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Nearly a third of all surgeries performed in the United States occur for
patients over the age of 65; these older adults experience a higher rate of post-
operative morbidity and mortality. To improve the care for these patients, we
aim to identify and characterize high risk geriatric patients to send to a spe-
cialized perioperative clinic while leveraging the overall surgical population
to improve learning. To this end, we develop a hierarchical infinite latent fac-
tor model (HIFM) to appropriately account for the covariance structure across
subpopulations in data. We propose a novel Hierarchical Dirichlet Process
shrinkage prior on the loadings matrix that flexibly captures the underlying
structure of our data while sharing information across subpopulations to im-
prove inference and prediction. The stick-breaking construction of the prior
assumes an infinite number of factors and allows for each subpopulation to
utilize different subsets of the factor space and select the number of factors
needed to best explain the variation. We develop the model into a latent factor
regression method that excels at prediction and inference of regression coef-
ficients. Simulations validate this strong performance compared to baseline
methods. We apply this work to the problem of predicting surgical complica-
tions using electronic health record data for geriatric patients and all surgical
patients at Duke University Health System (DUHS). The motivating applica-
tion demonstrates the improved predictive performance when using HIFM in
both area under the ROC curve and area under the PR Curve while providing
interpretable coefficients that may lead to actionable interventions.

1. Introduction. Surgical complications arise in 15% of all surgeries per-
formed and increases up to 50% in high-risk surgeries (Healey et al. (2002)). Sur-
gical complications are associated with decreased quality of life to patients and
also incur significant costs to the health system. Efforts to address this problem are
increasing nationwide with a focus on enhancing preoperative and perioperative
care for high-risk and high-cost patients (Desebbe et al. (2016)). Duke University
Health System (DUHS) began the Perioperative Optimization of Senior Health
(POSH) program, an innovative care redesign that uses expertise from geriatrics,
general surgery and anesthesia to focus on the aspects of care that are most influ-
ential for the geriatric surgical population.
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Nearly a third of all surgeries performed in the United States occur for peo-
ple over the age of 65. Furthermore, these older adults experience a higher rate
of postoperative morbidity and mortality (Etzioni et al. (2003), Hanover (2001)).
Complications for older adults may also lead to slower recovery, longer postoper-
ative hospital stays, more complex care needs at discharge, loss of independence
and high readmission rates (Speziale et al. (2011), Raval and Eskandari (2012)).
The established predictors of poor outcomes, such as age, presence of comorbidi-
ties and the type of surgical procedure performed, are important predictors for all
patient populations, including the geriatric population. However, other factors such
as functional status, cognition, nutrition, mobility and recent falls are less routinely
collected factors that are highly correlated with surgical risk among older adults
(Jones et al. (2013)). Based on this research, POSH developed a heuristic to de-
termine which patients to refer from the surgery clinic visit to their specialized
clinic. The heuristic is defined as all patients 85 or older or patients that are 65
or older with cognitive impairment, recent weight loss, multimorbid or polyphar-
macy. However, the heuristic identifies about a quarter of the volume of all invasive
surgical encounters, which results in more patient visits than POSH can accommo-
date.

Our goal is to identify and characterize high-risk geriatric patients who are un-
dergoing an elective, invasive surgical procedure to send to the specialized POSH
clinics. We leverage the larger surgical population at DUHS to improve learning,
using data derived from electronic health records (EHR). We develop a sparse
multivariate latent factor model to learn an underlying latent representation of
the data that adjusts for the differences between geriatric surgical patients and all
other surgical patients. Our approach builds on the framework introduced by West
(2003) and extended by Avalos-Pacheco, Rossell and Savage (2018), Bhattacharya
and Dunson (2011), Carvalho et al. (2008a), Carvalho et al. (2006), Ročková and
George (2016) all of which consider nonparametric priors to incorporate flexibility
in learning the number of factors, either for unsupervised or supervised learning.
In addition, Chen et al. (2010), Murphy, Gormley and Viroli (2017) have proposed
sparse factor models in mixture model contexts.

Working with high-dimensional EHR data introduces the problems of noisiness,
sparsity and multicollinearity among the covariates. We therefore model the factor
loadings matrix as sparse, assuming that only a few variables are related to the
factors and thus the factors represent a parsimonious representation of the data.
This modeling approach serves as an exploratory view of underlying phenotypes
of the geriatric population compared to the full population that can guide surgeons
in deciding which profile of patients would most benefit from interventions. This
is similar to recent work by Ni, Mueller and Ji (2018), where they propose a cate-
gorical matrix factorization method to infer latent diseases from EHR data, though
only in an unsupervised manner, as a phenotype discovery tool. In our work we
additionally incorporate response variables, using our learned phenotypes to pre-
dict post-operative surgical complications with high accuracy through a supervised
approach.
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We focus on modeling the covariance structure of different subpopulations to
adjust for the idiosyncratic variations and covariations of each subpopulation.
Latent factor models aim to explain the dependence structure of observed data
through a sparse decomposition of their covariance matrix. Specifically, factor
models decompose the covariance of the observed data of p dimensions, �, as
��T + �, where � is a p × k loadings matrix that defines the relationships be-
tween each covariate and k latent factors, and � is a p × p diagonal matrix of
idiosyncratic variances. These models are often used in applications in which the
latent factors naturally represent some hidden features such as psychological traits
or political ideologies. Others find utility in their use as a dimensionality reduction
tool for prediction problems with large p and small n (West (2003)). However,
our data, derived from noisy EHR, call for flexibility beyond the common factor
model to better handle the complex structure of the subpopulations we consider
and to induce strong sparsity that can improve predicting outcomes with very low
prevalence. A key contribution of this work is the development of the sparse fac-
tor model into a transfer learning approach, where we utilize data from a larger
source population to improve learning in a target population, in our case the geri-
atric patients qualified for POSH through their established heuristic. Similar work
by Seo, Goldschmidt-Clermont and West (2007) uses sparse factor models to tie
together gene expression data from two populations: mice and men, tackling a
similar problem of sharing information between two populations though through a
different modeling framework.

Our proposed transfer learning approach places hierarchical priors on the factor
loadings matrix. In this setting we define two groups or subpopulations: the POSH
heuristic defined cohort of patients and the remaining invasive procedures occur-
ring at Duke from the entire patient population over the age of 18. The motivating
reason for selecting the subpopulation, as determined through the heuristic, is to
align with current interventions currently deployed in the POSH clinic. The inter-
ventions at POSH, such as management of comorbidities, reduction of polyphar-
macy, enhancement of mobility and nutrition and delirium risk mitigation, are tar-
geted to geriatric patients and their previously studied risk factors (McDonald et al.
(2018)). Therefore, to align with the goal of the project, we use this known targeted
subpopulation to assure that the interventions are effective for the patients triaged
to the clinic.

