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Variable selection is a pervasive problem in modern high-dimensional
data analysis where the number of features often exceeds the sample size
(a.k.a. small-n-large-p problem). Incorporation of group structure knowl-
edge to improve variable selection has been widely studied. Here, we con-
sider prior knowledge of a hierarchical overlapping group structure to im-
prove variable selection in regression setting. In genomics applications, for
instance, a biological pathway contains tens to hundreds of genes and a gene
can be mapped to multiple experimentally measured features (such as its
mRNA expression, copy number variation and methylation levels of possibly
multiple sites). In addition to the hierarchical structure, the groups at the same
level may overlap (e.g., two pathways can share common genes). Incorporat-
ing such hierarchical overlapping groups in traditional penalized regression
setting remains a difficult optimization problem. Alternatively, we propose a
Bayesian indicator model that can elegantly serve the purpose. We evaluate
the model in simulations and two breast cancer examples, and demonstrate
its superior performance over existing models. The result not only enhances
prediction accuracy but also improves variable selection and model interpre-
tation that lead to deeper biological insight of the disease.

1. Introduction. Variable selection is a pervasive problem in statistical ap-
plications, intended to search for the best model by eliminating unnecessary fea-
tures. It gains increasing attention particularly in high dimensional data analysis,
where the number of features often greatly exceeds the number of samples. For
high-dimensional regression problems, it is commonly believed that only a small
set of features have a nontrivial effect on the outcome, while most other features
have little or no effect. In the literature, the penalized regression method—lasso
(Tibshirani (1996)) uses an l1 norm penalty to achieve variable selection, however
it tends to randomly select one out of a set of highly correlated variables while
ignoring the others. Zou and Hastie (Zou and Hastie (2005)) proposed the elastic
net method with a combination of l1 and l2 norm penalties to overcome this prob-
lem. When prior information of grouped variables is available and variable selec-
tion by groups is desired, Yuan and Lin (2006) proposed the group lasso penalty
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so that variables inside the same group are selected or dropped together. In or-
der to further allow sparsity within selected groups, Simon et al. (2013) proposed
the sparse group lasso with both an l1 norm penalty and a group lasso penalty.
In the counterpart of Bayesian framework, variable selection can be viewed as
identifying nonzero variables (or elimination of variables very close to zero) in
the posterior distribution. Tibshirani (1996) pointed out that the lasso estimator is
equivalent to the posterior median of a Gaussian model using the double expo-
nential (Laplace) prior for each variable. Inspired by the hierarchical structure of
Laplace prior, Park and Casella (2008) proposed a full Bayesian lasso model, and
Kyung et al. (2010) further derived the Bayesian version for the group lasso and
the elastic net. Mitchell and Beauchamp (1988) proposed another popular type of
prior called the “spike and slab” prior, which is a mixture of a point mass at zero
(or a distribution centered around zero with small variance) and a diffuse uniform
or large variance distribution (see also George and McCulloch (1993) and Kuo and
Mallick (1998)). Hernández-Lobato, Hernández-Lobato and Dupont (2013) gen-
eralized the spike-and-slab prior for group feature selection and implemented the
expectation propagation algorithm. Xu and Ghosh (2015) and Zhang et al. (2014a)
extended the spike-and-slab prior to achieve sparsity both at the group level and
within groups. Under mild conditions, the posterior median estimator for a normal
mean sample with the spike-and-slab prior is a soft-thresholding estimator with
desired selection consistency and asymptotic normality properties (Johnstone and
Silverman (2004), Xu and Ghosh (2015)). Chen et al. (2016) developed a similar
Bayesian model by introducing separate binary selection indicators for each group
and each feature inside each group, which can also lead to sparsity at the group
level and within groups.

All aforementioned methods allow only nonoverlapping and single layer group
structures. In this paper, we consider a motivating example that requires incorpo-
ration of a hierarchical overlapping group structure. Suppose SNP array, methyla-
tion array, miRNA array and RNA-seq are performed on n tumor tissues to obtain
genome-wide copy number variation (CNV), methylation, miRNA and mRNA ex-
pression measurements. Integration of such multi-level omics data has become
prevalent in the research of many diseases and has brought new statistical chal-
lenges (see Richardson, Tseng and Sun (2016) for review). Denote p as the total
umber of variables in the union of all CNV, methylation sites, miRNA and mRNA
expression features. The input data X = {xij } is a n×p matrix, where n is the num-
ber of samples. Figure 1(A) shows an example of hierarchical overlapping group
structure with two layers of groups. In the first layer of groups, four features belong
to the gene A group: mRNA, CNV and methylation probe of gene A, and miRNA
α that targets gene A (knowledge known a priori from miRNA target database).
Similarly, group gene B contains three multi-omics features, and miRNA α also
targets this gene. The group structure of gene A and B, at the first layer, is an ex-
ample of overlapping group structure as they are both targeted by miRNA α. In the
second layer, pathway θ contains these two genes, and another pathway φ contains
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FIG. 1. (A) An example of a hierarchical overlapping group structure in a multi-omics dataset.
Multi-omics features (mRNA expression, copy number variation (CNV) and DNA methylation) are
mapped to genes (level-1 groups), and genes are grouped into pathways (level-2 groups). Some mul-
ti-omics features may belong to multiple gene groups. For example, miRNA α regulates both gene A
and gene B. A gene may also belong to multiple pathways due to its multiple functions, such as gene
B. (B) U(1) membership matrix denotes if a multi-omics feature belongs to a certain gene. (C) U(2)

membership matrix denotes if a gene belongs to a certain pathway.

gene B and C. As a result, pathways θ and φ represent overlapping groups at the
second layer as they both contain gene B. To formally represent such structure,
we introduce two membership matrices for this example in Figure 1(B) and 1(C).
U(1) is a matrix with a row dimension equal to the number of multi-omics features
(i.e., p = 10), and a column dimension equal to the number of genes (i.e., m1 = 3,
m1 is the total gene number). U

(1)
jk = 1 denotes multi-omics feature j (1 ≤ j ≤ p)

belonging to gene k (1 ≤ k ≤ m1), otherwise U
(1)
jk = 0. Furthermore, we also intro-

duce U(2) matrix with a row dimension equal to the number of genes (i.e., m1 = 3),
and a column dimension equal to the number of pathways (i.e., m2 = 2, m2 is the
number of pathways). Again, U

(2)
kl = 1 denotes that gene k (1 ≤ k ≤ m1) belongs

to pathway l (1 ≤ l ≤ m2), otherwise U
(2)
kl = 0. In this paper, we consider a multi-

omics linear regression setting yi = ∑p
j=1 xijβj + εi , where dependent variable

Y = {yi}1≤i≤n is the clinical outcome, X = {xij }1≤i≤n,1≤j≤p represents measure-
ments of multi-omics features, and feature number p is usually much larger than
sample size n. Since p >> n, variable selection that properly incorporates prior
biological knowledge is crucial. In our situation, the group structure of “multi-
omics feature ⇒ gene ⇒ pathway” demonstrates a hierarchical overlapping group
structure that brings challenges for variable selection in the regression setting.

