basis of the paper of Diggle,
Menezes and Su (2010), the approach taken in Implementation 3, and that seen in
Watson (2019).

For datasets where the average lifetimes of the monitoring sites are shorter, the
measurement error is higher, and/or the functional form of the temporal trend is
of higher order, then this joint model framework would have a greater capacity to
change estimates of site-specific trajectories, the P1-mean and hence predictions
throughout S . This was seen in our simulation study. However, for many applica-
tions involving data collected from static monitors, little will change in inferences
under a joint model with population P1. An example of where large differences
may be witnessed is for data collected over time from mobile monitors whose lo-
cation changes at each time step. In this setting we would have a very sparse data
setup, with only a single observation of the process’ trajectory obtained at each
location. The large underdetermined missing-data problem here would present the
perfect opportunity to assess the ability of the joint model framework to adjust the
inference.

After the extensive network redesign in 1982, the autoregressive β	
1(t) pro-

cess captured a sharp decline in the average logit for site selection in 1982 (see
Figure 9). This process may be reflecting, among other things, the year-by-year
changes in public and political moods towards pollution monitoring. The 95%
posterior credible intervals do not cover 0 and thus the drop of over half of the
network in 1982 appears to be a significant event in the lifetime of the network.

Turning our attention now to the estimated parameters of the site selection
process Ri,j , no clear repulsion effect αrep was detected (αrep = 0.0895% CI
(−0.14,0.31)). This implies that any clustering or repulsion effects witnessed in
the data with respect to P1 can be attributed to the levels of black smoke alone.
On the contrary, the retention effect was found to be very large 6.18 (95% CI
(6.07,6.29)), in agreement with common sense. This finding indicates that there
is a clear incentive (possibly financial) for site-selectors to maintain sites in their
current locations instead of relocating them each year.
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In summary, for this dataset Implementation 2 does not lead to changes in site-
specific trajectories, nor does it lead to changes in estimated BS levels in unsam-
pled regions of GB. However, we do still gain some useful insights. We find that
the site-selection was in fact preferentially made (i.e., response-biased), and that
the extent of this PS could not be attributed to chance alone. Furthermore, we
were able to investigate the impact of other factors, such as retention effects and
changing political affinities for the network expansion on the evolving operational
network St . We have presented future applications where the results from imple-
mentations 1 and 2 may not agree so closely.

5.3. Implementation 3—P2. First, we consider the posterior parameter esti-
mates for the two sources of PS (see Table 1). These are denoted by dβ , db, the
medium-range and short-range preferentiabilities respectively. The posterior esti-
mated value of dβ was 2.77 with a 95% posterior credible interval (2.76,2.79). The
posterior estimate of the short-range preferentiality was 0.12 with a 95% posterior
credible interval (0.11,0.13). Thus in both cases the direction of preferentiality
was significantly positive, suggesting that year-by-year, the site placements were
positively associated with the relative levels of black smoke at the site location,
both locally and regionally.

Figure 3	 shows a striking difference in the appearance of the estimated black
smoke field through time. A direct consequence of the strong preferential sampling
detected is the dramatic drop in the posterior predictions of black smoke levels in
undersampled regions of GB relative to Implementation 1. Figure 3	 shows a huge
drop in estimated levels in the unsampled regions of Northern Scotland, Mid Wales
and the foot of Cornwall relative to Figure 1	 and Figure 2	. Implementations 1
and 2 estimated these regions to have average BS levels due to the lack of any addi-
tional information in these regions. Furthermore, Figure 6 shows that the posterior
mean black smoke level averaged across GB is around a quarter of the size of that
estimated from Implementations 1 and 2 (see Figure 5 and Figure 5	). This is a
direct consequence of the decreased levels estimated in the undersampled regions
that make up a large percentage of the surface area of GB. This addresses objective
3 of the analysis.

Interestingly, model inferred black smoke levels in these unsampled regions
have very high standard errors (i.e., large pointwise posterior standard deviations)
associated with their point estimates. This can be seen in the bottom two plots of
Figure 3	. Here, the upper 95% pointwise credible intervals actually cover the esti-
mates from Implementation 1. As expected, the posterior estimates of the observed
site trajectories (both operational and offline) change very little (see Figure 6).