There are inherent differences between these two populations. In Figure 1 we
present the t-distributed Stochastic Neighbor Embedding (t-SNE) representation
of the EHR surgical database of all invasive procedures at Duke University Health
System (DUHS) between January 2014–January 2017, with samples of 10,000
from the geriatric population that meets the POSH heuristic requirements and
10,000 from all other surgical encounters. The figure shows patient substructure
in the data with a clear difference in the two populations. While there is some
overlap between the two populations, it is clear geriatric patients have a differ-
ent covariate space compared to the overall population, and therefore should be
modeled appropriately.
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FIG. 1. t-SNE representation of EHR data from Duke University that meets the POSH heuristic
(red) and full patient populations (black), using samples of size 10,000 for each group. Displays
low-dimensional projection of full data.

Modeling these disparate populations requires proper adjustments. Therefore,
we introduce a hierarchical infinite prior on the factor loadings matrix which learns
the proper number of factors needed in each group’s factor model while still shar-
ing information across groups to aid in learning for the smaller subpopulation. The
hierarchical infinite prior for the factor loadings matrix is derived from the Hier-
archical Dirichlet Process (HDP), a nonparametric model most commonly used
within a mixture model, where one may be interested in learning clusters among
multiple groups (Teh et al. (2006)). The hierarchical infinite prior combines ideas
from sparse Bayesian factor models with the hierarchical grouping characteristics
of an HDP mixture model, aiming to share information between subpopulations
while capturing the underlying cluster structure, similar to the HDP. We also aim
to decompose the sparse covariance structure of our data to model directly the
main source of variation between groups, as in a hierarchical factor model. We
therefore place a hierarchical prior on the loadings matrix of our factor model, �,
that flexibly captures the underlying structure of our data across populations.

Section 2 provides necessary background, a detailed overview of our proposed
hierarchical infinite factor model (HIFM) utilizing the HDP and resulting proper-
ties of the prior showing that it is well defined and result in a semidefinite covari-
ance matrix. Section 3 presents results in simulations, portraying the properties
in model selection, prediction and interpretability. Section 4 discusses the derived
EHR data used to predict surgical complications and reviews the results. Section 5
concludes and presents future directions for continued effort.

2. Hierarchical infinite factor model.

2.1. Primitives. The standard Bayesian latent factor model relates observed
data, xi , to an underlying k-vector of random variables, f i , using a standard k-
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factor model for each observation, i ∈ 1, . . . , n (Lopes and West (2004)):

xi ∼ N(�f i ,�),(2.1)

where xi is a p-dimensional vector of covariates, assumed continuous, � is the
p × k factor loadings matrix where the j th row is distributed λj ∼ N(0, φ−1Ik).
The k-dimensional factors, f i , are independent and identically distributed as
f i ∼ N(0, Ik), and � = diag(σ 2

1 , . . . , σ 2
p) is a diagonal matrix that reduces to a

set of p independent inverse gamma (IG) distributions, with σ 2
j ∼ IG(a, b) for

j = 1, . . . , p. Conditioned on the factors, the observed variables are uncorrelated.
Dependence between these observed variables is induced by marginalizing over
the distribution of the factors, resulting in the marginal distribution, xi ∼ Np(0,�)

where � = V (xi |�,�) = ��T + �. Note that there is not an identifiable solu-
tion to the above specification and therefore the decomposition of � is not unique.
However, for problems involving covariance estimation and prediction, this re-
quirement is not needed, and therefore we do not impose any constraints on the
model. This allows us to construct a more flexible parameter-expanded loadings
matrix.

We propose a hierarchical stick-breaking prior, motivated by the HDP. The HDP
is hierarchical, nonparametric model in which each subpopulation is modeled with
a DP, where the base measure are DP themselves. The DP, DP(α0,G0), is a mea-
sure on (probability) measures, where α0 > 0 is the concentration parameter, and
G0 is the base probability measure (Ferguson (1973)). A draw from a DP is for-
mulated as G = ∑∞

h=1 πhδφh
, where φh are independent random variables from G0

and δφh
are atom locations at φh, and πh are the “stick-breaking” weights that de-

pend on the parameter α0 (Sethuraman (1994)). The HDP is a hierarchical model
in which the base measure for the children DP are DP themselves, such that

G0|α0,H ∼ DP(α0,H)

Gl|αl,G0 ∼ DP(αl,G0), for each l.

This results in each group sharing the components or atom locations, φ, while
allowing the size of the components to vary per group.

2.2. Proposed model. Now, consider a p × ∞ loadings matrix, �0, weighted
by the stick-breaking weights of an HDP, such that each population has a
unique loadings matrix defined by population specific weights, π l , where �l =
[√πl1λ01,

√
πl2λ02, . . .]. The population specific loadings matrix becomes a

weighted version of a shared global loadings matrix. The Bayesian factor model
prior specification assumes independent rows and columns, so an element in row
j and column h from �0, λ0jh is distributed as a zero-mean normal distribution.
Multiplying λ0jh by

√
πlh results in

√
πlhλ0jh ∼ N(0, πlhφ

−1). This now mimics
the formulation of a scale mixture with the full specification shown in (2.2) where
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we represent the prior in the finite case for clarity of the scale mixture specification.
We let Dlj = diag(πl1/φj1, . . . πlk/φjk):

λlj |π l ∼ N(0,Dlj ),

π l|π0 ∼ Dir(αlπ0),

π0 ∼ Dir(α0/k, . . . , α0/k),

φjh ∼ Gamma(τ/2, τ/2).

(2.2)

The nonparametric process representation is recovered if we let k → ∞ (Teh
et al. (2006)). We continue with the finite truncation of the model, which is known
to be “virtually indistinguishable” from the full process (Ishwaran and James
(2001), Ishwaran and James (2002)), with k∗ as a large upper bound for the num-
ber of factors. For convenience, we continue to use the notation k where k is suf-
ficiently large. While we focus on the finite version of the model for computa-
tional reasons, the underlying infinite process provides the adaptability of learning
the number of factors, a key feature of the proposed model. Note that it is com-
mon in the literature to suggest a truncated version of nonparametric factor models
(Bhattacharya and Dunson (2011), Ročková and George (2016), Ni, Mueller and
Ji (2018)).

We set the scale parameter in the loadings matrix, φjh, constant across pop-
ulations and distributed gamma in such a way that marginally φjh results in a
t-distribution with τ degrees of freedom, resulting in a heavy tailed distribution.