A similar but simplified version of this structure was studied by Zhao, Rocha
and Yu (2009) and Jenatton et al. (2011), in which, features are structured to form
a tree, but the groups defined by nodes at the same depth are not allowed to over-
lap. They designed a specific group penalty, so that a child node group will only be
selected when its parent node is selected. For general overlapping group structure,
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Jacob, Obozinski and Vert (2009) proposed the concept of latent feature decom-
position, which led to the solution support as the union of groups. Similarly, in the
Bayesian framework, Zhang et al. (2014b) decomposed the marginal regression
coefficient of a feature shared by multiple groups to be the sum of partial effects
contributed by each group. With the hierarchical overlapping group structure, the
target function of penalized regression approaches generally becomes intractable
to optimize. A Bayesian hierarchical model provides a natural alternative for in-
corporating the hierarchical overlapping group structure. We propose a multi-layer
indicator variable selection model extended from Kuo and Mallick (1998) where
three levels of binary indicators illustrate whether the corresponding multi-omics
features, genes or pathways are selected. For overlapping groups, we adopt from
Zhang et al. (2014a) the additive effect assumption for each overlapping group.
We will show that incorporation of the hierarchical overlapping group structure
enhances prediction accuracy and improves both feature selection and model in-
terpretation.

The paper is organized as follows. In Section 2, we review the indicator vari-
able selection model, and propose a Bayesian indicator variable selection model
with single-layer and hierarchical (multi-layer) overlapping group structures. We
describe the detailed MCMC algorithms for each model and extend the models to
binary and survival outcomes. In Section 3, we illustrate the capabilities and lim-
itations of existing methods compared to our proposed model. In Section 4, four
simulations are demonstrated to compare the performance of the proposed model
and other existing methods. We further apply the model to data from two real ex-
amples in breast cancer, using multi-omics features to predict estrogen receptor
(ER) status and histological subtype (invasive lobular carcinoma (ILC) versus in-
vasive ductal carcinoma (IDC)) in Section 5. Section 6 contains final conclusion
and discussion.

2. Methods.

2.1. Review of indicator variable selection model. Consider a linear regres-
sion setting, in which Y = (Y1, . . . , Yn)

T denotes the outcomes for n samples,
and X denotes an n × p covariate matrix for p variables. Assume data are cen-
tered and thus the intercept can be omitted. Under linear regression assumptions,
Yi = ∑p

j=1 xijβj + εi , where εi ∼ N(0, σ 2), and i = 1, . . . , n.
Bayesian indicator variable selection model was first proposed in Kuo and

Mallick (1998). It embeds binary indicators into regression model to incorporate
all 2p candidate models. Denoting the binary indicator as γj , the indicator variable
selection model is

Yi =
p∑

j=1

βjγjxij + εi, εi ∼ N
(
0, σ 2)

,

β = (β1, . . . , βp)T ∼ N(0,D0), γj ∼ Bern(π).
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If D0 = s2Ip×p is a diagonal matrix, where Ip×p is an identity matrix with di-
mension p × p, and we define β∗

j = βjγj , the indicator prior is equivalent to a
spike-and-slab prior:

β∗
j ∼ (1 − π)δ0(·) + πN

(
0, s2)

,

where δa(·) is a Dirac delta function putting all mass at a.
This method is free of tuning and can be easily extended to more complicated

modeling, such as a model with interactions. However, if the prior is too vague,
mixing can be poor, as the sampled values of βj may only rarely be in the re-
gion with high posterior support (O’Hara and Sillanpää (2009)). Other alternatives
have been proposed (George and McCulloch (1993)), but most of them require
additional parameter tuning.

2.2. SOG: Bayesian indicator variable selection with single-layer overlap-
ping groups. Motivated by the indicator variable selection model, we propose
a Bayesian indicator variable selection model with Multi-layer hierarchical Over-
lapping Groups (MOG). We first introduce a simple version with only Single-layer
Overlapping Groups (SOG).

Under the same linear regression setting in Section 2.1, we assume p variables
(level-0 variables) belonging to m1 possibly overlapping groups (level-1 groups).
For instance, p experimentally measured features are mapped to m1 genes. We
define a p × m1 matrix U(1) to denote the group membership of level-0 variables,
with U

(1)
j,k = 1 denoting that level-0 variable j belongs to level-1 group k, and

U
(1)
j,k = 0 otherwise. We propose the following model:

Yi ∼ N

( p∑
j=1

m1∑
k=1

xijβjk, σ
2

)
,

(
βjk|U(1)

jk = 1
) = γ

(1)
k γ

(0)
jk bjk,(

βjk|U(1)
jk = 0

) ∼ δ0(·),
γ

(1)
k ∼ Bern

(
π(1)), γ (0)

jk ∼ Bern
(
π

(0)
k /Rj

)
, bjk ∼ N

(
0, s2)

,p
(
σ 2) ∝ 1/σ 2,

where Rj = ∑m1
k=1 U

(1)
jk is the number of level-1 groups which includes level-0

variable j . The reason for scaling by Rj in the prior of γ
(0)
jk is to ensure the same

selection probability and variance of the marginal effect βj = ∑m1
k=1 U

(1)
jk βjk in the

prior distribution. The justification is outlined below in Remark (2). In SOG, γ
(1)
k

can be interpreted as the selection indicator for level-1 group k; if γ
(1)
k = 1, γ

(0)
jk

can be interpreted as the selection indicator for level-0 variable j belonging to the
level-1 group k; βjk �= 0 if and only if γ

(1)
k = 1 and γ

(0)
jk = 1. A singleton will be

treated as a group with itself as its only member.
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Markov chain Monte Carlo (MCMC) is used for model fitting. When groups
do not overlap, all the full conditional distributions are available for Gibbs sam-
pling; otherwise, Metropolis–Hastings is used to update π

(0)
k . See Section 1 of the

Supplementary Material (Zhu et al. (2019)).

Remarks.

(1) U(1) is a sparse matrix, most of whose entries are 0’s and a few are 1’s.∑m1
k=1 U

(1)
jk is the number of level-1 groups that level-0 variable j belongs to. If∑m1

k=1 U
(1)
jk > 1, level-0 variable j belongs to multiple groups.

∑p
j=1 U

(1)
jk is the

number of level-0 variables that belong to level-1 group k. If
∑p

j=1 U
(1)
jk U

(1)
jk′ ≥ 1,

level-1 groups k and k′ overlap. β is also a p × m1 sparse matrix, with βjk �= 0

only when U
(1)
jk = 1.