To address Objective 4 refer to Figure 6. In agreement with Figures 5 and 5	,
it appears that the magnitude of preferentiality increases over time. Initially, the
annual averages at the locations of the offline observed sites far exceed those from
the locations of the operational observed sites. The difference diminishes over time
until the major network redesign in 1982, which led to a change in direction of
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FIG. 6. Implementation 3. In green are the BS levels averaged over sites that were selected in P1
(i.e., operational) at time t . In contrast, those in red are the BS levels averaged over sites that were
not selected in P1 (i.e., offline) at time t . Finally, in blue are the BS levels averaged across Great
Britain. Also included with the posterior mean values are their 95% posterior credible intervals.
The black dashed lines denote the lower 10th percentile and lower quartile observed in the data.
Note that the estimated black smoke trajectories from the pseudo-sites are not included in the mean
calculations to form the red band. If printed in black-and-white, the green band is initially the middle
line, the red band is initially the upper line and the blue band is initially the bottom line.

the relative annual mean levels. Thus it appears that the magnitude of the bias in
the reported annual black smoke levels from the operational network, relative to
the Great British average increased over time—with a dramatic step-change seen
in 1982. Of most importance, however, is the discovery that the observed black
smoke levels from the network appears to have never been representative of the
levels of GB as a whole, with a positive PS effect detected at all times. In fact,
Figure 3	 shows that around 85–90% of the sites in the network were placed in
regions with above P2-mean BS throughout the lifetime of the network.

Once again the autoregressive β	
1(t) process reflecting the year-by-year changes

in public and political mood towards pollution monitoring, captured a sharp de-
cline in the average log intensity for site placement in 1982. The estimate is almost
identical to that seen in Implementation 2 (see Figure 7) and so we omit the plot.

Regarding the estimated parameters of the site selection process Ri,j , the αrep
term was detected to be positive with value 0.82 [95% CI (0.62,1.02)]. This im-
plies that there is additional clustering present that cannot be explained due to
the levels of black smoke alone. This may be capturing some of the latent factors
influencing the selection of monitoring sites such as population density.
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FIG. 7. A plot of the year-by-year change in the logit of selection captured by the autoregressive
β	

1(t) process in the R process in Implementation 2. Note that the plot for Implementation 3 is almost
identical.

5.4. Impacts of preferential sampling on estimates of population exposure lev-
els and noncompliance. While the dramatic decline in GB-average black smoke
levels seen under the joint model in Implementation 3 is interesting, the moni-
toring network was not intended for the accurate mapping of black smoke across
the whole of Great Britain, but instead was established for tracking the progress
achieved by the Clean Air Act in reducing the exposure levels of both black smoke
and sulphur dioxide (McMillan and Murphy (2017)). Thus judging the monitoring
network based on its ability to represent the levels of black smoke across GB as a
whole is potentially misleading. Taking this into consideration, we now attempt to
assess the effects of PS on estimates of population exposure, and hence the effects
of PS on the ability of the network to fulfill its objectives. Over the time period of
study, various EU limits and guidelines on annual black smoke levels were intro-
duced, including the annual average guide value of 34 μgm−3 introduced in 1980
(repealed in 2005) (Zidek, Shaddick and Taylor (2014)). We repeat the analysis
of Zidek, Shaddick and Taylor (2014) and assess the changes in the estimates of
noncompliance under PS.
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For estimating the population exposure levels, we obtained gridded residential
human population count data with a spatial resolution of 1 km × 1 km for Great
Britain based on 2011 Census data and 2015 Land Cover Map data from the Nat-
ural Environment Research Council Centre for Ecology & Hydrology (Reis et al.
(2017)). The data came in the form of a raster layer and we formulate our esti-
mate of population density across the time period (1966–1996) by normalizing the
count raster by dividing each cell by the total sum across all the cells. Here we
assume that the relative population density has remained stable from 1966–2011
for the estimated population density layer to be a good proxy across the years of
study. We also assume that residential population density is a good proxy of where
the population is situated throughout the year and hence that actual black smoke
exposure levels are similar to estimated residential levels. Next, we define a pro-
jector matrix, to project the GMRF estimated in INLA on the triangulation mesh
onto the centroids of the population density cells that make up the raster.