The Dirichlet distribution can be decomposed into a set of k independent gamma
distributions, such that wh ∼ Gamma(αh,1) for h = 1, . . . , k and S := (w1 +· · ·+
wk), then (w1/S, . . . ,wk/S) ∼ Dir(α1, . . . , αk). We show this for the finite case,
but the same is true in the infinite limit where the Gamma distribution becomes a
Gamma process. To induce a closed-form posterior for our proposed prior, we use
k unnormalized Gamma draws, wl , instead of a draw from a Dirichlet, π l . The
resulting hierarchical prior is specified below in (2.3) where, now, we let Dlj =
diag(wl1/φj1, . . . ,wlk/φjk):

λlj |wl ,φj ∼ N(0,Dlj ),

wlh|π0h ∼ Gamma(αlπ0h,1), ∀h ∈ 1, . . . , k,

π0 ∼ Dir(α0/k, . . . , α0/k),

φjh ∼ Gamma(τ/2, τ/2),

σ 2
j ∼ IG(a, b).

(2.3)

Our prior formulation does not require that wl sums to one, as is the case in a
Dirichlet draw. We want the “rich gets richer” behavior of the HDP that results
in many of the stick-breaking weights being approximately zero, signifying the
absence of those clusters. By unnormalizing the weights the same scaling occurs
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where some weights will be much smaller than others, but now the magnitude is
not bounded. This acts as a model-shrinkage tool for shrinking factors not needed
to describe the distribution of group l. We prove a subsequent result in Section 2.4,
showing that a loadings matrix with infinite columns results in a finite loadings
matrix and covariance structure. The most prominent difference between the HDP
and our weighting scheme is that we are not drawing from a discrete measure,
instead we use the properties inherent in the stick-breaking process of the sampling
proportions to weigh the importance of factors in our model.

As discussed in Polson and Scott (2011), scale mixtures should meet two crite-
ria: first, a local scale parameter should have heavy tails to detect the signal, and,
second, a global scale parameter should have substantial mass at zero to handle the
noise. Marginalizing over the weights, wl , the resulting distribution of � relates
to the normal gamma shrinkage prior discussed in Caron and Doucet (2008). To
avoid over shrinking the nonzero loadings, we also define a p × k matrix of local
scale parameters φ drawn elementwise from a gamma distribution that is constant
across populations. This adds an additional source of sharing of information or
transfer learning. For example, if an element of the loadings matrix is near zero
with small variance, then the signal will also be similar for other subpopulations.

2.3. Hierarchical latent factor regression. We utilize the hierarchical infinite
factor model to relate the observed covariates to response variables. For each
xi , we have a corresponding response or a py-dimensional vector of responses,
yi ∈ {0,1}. Let Z = {Y,X} represent the full data, and the model in 2.1 simply
replaces the xi with zi . We concatenate [f i ,1] and learn an additional column of
the loadings matrix. The k + 1 column of the loadings matrix now serves as an
intercept in the model for each covariate.

The posterior predictive distribution is easily obtained by solving

f (yn+1|z1, . . . , zn, xn+1)

=
∫

f (yn+1|xn+1,�)π(�|z1, . . . , zn) d�.

The joint model implies that E(yi |xi) = x′
iβl with covariance matrix �l,YX , where

�l,YX is a partitioned covariance matrix defined by the rows and columns corre-
sponding to Y and X. The resulting coefficients, βl = �−1

l,XX�l,YX , are found by
correctly partitioning the covariance matrix, �l . This then results in the true group-
specific regression coefficients of Y on X.

In our application the data are both binary and continuous, with all outcomes be-
ing binary indicators of surgical complications. Therefore, we extend this method
to deal with this data structure by using the common probit transformation (Albert
and Chib (1993)). We choose this transformation due to its ease in computation and
implementation. It is also commonly seen throughout the literature as a promising
way of dealing with mixed data, with others using this type of transformations in
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latent variable models (McParland et al. (2014, 2017)). With the probit transfor-
mation we convert our binary data to the real line, where it now mimics a Gaussian
likelihood, as the continuous variables do under our model specifications, except
in this case we do not learn the idiosyncratic noises, � and instead set those to 1.

The resulting factor scores represent a transformed feature space of our data that
aim to minimize the distributional differences between the populations. Therefore,
we proceed with prediction by learning factor scores for the held-out test set of
interest. Specifically, we will draw p(fi |xi,�XX,�XX) for each i in the testing
set from the defined full conditional for fi where we subset the learned parameters
appropriately to match the testing predictors.

2.4. Properties of the shrinkage prior. We let �� ⊗ �� be the prior specifi-
cation defined in (2.3). Because �� defines the prior on the infinite dimensional
loadings matrix, we must assure that a draw from the prior is well defined and
that the elements of the ��T are finite for a semidefinite covariance matrix. As
shown in Bhattacharya and Dunson (2011), we can define a loadings matrix, �,
with infinitely many columns while keeping ��T ’s entries finite. We follow the
steps taken in their paper to prove similar properties for our hierarchical infinite
factor loadings prior.

We first define �� as the collection of matrices � with p rows and infinite
number of columns, such that the p × p matrix, ��T , results in all finite entries:

�� =
{
� = (λjh), j = 1, . . . , p,

h = 1, . . . ,∞, max
1≤j≤p

∞∑
h=1

λ2
jh < ∞

}
.

(2.4)

The entries of ��T are finite if and only if the condition in (2.4) is satisfied, which
is possible using the Cauchy–Schwarz inequality and proved in the Supplement
A (Lorenzi, Henao and Heller (2019)). All proofs for subsequent properties are
shown in Supplement A (Lorenzi, Henao and Heller (2019)).

Next, let �� denote the p × p diagonal matrices with nonnegative entries, let
� denote all p × p positive semidefinite matrices and allow g : �� × �� → �

corresponding to g(�,�) = ��T +�. We next define Proposition 1 to show that
our prior is an element of �� × �� almost surely. This reduces to a proof of
��(��) = 1 under the independence assumption on �� × �� where �� is well
defined as a product of p inverse-gamma distributions.

PROPOSITION 1. If (�,�) ∼ �� ⊗ �� , then �� ⊗ ��(�� × ��) = 1.

We also show that the resulting posterior distribution of the marginal covariance,
� = ��T + �, is weakly consistent by proving Theorem 1, defined below:
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THEOREM 1. Fix �0 ∈ �. For any ε > 0, there exists ε∗ > 0 such that{
� : d∞(�,�0) < ε∗} ⊂ {

� : K(�0,�) < ε
}
.