(2) Assuming π
(0)
k = π(0) for all 1 ≤ k ≤ m1, the prior probability Pr(βj �=

0) = 1−∏m1
k=1 Pr(βjk �= 0)

U
(1)
jk = 1− (1−π(1)π(0)/Rj )

Rj ≈ 1− (1−π(1) π(0)

Rj
Rj )

(if ignoring higher order terms) = π(1)π(0), which is free of Rj . Meanwhile, the

variance of βj in the prior distribution is Var(βj ) = E(β2
j ) = E(

∑m1
k=1 U

(1)
jk βjk)

2 =
Rj(π

(1) π(0)

Rj
s2) = π(1)π(0)s2, which is also free of Rj .

(3) In the case of features belonging to multiple groups, such as feature 1
shared by group 1 and 2, we assume β1 = β11 + β12. Here, partial effects (β11,
β12) are not separately identifiable in the classical frequentist sense, since dif-
ferent parameter values can correspond to the same likelihood through the equal
sum. This may seem to violate another definition of identifiability in the Bayesian
framework, which we will refer to as “unidentifiable by likelihood” (Gelfand and
Sahu (1999)). However, with an informative prior, or if the separate parameters
share information from other parameters (e.g., β11 shares information with other
parameters in group 1 and β12 shares information with other parameters in group 2
in our case), identifiability is not an issue, although slow convergence or unstable
MCMC can be a problem (Eberly and Carlin (2000)). Nevertheless, the marginal
parameter β1 is our main interest of inference and is always identifiable by likeli-
hood no matter in a frequentist or a Bayesian framework.

(4) For binary indicators γ
(1)
k and γ

(0)
jk , there are three situations potentially not

identifiable by likelihood (suppose two features belong to group k): (1) γ
(1)
k = 0,

and γ
(0)
1k = γ

(0)
2k = 0; (2) γ

(1)
k = 1, and γ

(0)
1k = γ

(0)
2k = 0; and (3) γ

(1)
k = 0, and

γ
(0)
1k = 1 or γ

(0)
2k = 1. Chen et al. (2016) used a conditional prior to avoid situation

(3), so that whenever γ
(1)
k is zero, γ

(0)
1k and γ

(0)
2k have to be zero. This conditional

prior can be adopted into our model easily, but it still cannot distinguish situa-
tion (1) and (2) by avoiding a “false group” with all zero features in situation (2).
Stingo et al. (2011) imposed three additional constraints for interpretability and
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identifiability. When γ
(1)
k = 0, they forced γ

(0)
1k = γ

(0)
1k = 0; and if γ

(1)
k = 1, they

eliminated the possibility of having γ
(0)
jk = 0 for all j = 1, . . . , p. However, this

constrained prior makes the Gibbs sampling infeasible. Thus, they have to adopt
the Metropolis–Hastings algorithm, which can be inefficient when multi-layers of
groups are introduced and feature dimension becomes large. Therefore, we de-
cided not to add constraints in our prior, at a price that individual indicators γ

(1)
k

and γ
(0)
jk may not be interpretable occasionally. Instead, they are used to impose

group level and variable level sparsity. Variable selection eventually is determined
at level-0 variable level by ηjk = γ

(1)
k γ

(0)
jk . Higher level group selection will be de-

fined through group impact score (i.e., pathway impact score, PIS; see Section 5.1)
to provide interpretation of selection at different layers of groups.

(5) s2 controls the magnitude of the effect size. Here, for simplicity, we assume
all bjk are from the same distribution with common s2. However, when dealing
with multi-omics data in all our applications, we let s2 be platform specific. In
other words, methylation, CNV and gene expression can have different levels of
variability.

(6) We assign hyper-priors: π(1) ∼ Beta(a1, b1), π
(0)
k ∼ Beta(a0, b0), and s2 ∼

Inverse − Gamma(as, bs). If prior information is not available, we set a1 = b1 =
a0 = b0 = 1, and p(s2) ∝ 1/s2 (i.e., as = bs ≈ 0) as a noninformative prior. When
the group size varies, borrowing information across groups will stabilize the esti-
mate of π

(0)
k for groups with small size. We consider two possible ways of informa-

tion sharing: one is to assume that genes can be categorized into clusters, each with
cluster-specific sparsity prior (Lock and Dunson (2017)), and the other is to use a
common informative prior to stabilize the estimates. Since the former option is
similar to the design of level-2 group sparsity, which will be proposed later, in this
situation, we choose the second option and propose an empirical Bayes approach
to estimate a0 and b0: (1) We first apply lasso regression (Tibshirani (1996)), ig-
noring any group structure; (2) Then, group specific sparsity π̂

(0)
k is estimated

by counting the number of nonzero coefficients inside each group k; (3) Finally,

by moment matching, hyper-parameters are estimated as â0 = (1−Ê

V̂
− 1

Ê
)Ê2 and

b̂0 = (1−Ê

V̂
− 1

Ê
)(1− Ê)Ê, where Ê and V̂ are the sample expectation and variance

of π̂
(0)
k (k = 1, . . . ,m1). A simulation was conducted to evaluate the performance

of borrowing information using the proposed empirical Bayes approach (simula-
tion V in Section 3 of the Supplementary Material, Zhu et al. (2019)). When a large
number of groups with a reasonable number of variables inside each group exist,
borrowing information can better estimate π

(0)
k . When the number of groups or

the number of variables in each group is small, this approach may produce inaccu-
rate estimate of π

(0)
k , because a0 and b0 cannot be accurately inferred. Due to the

pros and cons of borrowing information to help estimate group specific sparsity,
we allow users to choose the new empirical Bayes approach or the original nonin-
formative approach in our R package. Users can decide which approach to use by
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evaluating performance in cross-validation. For all simulations and applications in
this paper, we will apply the original noninformative prior.

2.3. MOG: Bayesian indicator variable selection with multi-layer hierarchi-
cal overlapping groups. In the presence of multi-layer (say s layers) hierarchical
overlapping groups, we define U(1), . . . ,U(s), each with dimension p × m1,m1 ×
m2, . . . ,ms−1 × ms respectively, to specify the group structures. The multi-level
omics data example in the Introduction (Figure 1(A)) corresponds to a structure
with s = 2. Below, we use s = 2 to illustrate the motivating example, but the model
can be extended to s > 2. The proposed model for two-layer overlapping groups is

Yi ∼ N

( p∑
j=1

m1∑
k=1

m2∑
l=1

xijβjkl, σ
2

)
,

(
βjkl|U(1)

jk U
(2)
kl = 1

) = γ
(2)
l γ

(1)
kl γ

(0)
jkl bjkl,(

βjkl|U(1)
jk U

(2)
kl = 0

) ∼ δ0(·),
γ

(2)
l ∼ Bern

(
π(2)), γ (1)

kl ∼ Bern
(
π

(1)
l /Dk

)
, γ

(0)
jkl ∼ Bern

(
π

(0)
kl /Rj

)
,

bjkl ∼ N
(
0, s2)

,p
(
σ 2) ∝ 1/σ 2,

where Dk = ∑m2
l=1 U

(2)
kl is the number of level-2 groups which share level-1

group k. Similar to Rj in SOG, Dk and Rj here are used to ensure the same se-
lection probability and variance for the marginal effect βj in the prior distribution.