Finally, we are able to use the Monte Carlo samples from the posterior marginals
from INLA and the projector matrix to estimate the posterior distribution of the
black smoke field at each of the grid cells. Letting ρj (s) denote the population
density of Great Britian at location s ∈ S , in year j , such that

∫
S ρj (s)ds = 1,

we can then estimate the population-mean exposure levels by approximating the
following integral:

μpop,j (S) =
∫
S

μ(s, j)ρj (s)ds

≈
G∑

i=1

¯̂μj(si )ρ̂i = 1

M

M∑
m=1

G∑
i=1

μ̂i,j,m(si )ρ̂i ,

where si denotes the ith raster grid cell centroid (i = 1, . . . ,G), ¯̂μj(si ) denotes the
Monte Carlo mean black smoke level at location si in year j and ρ̂i denotes the
estimated population density at the ith grid cell. Approximate credible intervals
for this quantity can also be formed. We can also use this method to estimate
the proportion of the population exposed to annual average black smoke levels
exceeding the EU guide level of 34 μgm−3 each year, by simply replacing the
term μ̂i,j,m(si) in the summation by the indicator variable representing the event
that the value exceeds 34 μgm−3. Note here that the index m denotes the Monte
Carlo sample number.

We now do this, both for the estimated black smoke levels under Implementa-
tion 2 (i.e., Population 1) and again under Implementation 3 (i.e., Population 2).
Note that the results under Implementation 1 are almost identical to those from
Implementation 2 so we omit them in the plots.

Figure 8 shows plots of the posterior pointwise probability of exceeding the EU
annual black smoke guide value of 34 μgm−3 under Implementations 2 and 3,
across the years 1970, 1973 and 1976. The colour scale goes from 0 to 1 for all the
plots, with dark blue denoting a posterior probability of 0 and dark red denoting
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FIG. 8. A map plot of the posterior pointwise probability of the annual average black smoke level
exceeding the EU guide value of 34 μgm−3 under Implementation 2 (left) and Implementation 3
(on the right). From top to bottom are the years 1970, 1973 and 1976. The colour scale goes from
0 to 1 for all the plots, with dark blue denoting a posterior probability of 0 and dark red denoting a
posterior probability of 1. Note that the plots for Implementation 1 are almost identical to those from
Implementation 2 and are omitted.

a posterior probability of 1. In agreement with the plots of the pointwise posterior
means (see Figure 2	 and Figure 3	), a dramatic decline in the estimates of non-
compliance can be seen under Implementation 3 in the regions far from the nearest
monitoring network across the years (see Figure 8). This has major ramifications
regarding the total reported proportion of Great Britain in noncompliance with the
guide value. For example, under Implementation 2 almost the entirety of Great
Britain is estimated to be in noncompliance with the guide value up until 1970.
This figure drops to below 25% in 1970 under Implementation 3 (see Figure 4	).

However, once again the monitoring network and the guide value were intended
to measure and control the population exposure to black smoke levels. Thus our
maps showing the pointwise posterior probability of exceedance, while being dra-
matic, may not be a fair assessment of the network. Instead, we now focus our
estimates on the estimated proportion of the population of Great Britian exposed
to black smoke levels out of compliance with the air quality standard. Given that
the density of monitoring sites in the network follows the large population centres
of GB closely, we expect the differences between the estimates to be much lower.
In fact, this is not the case. Figure 9 still shows a large decrease in the estimated
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FIG. 9. A plot showing the posterior mean and 95% credible intervals of the annual proportion
of the population with black smoke exposure levels exceeding the EU guide value of 34 μgm−3

across the years of study. Shown are the results from Implementation 2 (i.e., Population 1) and from
Implementation 3 (i.e., Population 2).

proportion under Implementation 2, from 89% to 73% in 1966 for example. Note
that the posterior credible intervals still show a large discrepancy between the esti-
mated proportions. This is despite us including the additional short scale variability
from the spatially-uncorrelated IID effects in the estimates (one pair of realised b

terms per 1 km grid cell, per Monte Carlo sample).
Finally, we turn our attention to the estimated population-average annual black

smoke exposure levels across the two implementations (2 and 3). In agreement
with Figure 9, Figure 10 shows a clear decrease in the estimated annual averages.
Given the sensitivity of health effect estimates of air pollution to the accuracy of
population exposure levels, this result is especially striking.