Our infinite hierarchical prior meets these properties for each group’s estimated
covariance by first showing that the prior has large support and, therefore, places
positive probability in ε-neighborhoods around any covariance matrix.

Lastly, we make an argument that the resulting covariance decomposition mim-
ics the results from an HDP mixture model with cluster-specific covariances. For
group l, �l is the population-specific covariance structure of the data, X, where
�l = �l�

T
l + �l . If we rewrite �l as (�0W

1/2
l ) where Wl is diagonal matrix

of elements wl , we see that the resulting decomposition is (�0Wl�
T
0 ) + �. We

then can reformulate this as a sum up to k (with k → ∞), resulting in a linear
combination of rank-1 covariance matrices:

�l = �l�
T
l + �l(2.5)

= (
�0Wl�

T
0

) + �l(2.6)

=
k∑

h=1

wh

(
λ0hλ

T
0h

) + �l.(2.7)

2.5. Inference. We propose a Markov chain Monte Carlo (MCMC) scheme
with almost all closed-form updates, and provide some suggested updates to allow
for faster computation. We truncate the loadings matrix to have k∗ < p.

We derive a Gibbs sampler where we draw from the full conditional posteriors.
Most posterior updates are derived from conjugate relationships; however, the pa-
rameters for the unnormalized HDP are not conjugate. The weight parameters wl

are updated with a closed form draw from the generalized inverse-gaussian (GIG)
distribution for each hth element of wl :

wlh|λl,π0, αl ∼ GIG(p = pwlh
, a = awlh

, b = bwlh
)),

where pwlh
= αlπ

0
h − p/2, awlh

= 2, and bwlh
= (λ′

lh�hλlh). �h = diag(φh1, . . . ,

φhp).
To update π0, we use a Metropolis–Hastings step within the Gibbs sampler

using a gamma proposal with normalization to mimic the Dirichlet distribution.
This is done in two steps: First, we propose θ∗

0h ∼ Gamma(θ t−1
0h · C,C), which

gives a mean of θ t−1
0h and a variance of θ t−1

0h /C, which allows tuning using the

constant, C. We then normalize the θ∗
0, such that π∗

0 = θ∗
0∑k

h=1 θ∗
0h

, and accept π∗
0

based on the acceptance ratio

A
(
π∗

0|π t−1
0

) = min
(

1,
P (π∗

0|w1, . . . ,wl)

P (π t−1
0 |w1, . . . ,wl)

g(π t−1
0 |π∗

0)

g(π∗
0|π t−1

0 )

)
.
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The acceptance ratio for π0 helps to serve as a hyperparameter check for your
selected α0 and αl . With poor choices of k and α0 and αk , the proposals for π0
will be poor and few will be accepted. We recommend acceptance ratios between
0.2 and 0.5, as is common in the Bayesian literature.

All remaining updates from the Gibbs sampler are presented in Supplement B
(Lorenzi, Henao and Heller (2019)). To speed the computation time of this sam-
pler, we parallelize the updates for the factors f i and the probit transformations
of xi . Because we assume each row of f i and xi are independent and identically
distributed (within each population), we are able to split this update using par-
allel methods and speed up each iteration by a factor of the number of cores or
computing resources present.

3. Simulations. We next evaluate our approach through synthetic data and
compare to baseline methods, Lasso and elastic net regressions (Tibshirani (1996),
Zou and Hastie (2005)). Lasso is a commonly used penalized regression model
used for variable selection that excels when working with sparse, correlated data
while providing interpretable coefficients that provide insight into the underlying
relationships between covariates and outcomes. Elastic net pairs Lasso with ridge
regression to share the benefit of both variable selection and regularization and
often results in grouping effects among correlated coefficients. When considering
comparison methods, we selected models that would commonly be deployed for
the problem of predicting surgical complications with an interpretable model. In
addition, we looked to methods that had available code. The Lasso and elastic
net models were chosen due to their ability to accurately predict binary outcomes
while providing interpretable coefficients for both binary and continuous variables.
The goal of these analyses is to demonstrate HIFM’s capabilities as an interpretable
and flexible factor model that excels at prediction. To this end, we design two sim-
ulation studies. The first considers data generated from a slight deviation from the
underpinning model, with variations of the dimension considered, ranging from
p = 50 to p = 250. The second setting follows that of Bhattacharya and Dunson
(2011) to generate a sparse covariance matrix with extensions to the multisubpop-
ulation setting where there are some relationship between the subpopulations.

First setting: We simulate data, zi , for i = 1, . . . ,1000 from a p-dimensional
normal distribution, with zero mean and covariance equal to �l = �l�

T
l +�l . We

simulate with two populations where 400 observations are within l = 1, our tar-
get. We draw the j th row of λlj from a N(0,D−1

lj ) where D−1
lj = diag(φj /wl) is a

k × k diagonal matrix. We draw each φjh for j ∈ 1, . . . , p and h ∈ 1, . . . , k from a
Gamma(τ/2, τ/2) where τ = 3, wlh ∼ Gamma(αlπ0,1), and π0 from a Dir(α0/k)
with hyperparameters set to αl = α0 = 15 to induce approximately uniform clus-
ters. We set the first row of the loadings matrix that corresponds to the outcome to
zero and randomly select two locations and fill in with a 1 and −1 to induce further
sparsity. This adjustment in the simulation aims to induce even stronger sparsity
between the response variable and the predictors, as well as to create a generative
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process of the data that is not exactly that of our model. We draw the diagonal of
� from IG(1, 0.33) with prior mean equal to 3.

Second setting: For the second study, we simulate data, zi , for i = 1, . . . ,1000
from a p-dimensional normal distribution with zero mean and covariance equal
to �l = �l�

T
l + �l . We simulate with two populations, where 400 observations

are within l = 1, our target. In generating the �l and �l we mimic the simulation
scheme presented in Bhattacharya and Dunson (2011) with slight moderations.
We generate a global loadings matrix, �0, that will be the mean of each subpop-
ulation’s �l . For each column of �0, the number of nonzero elements is chosen
linearly between 2k and k + 1, with the zeros randomly allocated in each column.
The nonzero elements in �0 are drawn independently from N(0, 5). Then, for each
subpopulation’s loading matrix, �l , the nonzero elements are drawn from a nor-
mal distribution centered at the nonzero elements in �0 with additional standard
deviation of 1. For each �l , we set the first row of the loadings matrix that cor-
responds to the outcome, y, to zero and randomly select two locations and fill in
with a 1 and −1 to induce further sparsity. We draw the diagonal of each �−1

l from
Gamma(1, 0.33) with prior mean equal to 3 for each population independently.