In MOG, γ
(2)
l can be interpreted as the selection indicator for level-2 group l; if

γ
(2)
l = 1, γ

(1)
kl can be interpreted as the selection indicator for level-1 group k be-

longing to level-2 group l; if γ
(2)
l γ

(1)
kl = 1, γ

(0)
jkl can be interpreted as the selection

indicator for level-0 variable j belonging to level-1 group k and level-2 group l;
βjkl �= 0 if and only if γ

(2)
l = 1, γ

(1)
jk = 1, and γ

(0)
jkl = 1.

When prior information is not available, we assign noninformative hyper-
priors similar to SOG: π(2) ∼ Beta(1,1), π(1)

l ∼ Beta(1,1), π(0)
kl ∼ Beta(1,1), and

p(s2) ∝ 1/s2. MCMC sampling is described in Section 1 of the Supplementry Ma-
terial (Zhu et al. (2019)).

Remarks.

(1) With s layers of overlapping groups, we define V (s1)(s2) = ∏s2
t=s1

U(t).

V (s1)(s2) is a ms1 × ms2 matrix, with V
(s1)(s2)
jq ≥ 1 indicating that level-s1 group

j belongs to level-s2 group q; V
(s1)(s2)
jq = 0, otherwise.

(2) Asymptotic properties of SOG and MOG under orthogonal design are pro-
vided in the Supplementry Materials. Briefly, we show that the posterior median
estimator of βjkl is a soft-thresholding estimator with selection consistency and
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asymptotic normality, when the design matrix is orthogonal, p is fixed and n → ∞.
Although the assumptions generally do not hold in multi-omics applications, the
properties provide some insights to the proposed method.

2.4. Extension to binary and survival outcomes. For a binary outcome, we
adopt the data augmentation from Albert and Chib (1993) introducing latent vari-
able Zi (i = 1, . . . , n) to replace Yi in the regression

Yi =
{

1, if Zi ≥ 0,

0, otherwise,
Zi = β0 + xT

i β + εi, εi ∼ N(0,1),

where β0 is the intercept, for which a noninformative prior N(0,100) is given.
For a survival outcome, we apply similar data augmentation (Tanner and Wong

(1987)) for accelerated failure time (AFT) model, introducing latent variable Zi

for time to event ti and censor indicator δi (δi = 1 indicating event happened):{
log(ti) = Zi, if δi = 1,

log(ti) < Zi, if δi = 0,
Zi = β0 + xT

i β + εi, εi ∼ N
(
0, σ 2)

.

3. Related methods.

3.1. Capabilities and limitations of existing methods. Many methods have
been proposed for variable selection with or without group structures. Here, we
illustrate the major capabilities and limitations of several related methods com-
paring to SOG/MOG. Table 1 tabulates the key features and comparison of all
methods.

• Penalized regression.
– Lasso (Tibshirani (1996)): One of the most popular variable selection meth-

ods using an l1 penalty at individual variable level without any group struc-
ture.

– Group lasso (GL) (Yuan and Lin (2006)): Group selection is performed using
an l2 penalty, and each group is either entirely selected or entirely dropped.

– Sparse group lasso (SGL) (Simon et al. (2013)): The penalty term combines
an l2 norm penalty on group level and an l1 penalty on individual variable
level to achieve both group selection and sparsity inside a selected group.
However, it is only applicable to single-layer group structure.

– Tree structured group lasso (TGL) (Zhao, Rocha and Yu (2009), Liu et al.
(2009)): It is designed for hierarchical tree structured variables, and it can lead
to a sparsity pattern in which a group defined by child node is always selected
after its parent node. However, groups defined by nodes at the same depth are
not allowed to overlap, and thus TGL is not applicable to overlapping group
structure.
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TABLE 1
Compare MOG/SOG to some existing methods

Method Feature Exact zero in Group Exact zero in Varying sparsity Overlapping Multi-layer Reference
selection feature selection selection group selection inside groups groups groups

MOG � � � � � � �
SOG � � � � � � χ

BSGS � � � � χ 
 χ Chen et al. (2016)
BSGS-SS � � � � χ 
 χ Xu and Ghosh (2015)
HSVS � χ � � � 
 χ Zhang et al. (2014a)
TGL � � � � – χ � Zhao, Rocha and Yu (2009)
SGL � � � � – χ χ Simon et al. (2013)
GL χ χ � � – χ χ Yuan and Lin (2006)
Lasso � � χ χ – χ χ Tibshirani (1996)

� indicates it can be achieved; χ indicates it cannot be achieved; 
 indicates it cannot be achieved by the original method, but it can be achieved by an
extended version in this paper; – indicates it is not applicable.
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• Bayesian methods.
– BSGS (Bayesian sparse group lasso, Chen et al. (2016)): This Bayesian hi-

erarchical model is similar to SOG except that it predetermines some hyper-
parameters, assumes common group sparsity, and assumes conditional priors
on binary indicators (see Section 2.2 Remark (4)). It does not allow a multi-
layer hierarchical group structure.

– BSGS-SS (Bayesian sparse group selection with spike-and-slab, Xu and
Ghosh (2015)): Compared to SOG or BSGS, this Bayesian hierarchical model
constructs binary indicators differently. But it still assumes common group
sparsity and does not allow a multi-layer hierarchical group structure.

– HSVS (Hierarchical structured variable selection, Zhang et al. (2014a)): This
is another Bayesian indicator variable selection model similar to SOG. The
method applies Laplace prior and does not generate exact zero estimates in
MCMC. Sparsity is achieved by truncation at an arbitrary threshold. It does
not allow a multi-layer hierarchical group structure.

3.2. Implementation and evaluation to compare with other existing models.
We compared our model to three existing Bayesian models BSGS (Chen et al.
(2016)), BSGS-SS (Xu and Ghosh (2015)) and HSVS (Zhang et al. (2014a)), all
of which can perform variable selection at the group level and within groups. Since
BSGS requires all hyper-parameters to be predetermined, we set them to the soft-
ware default if available. The choice of τ 2 in BSGS, which serves the same purpose
as s2 in SOG, is a sensitive hyper-parameter without a default value, and the de-
tails will be discussed in each simulation. When overlapping groups existed, the
same decomposition assumption was applied to all Bayesian methods. When deal-
ing with binary outcomes, we applied the same data augmentation in Section 2.4 to
BSGS-SS and HSVS. The built-in function for binary outcome in BSGS package
reported a fatal error, so we excluded it from our comparison. We also compared
our model to lasso (Tibshirani (1996)), group lasso (GL) (Yuan and Lin (2006)),
sparse group lasso (SGL) (Simon et al. (2013)) and tree structured group lasso
(TGL) (Zhao, Rocha and Yu (2009)). Since TGL reduces to SGL when only a
single-layer of groups exist, and it does not allow groups of the same level to
overlap, we only evaluated its performance in simulation IV in which tree struc-
tured variables were simulated. The mixing weight α in SGL was set to be 0.95
by software default, thus more similar to lasso. The performance was evaluated
by accuracy of both variable selection and prediction. In all the simulations and
applications, data were randomly split into five folds, with four folds as training
sets and one fold as the testing set.