6. Discussion. Importantly, a lot of the detected preferentiality effects and
subsequent de-biasing effects on prediction are likely mediated by well-known co-
variates. For example, annual population density figures and/or industrialisation
indices (in their correct functional form) would likely simultaneously explain a lot
of the PS detected if included in the Ri,j process, and be strongly positively asso-
ciated with the observed levels of Y in the observation process. Sites may well be
placed in regions where lots of people live and work to ensure the network captures
“typical” exposures experienced by the public, and some sites may be located in
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FIG. 10. A plot showing the posterior mean and 95% credible intervals of the annual residen-
tial-average exposure levels across the years of study. Shown are the results from Implementation 2
(i.e., Population 1) and from Implementation 3 (i.e., Population 2). The horizontal line denotes the
EU guide value for annual average black smoke levels of 34 μgm−3.

areas close to polluting industry for exceedance detection. Since the daily activities
of people and industry may well be the main contributors to black smoke levels,
including these covariates in the observation model Y would therefore likely lead
to decreased model-estimated pollution levels in unsampled regions such as The
Highlands of Scotland with low population density and industry.

In many applications, the preferential sampling may disappear upon the inclu-
sion of such covariates and hence be reduced to a missing-at-random scenario.
Given that the focus of this paper was to repeat previous analyses of this dataset
(Shaddick and Zidek (2014), Zidek, Shaddick and Taylor (2014)) under our new
framework and assess the changes, we do not consider including covariates here.
Furthermore, we wanted to show that in settings where such covariates are un-
available, sensible adjustments can still be realised under a careful use of our
model framework. Additionally, given that the locations of the monitoring sites
are almost exclusively situated near population-dense, industrious and urban re-
gions, it is unclear if these locations would provide the adequate contrast required
to estimate the correct functional forms of these covariates. It would be interesting
in future work to see if any PS is detected in this data after conditioning on as
many such variables in both processes. In summary, this paper is not attempting
to bypass the need for including relevant covariates in the modelling. Rather, it
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is presenting a method for accounting for the effects of any residual unmeasured
confounders associated with both processes by using spatio-temporal fields to act
as a proxy.

It is the authors’ view that this modelling framework should be considered to
both detect preferential dropout within a fixed population or network P , and to
detect if the population or network P was preferentially placed within the domain
of study S . Accomplishment of both of the above depends upon the choice of pop-
ulation of sites under consideration for the site-selection process. If preferential
sampling is detected using this model, then first and foremost, the modeller should
attempt to find available covariates that mediate the detected preferentiality. If,
after exhausting the available mediators (e.g., population density), and after re-
moving as many sources of variability from the site-selection process as possible,
preferentiality is still detected, then this modelling framework should be used for
detecting the potential consequences of this sampling scheme on the subsequent
inference—either on parameters or spatio-temporal prediction.

Furthermore, different regression models can be explored for the initial site-
placement and site-retention processes. For example, different covariates may be
believed to affect only one of the two processes, the qualitative behaviour of certain
covariates on the two processes may be different or perhaps the nature of PS could
differ across the two processes. We did not explore these possibilities here, assum-
ing only a unique intercept existed between the two processes. This extension is
explored in Watson (2019).

Additionally, the functional form used to model PS can be as flexible as desired.
Here we opted to model the direction and magnitude of preferential sampling as
being constant through time. In reality this may not be suitable and the direction
and magnitude of preferentiality may change through time. In Figure 10 we can
see that initially (at t = 1) the operational network was established such that it gave
annual readings below the P-mean under Population 1. Then, as time progressed,
the magnitude of the preferentiality decreased as the annual averages from the
operational sites approached those from the population average. Thus it may make
sense here to estimate a separate preferentiality parameter dβ for times 1 and for
t > 1. For time 1 this would likely be estimated to be smaller compared with for
t > 1. For simplicity we opted against this approach; however, such a model would
help paint a more detailed picture of the dynamic nature of the PS through time.

If one wishes to adjust the estimates of the domain-average (the GB-average
in our example) to the effects of PS, the population of locations P considered
for selection should be extended to include locations in unsampled regions in the
domain of study S . Population 2 did just that, and as a result the GB-average esti-
mates significantly dropped under the joint model. An alternative approach would
be to consider modelling the site placement events each year implicitly as reali-
sations from a LGCP and the site retention events separately as Bernoulli trials
(Watson (2019)). Two reasons for not pursuing this approach were given earlier in
the paper. An example where extending the population of locations for selection
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P beyond the network locations would be the case when we knew with certainty
that the monitoring sites within the network were placed in S independently from
the environmental process under study and also to any covariates or processes that
may have been associated with it. An example of this is if the monitoring sites
were located in S completely at random.