For both settings, we compare three different choices of p, 50, 100 and 250 with
the true number of factors k = 10. We use the default choice of 5 log(p) as the
starting number of factors for each simulation run to select an upper bound on k.
For each run, we sampled from the Gibbs sampler for 4000 iterations and remove
2000 iterations for burnin and thinned every fifth iteration. We show two examples:
the first with all continuous data as described above, and the second converts the
Gaussian simulated data into binary columns using the probit transformation and
a random binomial. We convert the first p/2 columns, including the outcome, into
binary variables for both simulations cases with varying p.

We repeat the simulations 50 times and evaluate: (1) the prediction performance
using an out of sample test set, (2) the precision of the estimated coefficients, and
(3) the estimation of the number of factors. We calculate the prediction accuracy
for continuous outcomes with mean squared error (MSE) and the binary outcome
using area under a receiver operator characteristic curve (AUC), by reporting the
median, minimum and max from the 50 runs. We compare the HIFM model to
elastic net and Lasso trained with two different covariate specifications. The first
Lasso uses all covariates as main effects and ignores the subpopulation, and the
second incorporates a random slope per subpopulation through interactions, which
we call a hierarchical Lasso. To tune these models, we use 10-fold cross valida-
tion. For Lasso we use the cv.glmnet function from the package glmnet with their
default tuning settings. For elastic net we cross validate with a grid of 30 param-
eter settings, where alpha ranges between 0 to 1 in increments of 0.1, and lambda
ranges between 0.001 and 1e−5 (using the default tuning grid for lambda from
cv.glmnet).

Tables 1 and 2 display the results from the two simulation settings, respectively.
For both simulation settings, when all data are continuous, the hierarchical infi-
nite factor model achieves superior predictive performance compared to elastic
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TABLE 1
Predictive performance in simulation study for first simulation setting cases. Average, minimum and
maximum performance is presented across 50 simulations. Mean squared error (MSE) is calculated

for continuous outcome simulations (where smaller is better). Area under receiver operator
characteristic curve (AUC) is reported for binary outcomes (where closer to 1 is better). (EN-elastic

net, L-Lasso, HL-hierarchical Lasso)

MSE AUC

HIFM EN L HL HIFM EN L HL

(50, 10)
Mean 0.71 0.74 0.88 0.91 0.83 0.81 0.80 0.81
Min 0.08 0.11 0.12 0.12 0.59 0.62 0.63 0.61
Max 4.81 4.58 4.91 5.07 0.93 0.93 0.91 0.92

(100, 10)
Mean 0.88 0.89 1.02 1.06 0.83 0.81 0.78 0.79
Min 0.08 0.09 0.11 0.12 0.52 0.54 0.55 0.52
Max 5.54 5.47 5.44 5.49 0.95 0.94 0.89 0.91

(250, 10)
Mean 1.70 1.70 1.81 1.82 0.84 0.85 0.85 0.85
Min 0.12 0.15 0.19 0.17 0.49 0.55 0.53 0.47
Max 20.24 19.85 20.55 20.74 0.93 0.94 0.945 0.944

net, Lasso and a hierarchical Lasso. Tables 1 and 2 also display the AUC calcu-
lated across 50 simulations with binary outcomes where again HIFM outperforms
the alternative models. The baselines provide two gold standards in sparse regres-
sion modeling. Elastic net performs slightly better in prediction tasks compared
to Lasso and hierarchical Lasso, and hierarchical Lasso does improve over Lasso,
suggesting the interactions help to better capture the group effects. HIFM improves
predictive performance for both continuous and binary outcomes, compared to the
alternatives. However, in p = 250 under the first simulation scheme, our predictive
performance is worse than Lasso in terms of AUC, albeit by a very slim margin
(0.84 HIFM versus 0.85 Lasso). We see the performance does equally well be-
tween the two data simulation schemes, suggesting in sparse settings with related
populations the model is able to perform with high prediction accuracy.

Tables 3 and 4 display resulting accuracy of the learned coefficients for each
population across method. Coefficients from HIFM are derived from transforming
the partitioned covariance matrix of the learned model. We compare the results of
HIFM learned regression coefficients to those learned by Lasso with and without
interactions and elastic net. We display the results for the simulation of p = 100
and k = 10 for both continuous and binary outcomes and averaged over 50 iter-
ations. Similar patterns occurred in the smaller covariate simulation cases, where
p = 50 and the larger covariate case when p = 250; therefore, we do not report
these additional results. The hierarchical Lasso improves the model fit compared
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TABLE 2
Predictive Performance in simulation study for second simulation setting cases. Average, minimum,

and maximum performance is presented across 50 simulations. Mean squared error (MSE) is
calculated for continuous outcome simulations (where smaller is better). Area under receiver

operator characteristic curve (AUC) is reported for binary outcomes (where closer to 1 is better).
(EN-elastic net, L-Lasso, HL-hierarchical Lasso)

MSE AUC

HIFM EN L HL HIFM EN L HL

(50, 10)
Mean 0.76 0.78 0.89 0.89 0.82 0.80 0.78 0.80
Min 0.07 0.09 0.12 0.12 0.61 0.59 0.59 0.59
Max 3.97 3.96 4.28 4.11 0.94 0.92 0.89 0.91

(100, 10)
Mean 1.98 2.02 2.10 2.10 0.83 0.81 0.78 0.79
Min 0.07 0.09 0.20 0.18 0.52 0.54 0.55 0.52
Max 38.65 37.60 36.99 37.26 0.95 0.94 0.89 0.91

(250, 10)
Mean 3.00 3.16 3.19 3.18 0.82 0.81 0.81 0.81
Min 0.09 0.10 0.11 0.10 0.52 0.53 0.54 0.55
Max 70.00 71.97 71.12 71.12 0.91 0.91 0.94 0.92

to regular Lasso, providing evidence that modeling these data hierarchically aids
in coefficient estimation. Compared to Lasso and elastic net, HIFM captures the
true coefficients with greater accuracy for both populations. Interestingly, elastic
net performs much worse in the estimation of regression coefficients, compared to

TABLE 3
Performance in estimating regression coefficients in first simulation study. We report results with

p = 100, k = 10 for 50 simulations for both continuous and binary examples, showing mean
squared error (×103) of estimated coefficients compared to true simulated coefficients

Continuous outcomes Binary outcomes

HIFM EN L HL HIFM EN L HL

Pop 1:
Median 0.02 0.11 0.13 0.09 0.05 4.96 0.73 0.27
Min 0.00 0.06 0.06 0.04 0.01 0.10 0.07 0.05
Max 1.82 1.17 0.25 0.19 10.94 76.40 8.74 7.04