In terms of variable selection performance, when the true β is known in sim-
ulation, the performance of variable selection relies on a tuning parameter or a
cutoff. To eliminate the influence of arbitrary cutoffs in different methods, we de-
rived sensitivity and specificity of variable selection under different cutoffs and
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calculated the area under the receiver operating curves (AUC) for a fair com-
parison. MOG (SOG), BSGS and BSGS-SS can obtain exact zero estimates in-
side groups in each MCMC iteration, so level-0 variables were sorted accord-
ing to the posterior mean of the selection probability, which was calculated as
P̂r(βj �= 0|Y,X) = 1

B

∑B
b=1 I(β

(b)
j �= 0), where β

(b)
j is the bth iteration of totally

B converged MCMC samples. HSVS uses Laplace prior within groups and can-
not obtain exact zeros inside a group if the group is selected, even though the
estimates are shrunk towards zero. As a result, we sorted the features based on
max(ppos,1 − ppos), where ppos is the posterior mean of P(βj > 0|Y). For lasso,
GL, SGL and TGL, we applied multiple tuning parameters that detected different
numbers of variables and formed the basis of ROC curve. Default tuning parame-
ter sequences were used in lasso, GL and SGL, whereas TGL calculated the max
tuning parameter automatically, and we selected a sequence of ratios as 0.01 to
1, with an increment of 0.01. For MOG (SOG), BSGS and BSGS-SS, which pro-
duces coefficients as exact zeroes, we also controlled Bayesian false discovery rate
(BFDR, Newton et al. (2004)) at the nominal level of 10% to compare their true
FDRs (the number of false positives/the number of claimed positives) and false
omission rates (FOR, the number of false negatives/number of claimed negatives).

To evaluate model prediction accuracy, the coefficient estimates need to be cal-
culated. All Bayesian methods (MOG, SOG, BSGS, BSGS-SS and HSVS) used
the posterior median estimator, whereas the penalized regression methods (Lasso,
GL, SGL and TGL) used tuning parameters selected by tenfold cross-validation.
For continuous outcomes, we compared prediction mean squared error (MSE) in
the testing set, that is, MSE = 1

nte

∑nte

i=1(x
T
test,i β̂ − ytest,i)

2, where nte is the sample
size in the testing set and ytest,i is the ith observation in the testing set. If the out-
comes were binary, we sorted the samples in the testing set based on the predicted
probability and calculated the prediction AUC.

R was used to implement all methods, except that TGL was implemented in
Matlab. Gibbs sampler of all Bayesian models used 3000 MCMC iterations (2000
as burn-in) in simulations, and 20,000 iterations (10,000 as burn-in) in applica-
tions. BSGS, by default, uses Monte Carlo standard error (MCSE) for convergence
diagnosis, and it only updates one group at each iteration. To make comparison
fair but also save time, we applied 30,000 iterations (20,000 as burn-in) simula-
tions with 10 groups in simulation I and II, and 200,000 iterations (100,000 as
burn-in) in simulation III with 100 groups. In the end, we only included simula-
tions which achieved MCSE below 0.1. When groups overlaped, SOG/MOG used
the Metropolis–Hastings algorithm keeping 5000 iterations from stationary distri-
bution, which was monitored by Gekewe diagnosis (Geweke et al. (1991)). We
applied R packages MBSGS, glmnet, grplasso, SGL and Matlab package SLEP
(Liu et al. (2009)), for BSGS-SS, lasso, GL, SGL and TGL, respectively. R pack-
ages/functions for BSGS and HSVS was provided by the original authors. We pro-
vided data and programming code in github (https://github.com/lizhu06/MOG_
code_data) to reproduce all results in this paper.

https://github.com/lizhu06/MOG_code_data
https://github.com/lizhu06/MOG_code_data
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4. Simulations.

4.1. Simulation I: Single-layer nonoverlapping groups. We first simulated
data with single-layer nonoverlapping groups to evaluate the performance of SOG.
We set n = 125, p = 200, m1 = 10 and U(1) with block diagonal structure as be-
low:

U(1) =

⎡
⎢⎢⎢⎣

120 020 . . . 020
020 120 . . . 020
...

...
. . .

...

020 020 . . . 120

⎤
⎥⎥⎥⎦ ,

where 1m (0m) denotes an m × 1 column matrix with all values equal to 1 (0).
In this setting, all 10 level-1 groups are disjoint, each having 20 level-0 variables.
To model the within level-1 group correlation to be 0.5, for each level-1 group k

(k = 1, . . . , m1), we drew z
(1)
k independently from N(0,1), and sampled xij =

(z
(1)
k + eij )/

√
2, where eij ∼ N(0,1), 1 ≤ i ≤ n, and 1 ≤ j ≤ p. The total number

of effective βjk’s with corresponding U
(1)
jk = 1 was 200. We set 50 out of those

200 β’s to be nonzero, generated from N(0,5). Other β’s were set to be 0. We
set the sparsity to vary among level-1 groups: group 1 had all 20 β’s as nonzero;
group 2 and 3 had 10 out of 20 β’s as nonzero; group 4 and 5 had 5 out of 20 β’s
as nonzero. All other groups had all β’s as zero. The outcomes were generated as
yi = ∑p

j=1 xijβj + εi , where εi ∼ N(0,1).
We repeated the simulation 100 times and compared the variable selection and

prediction performance of SOG with BSGS, BSGS-SS, HSVS, lasso, GL and SGL
with the evaluation criteria described in Section 3.2. We applied two values of τ 2

in BSGS, one being the truth τ 2 = 5, and the other being τ 2 = 1 to evaluate the
sensitivity.