Extensive analytic and simulation studies on jointly modelling dropout with
various longitudinal clinical markers have been made in biostatistics over the past
20 years. The authors’ of this paper gained their inspiration for this work from
the literature on the joint modelling of viral load, dropout and longitudinal clinical
markers measured in HIV clinical trials (Gould et al. (2015), Li and Su (2018), Wu
(2010)). In fact, after transforming the data, Figure 3 shows black smoke trajec-
tories that are very similar to the subject-specific dose-response trajectories seen
in such longitudinal clinical data. The same philosophy behind jointly modelling
informative patient dropout with the process of interest via shared random effects
can be applied to spatio-temporal environmental network data with minimal alter-
ation. The major difference with spatio-temporal data are the spatial correlations
assumed on the random effects. It is this correlation which allows for the spatial
extrapolation to occur.

While the case study in this paper considered the observations to be on the
same time scale as the site-selections, this need not be the case. For example,
this general framework could simultaneously model high-frequency (e.g., hourly)
observations with a low-frequency (e.g., annual) site-selection process. This would
comprise decomposing the temporal trajectories into trend, seasonal and cyclical
(e.g., daily) terms in the model. It would then likely make most sense to include
only the trend term in the linear predictor of the site-selection process.

Assuming the locations of the monitoring sites are realisations from an inho-
mogeneous Poisson point process (IPPP) or a LGCP, while being useful computa-
tionally, may not always be sensible in certain applications. For example, if a strict
lower limit on the distances between the monitoring site locations was known, then
a LGCP or a IPPP would not be the most suitable model for use and alternatives
such as a Matérn hard-core point process model would be more suited (Baddeley,
Rubak and Turner (2015)). Having said that, a nice property of using our logistic
regression approximation to the LGCP, is that we are able to delete pseudo-site
locations in P2 that violate any known rule (e.g., a minimum distance/hard-core
rule). Furthermore, if additional clustering is present then a cluster point process or
Gibbs point process may be more desirable (Baddeley, Rubak and Turner (2015)).
While we attempt to adjust for the additional clustering seen in our dataset by
constructing a covariate Ii,j , this is by no means the best way forward here.

On a closing note, it should be apparent that the modelling framework intro-
duced in this paper can be applied to monitoring data that have come from static
monitoring sites, mobile monitoring sites, and a combination of the two. Further-
more, the ability for the joint model framework to adjust for PS under P1 should
be greater in applications with mobile monitors. One such study that could be
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revisited is the MESA Air Study (http://www.mesa-nhlbi.org/). Since this study
involves the estimation of the health effects associated with exposure to various air
pollutants, with pollution readings taken from a combination of static and mobile
monitoring sites, this data set offers an ideal opportunity to test out this framework.
Of interest may be the detection of any preferential sampling, and its resulting ef-
fects on the health effects.

7. Conclusion. We applied our general framework to the network of air qual-
ity monitors in Great Britain between the years 1966–1996. From this, we were
able to show that the monitors were preferentially placed within Great Britain
throughout the life of the network. In particular, each year the locations of the
operational sites were found to have been situated in areas with black smoke lev-
els considered much higher than the annual average level across Great Britain.
Furthermore, we showed that the network was updated in a preferential manner
throughout the life of the network. Monitoring sites at locations with highest black
smoke levels were favoured for selection into the network each year, and moni-
toring sites at locations with lowest black smoke levels were favoured for removal
from the network each year.

The implications for this biased network placement were then clearly demon-
strated. The preferential sampling of the monitoring sites may have had a signif-
icant deleterious impact upon the ability of the network to serve its purpose as a
tool for measuring the black smoke exposure levels experienced by the popula-
tion of Great Britain as a whole. It appears that estimates of population exposure
levels may have been overestimated (see Figure 10). Furthermore, estimates of
noncompliance to the various air quality regulations established throughout the
chosen time period of 1966–1996, may also have been affected by how and where
the monitoring sites were situated. It appears that any estimates of noncompliance
that used the observations from the air quality monitoring network may have over-
estimated the true amount of noncompliance (see Figures 8 and 9). This includes
historical estimates of the proportion of the population of Great Britain exposed to
black smoke levels that were out of compliance.
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SUPPLEMENTARY MATERIAL

Supplement to “A general theory for preferential sampling in environmen-
tal networks”: Supplement a (DOI: 10.1214/19-AOAS1288SUPP; .pdf). We pro-
vide additional information on our choices of prior distributions implemented in
our case study. Further information on the R-INLA implementation is also pro-
vided. Additional plots of results are shown, before the model diagnostic plots are
presented.

http://www.mesa-nhlbi.org/
https://doi.org/10.1214/19-AOAS1288SUPP
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