Pop 2:
Median 0.89 0.93 0.95 0.97 1.11 11.90 2.55 1.93
Min 0.04 0.07 0.05 0.03 0.05 0.08 0.05 0.05
Max 5.76 0.29 0.20 0.24 19.26 76.07 8.72 6.08
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TABLE 4
Performance in estimating regression coefficients in second simulation study. We report results with

p = 100, k = 10 for 50 simulations for both continuous and binary examples, showing mean
squared error (×103) of estimated coefficients compared to true simulated coefficients

Continuous Outcomes Binary Outcomes

HIFM EN L HL HIFM EN L HL

Pop 1:
Median 0.02 0.37 0.35 0.19 0.08 11.27 2.54 0.99
Min 0.00 0.14 0.12 0.05 0.03 0.83 0.22 0.05
Max 0.36 15.60 1.23 1.57 0.21 102.11 20.84 8.26

Pop 2:
Median 0.18 0.41 0.31 0.17 0.13 11.21 2.29 0.36
Min 0.06 0.17 0.08 0.07 0.06 0.71 0.16 0.11
Max 2.84 15.54 1.23 1.53 0.52 101.23 20.44 4.91

HIFM and Lasso. The simulation induces very strong sparsity, where the resulting
coefficients are very close to zero, especially in the higher dimensional scenario.
While Lasso may be overshrinking the signal in the data, which is why we see
worse performance in prediction compared to elastic net and HIFM, the strong
shrinkage results in better accuracy across all coefficients compared to elastic net.
From these simulations HIFM shows that it is better at capturing both the coeffi-
cient estimates of the data and results in much improved prediction accuracy.

Lastly, we compare the number of factors used by HIFM for each population
and compare those to the true number under simulation. Though we set K = 10
in simulation, we incorporate the weights in the loadings matrix that potentially
shrink some of the factors across simulations. We set 0.05 as a threshold for con-
sidering whether that factor is included or not in the model when evaluating the
number of factors chosen. This choice is arbitrary, but the results below were not
sensitive to the chosen threshold within a reasonable range. For the HIFM we set
K = 5 log(p), where in this scenario p = 50 so k was set to 20 for the HIFM. We
choose to look at the first example with 50 covariates for brevity. From Table 5 we
see that, on average, HIFM selected around 11 factors for each population when
all variables were continuous. For binary outcome (and half of all covariates being
binary), HIFM selected 10 and 11 factors for first and second population, respec-
tively. The true number of factors simulated averaged at around 10 factors for both
populations and both types of outcomes, showing that our weighting mechanism
was able to recover close to the truth. Figure 2 displays the resulting loadings ma-
trix and the posterior mean of the weights post burn-in and thinning for both popu-
lations. The model selection properties using the weights are highlighted with the
visualization, showing the shrinkage through the weights being used as a model
selection tool for the number of factors to include in the model.
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TABLE 5
Average number of factors selected by HIFM compared to truth with
standard deviation in parentheses. Results displayed for simulations

with p = 50 and k = 10, with HIFM k set to 20

Pop. 1 Pop. 2

Continuous outcome:
Normal HIFM 10.8 (1.2) 11.6 (2.1)
True 9.6 (0.6) 9.7 (0.7)

Binary outcome:
Normal 10.2 (0.8) 11.1 (2.0)
True 9.9 (0.3) 9.8 (0.5)

For the 50 simulation runs when p = 50, we additionally tested three choices
of α0 = (5,15,50) to test how the setting of these hyperparameters may affect the
predictive performance and the number of factors selected. We found the predictive
performance is almost the exact same between the three choices (MSE = 0.13
for all choices of α0 and AUC = 0.84 for α0 = 5 and 0.85 when α0 = (15,50)),
suggesting these hyperparameter choices do not have a strong effect on prediction.
The three choices did result in different numbers of factors selected in the model:
when α0 = 5, it selected 11 factors on average; when α0 = 15 and α0 = 50, the
model selected 10 factors on average

FIG. 2. Visualization of loadings matrix for both simulated populations under HIFM learned with
20 factors. The image plot displays the posterior of the loadings matrix and the scatterplot displays
the posterior mean of the weights, wl , where the red line indicates the chosen threshold used to
determine number of factors in Table 5.
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4. Surgical complications.

4.1. Goals, context and data. The data in this experiment are derived from the
repository, Pythia, of electronic health records (EHR) from all invasive surgical en-
counters from DUHS (Corey et al. (2018)). Invasive procedures are defined using
the encounter’s current procedural terminology (CPT) code and included all CPT
codes that are identified by the Surgery Flag Software (AHRQ (2016)), and elimi-
nated all patients under 18 years of age. Using data derived from the EHR provides
the logistical benefit of easier implementation of the resulting tool in a clinical set-
ting since the variables are conveniently found in a patient chart. However, EHR
data are a by-product of day-to-day hospital activities, and the resulting data are
known to be noisy and sparse. We therefore preprocessed the data to provide a
cleaner and more manageable set of covariates to model.

We include covariates describing the surgical procedure, current medications of
the patient, relevant comorbidities and other demographic information. The pro-
cedure information was captured by CPT codes and grouped into 128 procedure
groupings categorized by the Clinical Classification Software (CCS). Procedural
groupings with fewer than 200 total patients were removed and grouped into one
larger miscellaneous category. This helped to assure that procedural effects were
averaged across many patients and represented an overall effect size for geriatric
patients and all surgical patients. We defined patient comorbidities by surveying
all International Statistical Classification of Diseases (ICD) codes within one year
preceding the date of the procedure and classified these diagnoses codes into 29
binary comorbidity groupings (S1) as defined by Elixhauser Comorbidity Index
(Elixhauser et al. (1998)). We grouped the active outpatient medications recorded
during medication reconciliation at preoperative visits into 15 therapeutic binary
indicator features and created a separate feature that counted the total number of
active medications. We define the outcomes, surgical complications, by diagnosis
codes occurring within 30 days following the date of the invasive procedure. The
outcomes were derived from 271 diagnosis codes and grouped into 12 categories
that aligned with prior studies evaluating postsurgical complications (McDonald
et al. (2018)) We use five of these outcomes to focus on the intervention goals of
the POSH clinic. For example, neurological complications encompasses dementia,
a common complication for patients over 65 and one that the POSH clinic specifi-
cally targets for their patients. The five outcomes modeled and reported below are
cardiac complications, neurological complications, vascular complications, pul-
monary complications and 90 day mortality. Mortality was identified as death oc-
curring within 90 days of the index procedure date. Mortality is captured in the
EHR during encounters for in-hospital death and uploaded from the Social Secu-
rity Death Index for out-of-hospital deaths. Encounters missing EHR data were
deemed not missing at random and were therefore excluded from the model devel-
opment cohort. The resulting covariates are a mix of both continuous (BMI, age,
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etc.) and binary (indicator of comorbidities, etc), and therefore we utilize the pro-
bit transformation that was described above for all binary variables. In addition,
we center and scale the continuous variables and also include an intercept in the
model to learn the adjusted mean of the transformed binary variables.