From Table 2, we can see that SOG had the best variable selection performance
and prediction accuracy, with the highest AUC and the smallest MSE. For BSGS,
even with the large amount of MCMC iterations, the number of valid simulations
(MCSE < 0.1) left were limited, with 54 and 11 simulations left for τ 2 = 5 and 1
respectively. Among the valid simulations, BSGS with the correct setting (τ 2 = 5)
had the similar feature selection AUC with SOG, but MSE was slightly larger.
This is probably because BSGS estimates β as the average of its non-zero MCMC
samples, which may be biased as it ignores the zeros; in addition, it assumes the
same sparsity inside each group. BSGS-SS also had similar feature selection AUC
and slightly higher prediction MSE, possibly also due to the same assumption of
equal within group sparsity. HSVS had larger MSE and smaller AUC, which was
likely because the Laplace prior failed to provide exact zero estimates. Lasso and
GL both had poor performance as expected, since lasso does not consider group
structure and GL does not consider sparsity within selected groups. SGL improved
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TABLE 2
Variable selection and prediction performance comparisons for simulation I, II, III and IV

(mean(SE)). AUC is calculated based on posterior selection probability for Bayesian models and
different tuning parameters for penalized regression models. True FDR (number of false positives/

number of claimed positives) and FOR (number of false negatives/ number of claimed negatives) are
calculated given simulation truth under nominal level of BFDR 0.1 for Bayesian models which can
produce exact zero estimates; MSE is calculated using posterior median for Bayesian models and

using best tuning parameter from cross-validation for penalized regression models

Feature selection

Cutoff-free Control nominal BFDR = 0.1 Prediction

Model AUC True FDR True FOR MSE

Simulation I SOG 0.99 (0.00) 0.08 (0.00) 0.03 (0.00) 3.15 (0.13)

single-layer BSGS (τ2 = 5) 0.97 (0.00) 0.06 (0.01) 0.06 (0.00) 7.39 (0.98)

non-overlapping BSGS (τ2 = 1) 0.95 (0.01) 0.15 (0.04) 0.07 (0.00) 7.92 (0.8)

BSGS-SS 0.97 (0.00) 0.45 (0.02) 0.01 (0.00) 7.07 (2.50)

HSVS 0.96 (0.00) – – 6.68 (0.31)

Lasso 0.78 (0.00) – – 28.3 (1.44)

GL 0.51 (0.00) – – 193.75 (11.31)

SGL 0.74 (0.00) – – 41.64 (1.82)

Simulation II SOG 0.98 (0.00) 0.11 (0.01) 0.04 (0.01) 5.27 (0.93)

single-layer BSGS (τ2 = 5) 0.96 (0.01) 0.07 (0.02) 0.06 (0.00) 10.06 (2.11)

overlapping BSGS (τ2 = 1) 0.87 (0.02) 0.26 (0.06) 0.07 (0.00) 23.66 (3.10)

BSGS-SS 0.97 (0.00) 0.44 (0.01) 0.01 (0.00) 5.57 (1.04)

HSVS 0.97 (0.00) – – 5.93 (0.29)

Simulation III MOG 0.99 (0.00) 0.03 (0.00) 0.04 (0.00) 0.75 (0.03)

U = 0.2 SOG 0.97 (0.02) 0.02 (0.02) 0.11 (0.05) 3.92 (1.29)

two-layer BSGS 0.86 (0.00) 0.03 (0.01) 0.25 (0.00) 29.64 (1.05)

overlapping BSGS-SS 0.92 (0.00) 0.02 (0.00) 0.22 (0.01) 8.91 (0.33)

HSVS 0.82 (0.01) – – 11.85 (0.46)

Lasso 0.74 (0.00) – – 8.96 (0.25)

GL 0.75 (0.00) – – 5.64 (0.17)

SGL 0.74 (0.00) – – 8.52 (0.24)

Simulation III MOG 1.00 (0.00) 0.1 (0.00) 0.00 (0.00) 0.54 (0.01)

U = 0.5 SOG 1.00 (0.00) 0.1 (0.01) 0.00 (0.00) 2.09 (0.09)

two-layer BSGS 0.94 (0.01) 0.08 (0.02) 0.04 (0.00) 17.01 (1.36)

overlapping BSGS-SS 0.96 (0.00) 0.07 (0.01) 0.11 (0.01) 28.99 (1.86)

HSVS 0.98 (0.01) – – 4.57 (0.81)

Lasso 0.77 (0.00) – – 42.15 (1.30)

GL 0.81 (0.00) – – 20.51 (0.69)

SGL 0.75 (0.00) – – 43.10 (1.24)
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TABLE 2
(Continued)

Feature selection

Cutoff-free Control nominal BFDR = 0.1 Prediction

Model AUC True FDR True FOR MSE

Simulation IV MOG 1.00 (0.00) 0.03 (0.00) 0.04 (0.00) 0.76 (0.028)

U = 0.2 TGL 0.86 (0.04) – – 5.47 (1.37)

two-layer Lasso 0.74 (0.00) – – 9.21 (0.19)

non-overlapping GL 0.77 (0.00) – – 6.00 (0.20)

SGL 0.74 (0.00) – – 8.34 (0.18)

Simulation IV MOG 1.00 (0.00) 0.10 (0.00) 0.00 (0.00) 0.55 (0.015)

U = 0.5 TGL 0.88 (0.04) – – 18.47 (6.05)

two-layer Lasso 0.77 (0.00) – – 42.26 (1.05)

non-overlapping GL 0.80 (0.00) – – 22.14 (0.90)

SGL 0.76 (0.00) – – 42.69 (0.97)

feature selection AUC over GL as expected, but it implicitly assumes equal pro-
portion of true nonzero β’s in each group. For SOG, BSGS, and BSGS-SS, the
posterior distribution of feature selection can allow for the control of BFDR. Un-
der nominal level of BFDR at 10%, the actual FDR given the simulation truth are
shown in Table 2. BSGS-SS was anti-conservative with 45% true FDR, while SOG
and BSGS (τ 2 = 5) properly controlled true FDR at 8% and 6%, respectively. In
addition to smaller true FDR, SOG had only slightly higher FOR than BSGS-SS
and lower than BSGS, showing its better feature selection performance.

4.2. Simulation II: Single-layer overlapping groups. We next simulated data
with single-layer overlapping groups to evaluate the performance of SOG with
BSGS, BSGS-SS and HSVS. The setting was exactly the same as simulation I in
Section 4.1, except now U

(1)
1,1 = U

(1)
1,2 = 1 and U

(1)
41,3 = U

(1)
41,4 = 1 (see Figure 2(A)).

In other words, we set level-0 variable 1 to belong to both level-1 group 1 and 2,
and level-0 variable 41 to belong to both group 3 and 4. To maintain the within
group correlation of 0.5, for variables shared by more than one group, such as xi,1,
we first generated “pseudo” variables such as xi,11 (k = 1) and xi,12 (k = 2) as
described in Section 4.1, and then set xi,1 as the average of xi,11 and xi,12. βjk’s
and outcome Yi were generated the same way as in Section 4.1. Table 2 shows the
evaluation results using 100 simulated data sets.

From the results, SOG continued to have the best variable selection and pre-
diction performance. In fact, the results were very similar to simulation I. Even
though we introduced partial coefficients due to overlapping groups (e.g., β11 and
β12) which were unidentifiable by likelihood, we were still able to estimate the
marginal effects (e.g., β1 = β11 + β12), which were identifiable.
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FIG. 2. U(1) matrix in simulation II, U(1) and U(2) in simulation III. Grey denotes 1, which means
variable/group in the row belongs to the group in the column; white denotes 0.