We selected a cohort of 58,656 patients from Pythia that had undergone 77,150
invasive procedural encounters between January 2014 and January 2017, with all
complete data. Of those encounters 22,055 are flagged as encounters that meet
the POSH heuristic determined in clinical practice by surgeons and geriatricians,
patient over the age of 85 OR a patient over the age of 65 with greater than five
different medications, having two or more comorbidities, or whether the patient
had a recent weight loss or signs of dementia. We form a binary variable to indicate
whether a patient meets the POSH heuristic or not and use that grouping variable
to determine the hierarchical structure in the factor model.

4.2. Results. Our interests are twofold: learn important subset of features and
provide accurate predictions of risks of complication for both POSH and all surgi-
cal patients. Our goal is to show that pairing the POSH heuristic with a data-driven
predictive modeling approach improves the triaging of patients into the high-risk
clinic. Additionally, by understanding the covariates that most impact this high-
risk geriatric population, we provide insights into the characteristics of the patient
that make her/him high risk and therefore suggests other characteristics to be added
to the current heuristic or develop possible interventions to target these character-
istics.

We assess the performance of our model compared to other similar approaches.
The first comparison approach is an infinite factor model (IFM), which follows
the same Bayesian specification of the proposed HIFM but ignoring the group-
ing structure of the POSH group and the remaining surgery patients. The resulting
model is essentially the exact model proposed but assumes all patients are from
the same underlying population. Comparing the IFM to the HIFM will provide a
sense of how important transfer learning or sharing information between the two
populations improves prediction. The second comparison approach is a hierarchi-
cal factor model without any shrinkage. This follows the proposed model above
without the use of the weighting mechanism derived from the HDP. Here, we get a
sense of how a more common approach to factor modeling may work with multiple
populations. One thing to note is that we still allow sharing in this model through
the shared variance term in the each population’s loadings matrix, φjh.

We trained each model on 60,000 encounters from the Pythia database and held
out the 17,149 remaining encounters for validation, of which 4876 encounter met
the POSH heuristic. We ran our Gibbs sampler for 4000 iterations, with burn-in of
2000 and thinned every six observations. The hyperparameters for the HDP were
set to α0 = 10 and α1 = α2 = 15 with the tuning parameter for the Metropolis–
Hastings step, C = 50. With 189 variables in our setting, we set the upper bound
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FIG. 3. Receiver Operating Curve (ROC) of the five outcomes under the HIFM for encounters
across the whole held-out test set and for the test set of geriatric patients. Posterior means with 95%
credible intervals are displayed.

for k equal to 30. We tested multiple different upper bounds and found this was
sufficiently large where many of the factors were shrinking to zero.

To evaluate the predictive performance, we estimated the posterior predictive
distribution and evaluated our predicted probabilities compared to the true out-
comes. We use the posterior mean of the predictions and calculated the Receiver
Operator Characteristic (ROC) curves for both the entire test set and then the
POSH encounters within the test set. Figure 3 displays the resulting ROC curves
from HIFM. All complications achieved strong performance with AUC between
0.84–0.91. Table 6 displays the resulting area under the ROC curves (AUC) and
the area under precision-recall curves (AUPRC), comparing the overall test set and
the POSH-only test set for the three different methods. For the outcomes, vascu-
lar and pulmonary complications, the IFM outperforms the HIFM for the overall
population. However, HIFM outperforms IFM in the POSH group for these out-
comes according to AUC. This suggests that the model ignoring the POSH group
may help to improve learning overall for all patients but hinders the learning of the
targeted geriatric group. In general, for the POSH patients HIFM outperforms the
other two methods for all outcomes, according to AUC. There are a few AUPRC
values that are higher in the IFM and HFM group, though those also correspond
to AUCs that are lower than HIFM. These results suggest that our method is able
to borrow strength from the larger group to improve the prediction for the smaller
targeted group resulting in improved prediction, compared to the other two ap-
proaches tested.

In addition, we compare the sensitivities and specificities of the resulting model
to those of the baseline POSH heuristic. Note that we remove the 500 patients
that did go to the POSH clinic from the data so that we do not bias the results
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TABLE 6
Classification results on five surgical outcomes, comparing full results and POSH specific results
for the five outcomes under three different models. HIFM: hierarchical infinite factor model, IFM:

infinite factor model, HFM: hierarchical factor model

HIFM–Full IFM–Full HFM–Full

AUC AUPRC AUC AUPRC AUC AUPRC

Mortality 0.915 0.130 0.913 0.145 0.913 0.137
Cardiac 0.866 0.399 0.856 0.383 0.858 0.394
Vascular 0.862 0.152 0.864 0.171 0.864 0.157
Neurological 0.864 0.172 0.860 0.159 0.857 0.144
Pulmonary 0.897 0.303 0.898 0.283 0.895 0.307

HIFM–POSH IFM–POSH HFM–POSH

AUC AUPRC AUC AUPRC AUC AUPRC

Mortality 0.901 0.187 0.873 0.235 0.867 0.187
Cardiac 0.911 0.209 0.842 0.459 0.806 0.432
Vascular 0.867 0.402 0.857 0.260 0.846 0.277
Neurological 0.868 0.408 0.842 0.205 0.836 0.216
Pulmonary 0.872 0.148 0.837 0.288 0.835 0.302

with possible treatment effects of the POSH clinics on the patients’ outcomes. For
the outcome death, the sensitivity and specificity for HIFM are 0.908 and 0.775,
respectively. Alternatively, the POSH heuristic achieves a 0.345 sensitivity and
0.716 specificity. The POSH heuristic aims to target high risk patients, not neces-
sarily defined to be high risk of death, though this outcome serves as the best proxy
of overall risk. Currently, the POSH heuristic only identified 35% of patients that
died, while using the HIFM model in conjunction with the heuristic improves sen-
sitivity to 91%, providing evidence that our model is able to effectively identify
those patients that are high risk and should go to POSH.