4.3. Simulation III: Two-layer overlapping groups. In this simulation, we sim-
ulated two-layers of overlapping groups to evaluate the performance of MOG. We
set n = 200, p = 300, m1 = 100, m2 = 10, U(1) and U(2) with structures in Fig-
ure 2(B) and 2(C). U(1) had a block diagonal structure, that is, every three features
belonged to one level-1 group; U(2) had a block diagonal structure in the most
parts except U

(2)
1,1 = U

(2)
1,2 = 1 and U

(2)
21,3 = U

(2)
21,4 = 1, that is, level-1 group 1 be-

longed to level-2 group 1 and 2; level-1 group 21 belonged to level-2 group 3 and
4.

In this setting, we only had overlapping level-2 groups while level-1 groups
were disjoint. As a result, we could still compare MOG to SOG, BSGS, BSGS-SS,
HSVS, GL and SGL, as they only use level-1 group structure and ignore level-2
group structure. We used a similar approach to model the within group correlation.
For each level-1 group k, we drew z

(1)
k ∼ N(0,0.3); for each level-2 group l, we

drew z
(2)
l ∼ N(0,0.2); then we set xij = z

(1)
k + z

(2)
l + eij , where eij ∼ N(0,0.5).

In this way, Var(Xij ) = 1. For variables belonging to the same level-1 group, the
correlation was 0.5; for variables belonging to the same level-2 group but different
level-1 groups, the correlation was 0.2. Variables shared by more than one group
were generated the same way as in simulation II. Outcomes were also generated
as yi = ∑p

j=1 xijβj + εi , where εi ∼ N(0,1).
We set 5 out of 10 level-2 groups to contain relevant features. Inside these 5

predictive level-2 groups, we set 4 out of 10 level-1 groups to have strong signals,
in which all three features had coefficients β ∼ Unif(2U,3U) (U will vary); we
set the other 2 of 10 level-1 groups to have medium signals, in which all three
features had coefficients β ∼ Unif(U,2U); the remaining 4 level-1 groups had all
3 features with coefficients as zero. We set U to be 0.2 and 0.5. In this setting,
we did not have the true τ 2 to set in BSGS. Instead, we tested τ 2 = 1,2, . . . ,5,
performing threefold cross-validation in the training set, and then selected the one
with the smallest MSE.
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Table 2 shows the comparison results for 100 replicates. MOG had the best per-
formance in both variable selection and prediction, especially when U was small.
When U = 0.2, SOG had better performance than other models and MOG further
improved SOG, demonstrating the benefit of incorporating level-2 grouping struc-
ture. When the signal was weak, BSGS had a severe convergence issue, even with
200,000 MCMC iterations, which also impaired its feature selection and predic-
tion performance. BSGS-SS had smaller FDR but higher FOR than SOG, because
it assumes the same sparsity inside groups. Inside the groups with weak signals,
it missed some features weakly predictive of the outcome. At U= 0.5, all four
Bayesian models obtained similar good performance in feature selection, but for
prediction MSE, MOG still outperformed other Bayesian models. Lasso, GL and
SGL had poor selection and prediction performance even when U was large. GL
performed better than Lasso and SGL, because sparsity was not designed inside
level-1 groups in this simulation.

4.4. Simulation IV: Two-layer nonoverlapping groups. This simulation was
designed to compare the performance of MOG and TGL since TGL does not allow
groups at the same level to overlap as in simulation III. The only difference from
the setting of simulation III was that level-2 groups did not overlap, so it was
a straightforward extension of the tree structure which included multiple trees.
The implementation of TGL is described in Section 3.2, and results are shown in
Table 2.

Compared to lasso, GL and SGL, TGL had better variable selection and predic-
tion performance as expected. However, MOG still outperformed TGL in the tree
structure setting, regarding both variable selection and prediction. The improved
performance is possibly because penalized regression methods are optimization-
based and cannot incorporate complex structure and information flow as efficiently
and naturally as Bayesian hierarchical models.

5. Applications.

5.1. Predict ER+ versus ER− breast cancer. We applied MOG to n = 727
(560 ER+ and 167 ER−) breast cancer patients retrieved from The Cancer
Genome Atlas (TCGA). Each sample had mRNA expression, methylation and
copy number variations (CNV) available. This application aimed to predict estro-
gen receptor (ER) status and identify associated pathways, genes and multi-level
omics features simultaneously. We first filtered out genes with mRNA expression
mean and variance below the median and constructed one summary methylation
value for each gene by averaging the β values within 50 kb of the gene starting
position. β values were later transformed to M values (M = log(β/(1 − β)) to
better fit model assumptions. After this filtering step, 14,976 features were left, of
which 5125 were from mRNA expression data, 4816 were from CNV data, and
5035 were from methylation data.
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Since BSGS-SS and HSVS are computationally intensive, we want to further
filter genes and pathways. We first tested each mRNA expression feature for equal
expression levels in ER+ and ER− groups. Then, we only kept the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways containing 40–50 genes and
having 80% of the genes with mRNA expression significantly different in two
groups (t-test p < 0.05), and filtered out features mapped to the genes that were
not included in those selected pathways. A total of p = 824 multi-level omics fea-
tures (level-0 variables) belonging to m1 = 276 genes (level-1 groups) in m2 = 8
pathways (level-2 groups) were left for analysis. Among 824 features, 276 were
from gene expression data, 274 were from CNV data and the remaining 274 were
from methylation data.

For another more realistic setting, we relaxed our filtering criteria. We kept the
KEGG pathways containing 20–50 genes and filtered out the features mapped to
the genes which were not included in the selected pathways. In this way, p =
11,785 multi-level omics features (1316 from mRNA expression data, 1292 from
CNV data and 1302 from methylation data) belonging to m1 = 1316 genes (level-1
groups) in m2 = 123 pathways (level-2 groups) were left for analysis. This setting
was used to compare the performance of MOG, SOG, lasso, GL and SGL.

Obviously, the “ER signaling pathway” should predict the ER status well. It
was included in both 8 and 123 pathways selected and could serve as an internal
control. We applied SOG, BSGS-SS, HSVS, GL and SGL, by using genes as group
structure and ignoring level-2 pathway groups; we also applied lasso ignoring all
group structures. Lasso, GL and SGL used tenfold cross-validation in the training
set to select tuning parameters. Performance was evaluated using fivefold cross-
validation by keeping the original case/control ratio in all folds. Each time, four
folds of the ER+ and ER− samples were left for training, and one fold was left
for testing. To avoid local optimal trapping and save time, when applying MOG
and SOG, we used estimates from lasso as initial values. It took BSGS-SS and
HSVS 1.4 and 19.7 hours to complete eight pathways example respectively, much
longer than that of MOG (0.1 hours). These two models, especially HSVS, became
inapplicable in larger data set such as those with 123 pathways.