We next calculate the resulting coefficients derived for the POSH specific pop-
ulation from HIFM through the partitioned covariance matrix, discussed in Sec-
tion 2.3, and find the posterior mean after burn-in and thinning. In Figure 4 we
display the coefficients that are greater than 0.05 across all five outcomes along
with their 95% credible intervals. Definitions for these variables are provided in
Supplement C (Lorenzi, Henao and Heller (2019)). Different numbers of coeffi-
cients appear in each column of the plot that corresponds to each outcome, which
is a result of the different levels of sparsity induced from the model. The resulting
coefficients confirm existing knowledge in the literature of important covariates
that predict these complications for geriatric patients. In addition, it suggests im-
portant procedures and medications that should be furthered flagged for patients to
prevent higher risk of complications. Specifically, procedures for organ transplants,
removal or insertion of a cardiac pacemaker and heart valve procedures increase
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FIG. 4. Largest estimated coefficients (|β| >= 0.05) for POSH group from HIFM. Posterior means
with 95% credible intervals are plotted for each. See Supplement C for definitions of the variable
names.

the risk of cardiac complications. Some procedures are inherently less risky across
the surgical outcomes, including procedures on muscles and tendons, joint replace-
ments that are not hip or knee and procedures on the nose, mouth and ears. The
number of medications patients take is strongly predictive of cardiac, pulmonary
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and vascular complications, and whether they are on anticoagulants increases the
risk of vascular and cardiac complications. Risk factors for neurological compli-
cations, which includes dementia, are alcoholism, need for fluids and electrolytes
(which indicates a nutritional deficiency), diabetes with complications, paralysis
and previous neurological problems. These align well with the literature on risk
factors of dementia, providing further evidence that our model detects predictive
covariates that are specific to the geriatric population. In addition, an interesting
feature of the chosen coefficients are their high correlation with one another. Typ-
ically in Lasso, highly correlated coefficients are shrunk so that only one remains
in the model. A nice feature in our model is that we can characterize patients more
accurately, regardless of how correlated the covariate space is, and provide a more
accurate summary of important features. More importantly, these coefficients point
to additional characteristics to better identify patients in the clinical setting.

5. Discussion. We introduced the hierarchical infinite factor model that uti-
lizes a hierarchical Dirichlet process weighting scheme as a sparsity-inducing
transfer learning model. We contributed an easy-to-implement inference method
and showed promising results that our method is effective at predicting surgical
complications between unbalanced and sparse populations, in comparison to two
other factor model approaches. Through simulation we show that, compared to
state-of-the art baseline models, our model has better predictive accuracy and more
accurate estimates of the coefficients, regardless of data size and type. In addition,
simulations show that HIFM flexibly models each population with its own factor
loadings matrix that controls the number of factors needed to best explain the data.
The resulting factor scores are a new representation of the data that diminishes the
distributional differences between the populations, resulting in similar predictive
performance regardless if one population is smaller than the other.

Others in the literature have utilized transfer learning to improve prediction in
health care settings. Gong et al. (2015) proposed an instance weighting algorithm
used in risk stratification models of cardiac surgery using a weighting scheme
based on distances of each observation to the mean of the target distribution’s
predictors. Wiens, Guttag and Horvitz (2014) discussed the problem of using data
from multiple hospitals to predict hospital-associated infection with Clostridium
difficile for a target hospital. Lee, Rubinfeld and Syed (2012) describe a method for
transfer learning for the American College of Surgeon’s National Surgical Quality
Improvement Program (NSQIP) dataset, predicting mortality in patients after 30
days. Their methodology uses cost-sensitive support vector machines, first training
the model on source data and next fitting the same model for the target data but
regularizing the model parameters toward that of the source model. While these
approaches succeed in accomplishing positive transfer in their individual applica-
tions, their methods fail to learn the dependence structure underlying the observed
data and do not provide any uncertainty quantification to the predicted outcomes.
Our approach not only achieves positive transfer learning such that prediction is
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improved in the target task, but it also provides interpretable insights into poten-
tial phenotypes of patients that best explain those at risk for complications post-
surgery. We show above that using this predictive tool compared to the current
POSH heuristic increases the sensitivity of death from 0.35 to 0.91. Improving
sensitivity by almost a factor of 3 would have a huge impact for the geriatric pa-
tients at Duke. Implementing our proposed model in practice has the potential
to save lives by either appropriately intervening on the patient or having further
follow-up to decide whether the surgery is the right option for that patient.

While this work has focused on transfer learning between multiple populations,
the model also shows promise as a sparsity inducing prior for single populations.
In future work, we aim to develop this model further in two directions. First, as
an improved transfer learning model that better shares information across multiple
populations. With such large imbalances between geriatric and the full population
and with low signal in many of the variables, the model often struggles to model
the local population accurately, leading to more noise and less accurate predictions.
In addition, the data contain many binary variables that require transformations to
use with our model. Another avenue for future work is to better address this binary
data type to reduce the additional uncertainty added to the inference through the
mapping of the binary variables into the continuous space. The second direction
will be to explore this model further as a sparse factor model, without explicitly
aiming to perform transfer learning. The properties proved in Section 2.4 hold
for a single population, therefore providing potential for further development as
a shrinkage prior. Lastly, we look further to testing and evaluating this model on
additional applications in the health realm. If the HIFM is applied to new types
of data, new properties in the feature space, such as group-specific covariates or
different data structures, will be of interest.

Additionally, one could consider the Laplace distribution, or commonly known
as the double-exponential distribution, as a prior for the factors, f i . Laplace dis-
tributed factors provide two additional features to the model: First, it induces spar-
sity through the factor distribution, which may improve model fit in sparse settings.
Second, it provides an improvement to the indeterminacy problems that occur nat-
urally with Gaussian factor models. We studied our model with Laplace distributed
factors and found that it provided no additional benefit in the prediction for our par-
ticular application, but in other settings, where identifiability is more of a concern,
this is a reasonable alternative to the proposed model above.

Our work is a part of the continued effort to create a clinical platform to deliver
individualized risk scores of complications at our university’s health system for
the purpose of triaging patients into preoperative clinics based on their underlying
surgical risk. We plan to implement this framework directly into their electronic
health system, so that clinicians will be able to assess the predicted complications
directly through the patient’s chart and treat the patient with suggested interven-
tions that address the patient’s increased risk.
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SUPPLEMENTARY MATERIAL

A. Proofs of HIFM properties (DOI: 10.1214/19-AOAS1292SUPPA; .pdf).
Properties of hierarchical infinite factor model prior on loadings matrix.

B. Inference for full model (DOI: 10.1214/19-AOAS1292SUPPB; .pdf). All
steps needed to sample the model.

C. Variable definitions shown in Figure 4. (DOI: 10.1214/19-AOAS1292
SUPPC; .pdf). Description of variable names shown in Figure 4.
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