To prioritize variable and group selection, we defined a feature impact score
(FISj ) in MOG as the posterior average of the selection probability of feature

j , that is, FISj = AVE(
∑m1

k=1
∑m2

l=1 γ
(2)
l γ

(1)
kl γ

(0)
jklU

(1)
jk U

(2)
kl ), where AVE(·) was the

average over all MCMC iterations. The pathway impact score (PISl) was then
defined as the average of the selection probability of all level-0 variables in-
cluded in pathway l, that is, PISl = AVE(

∑p
j=1

∑m1
k=1 γ

(2)
l γ

(1)
kl γ

(0)
jklU

(1)
jk U

(2)
kl ). In

SOG, FIS and PIS were defined similarly, FISj = AVE(
∑m1

k=1 γ
(1)
k γ

(0)
jk U

(1)
jk ) and

PISl = AVE(
∑p

j=1
∑m1

k=1 γ
(1)
k γ

(0)
jk U

(1)
jk U

(2)
kl ). Setting γ

(1)
k = 1, denoting γ

(0)
jk = 1

if βjk �= 0, and denoting γ
(0)
jk = 0 otherwise, the definitions of FIS and PIS for

BSGS-SS and HSVS are the same as SOG. We ranked the pathways and variables
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TABLE 3

Top pathways/features and prediction results in breast cancer ER+/− application. Results are from fivefold cross-validation

A. 8 pathways

Bayesian model Top pathway by PIS PIS Top 3 selected features by FIS AUC1
a (SD) AUC2

b (SD)

MOG ER signaling 0.109 ESR1-mRNA, ESR1-methyl, ESR1-CNV 0.943 (0.008) 0.949 (0.010)
SOG ER signaling 0.053 ESR1-mRNA, ESR1-methyl, NME3-mRNA 0.945 (0.009) 0.948 (0.010)
BSGS-SS ER signaling 0.020 ESR1-mRNA, NME3-mRNA, ADCY9-mRNA 0.947 (0.009) 0.948 (0.013)
HSVS ER signaling 0.027 ESR1-mRNA, ESR1-CNV, ESR1-methyl 0.942 (0.012) 0.944 (0.012)

Penalized Top pathway by Fisher’s exact
regression Fisher’s exact test test p-val – AUC (SD)

Lasso Calcium signaling 0.179 – 0.945 (0.008)
GL ER signaling 0.999 – 0.943 (0.011)
SGL ER signaling 0.152 – 0.764 (0.108)
TGL AMPK signaling 0.204 0.946 (0.010)

B. 123 pathways

Bayesian modelc Top pathway by PIS PIS Top 3 selected features by FIS AUC1 (SD) AUC2(SD)

MOG ER signaling 0.044 ESR1-mRNA, ESR1-methyl, ESR1-CNV 0.940 (0.013) 0.944 (0.011)
SOG Prolactin signaling 0.031 ESR1-mRNA, MARCKS-mRNA, ESR1-methyl 0.943 (0.009) 0.944 (0.011)

Penalized Top pathway by Fisher’s exact
regression Fisher’s exact test test p-val – AUC (SD)

Lasso Dilated cardiomyopathy 0.0004 – 0.946 (0.006)
GL RNA transport 0.528 – 0.942 (0.011)
SGL Prolactin signaling 0.021 – 0.681 (0.111)
TGL Adrenergic signaling 0.007 – 0.944 (0.009)

aPlug-in β̂ (posterior median).
bModel averaging.
cComputation not affordable with 123 pathways in BSGS-SS and HSVS models.
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FIG. 3. The number of top selected features versus the number of selected features belonging to
the ER signaling pathway in breast cancer ER+/− application using (A) 8 pathways and (B) 123
pathways.

based on their impact scores averaged over fivefold cross validations in Table 3.
Top 20 selected multi-omics features by MOG are also listed in Table S1. Penal-
ized regression models including lasso, GL and SGL, cannot readily prioritize vari-
ables and pathways. Instead, we performed pathway enrichment analysis applying
Fisher’s exact test to features selected at least once in fivefold cross-validation to
prioritize the top pathways.

It is well known that the mRNA expression of ESR1 is predictive of ER status,
defined by the immunohistochemistry (IHC) assay of estrogen receptor (ER). In
both settings with 8 and 123 pathways, MOG detected the ER signaling pathway
as the top selected pathway with the highest PIS, and ESR1-mRNA, ESR1-methyl
and ESR1-CNV were among the top selected features. To obtain a better sense of
the feature selection, we plotted the number of selected features ranked by FIS (x-
axis) versus the number of selected features belonging to the ER signaling pathway
(y-axis) in Figure 3. For lasso, GL, SGL and TGL, for which FIS was not available,
we used the feature selection results with the first fold data left out, as leaving
different folds out gave similar results. Most of the top features selected by MOG,
belonged to the ER signaling pathway (e.g., 92 out of top 100 in Figure 3(A)).
Nonetheless other models had much fewer features in ER signaling (e.g., SOG
had 27 out of top 100 in Figure 3(A)).

To compare the prediction performance, we calculated ER prediction AUC for
samples in the testing set. For Bayesian models, we performed two predictions: (1)
plugging posterior median estimates of β into P̂r(Yi = 0) = �(Xβ̂Med) to obtain
AUC1; (2) using model averaging by calculating posterior mean of �(Xβ̂) to gen-
erate AUC2. For lasso, GL, and SGL, we selected tuning parameter from tenfold
cross-validation and plugged in β̂ . Having strong predictive genes such as ESR1,
all models generated high AUCs in the testing set as expected. Comparing the two
AUCs, AUC2 was slightly higher than AUC1 in general for the Bayesian models,
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consistent with the common belief that averaging over all models from MCMC
provides better predictive ability than using a single plug-in estimate. MOG using
model averaging predictor generated the highest prediction AUC although the dif-
ferences were not statistically significant given the almost perfect prediction for all
models.

5.2. Predict invasive lobular carcinoma (ILC) versus invasive ductal carcinoma
(IDC). We next applied MOG to predict histological subtypes (ILC/IDC) for 669
patients (496 IDCs, 173 ILCs) in the same TCGA data set. Invasive lobular carci-
noma (ILC) constituting 10% of all invasive breast cancer cases, is the second
most frequently diagnosed subtype, following invasive ductal carcinoma (IDC,
80%) (Ciriello et al. (2015)). We chose the same 123 KEEG pathways to com-
pare the performance of MOG, SOG, lasso, GL and SGL. Variable selection and
prediction performances are summarized in Table 4, and top 20 multi-omics fea-
tures selected by MOG are listed in Table S2. Similar to ER status, there exists
a well-known strong predictor CDH1 mRNA expression, as the loss of CDH1 is
the hallmark of ILC (Ciriello et al. (2015)). Thus all models had good prediction
AUCs. Since ILC is a less-studied subtype in breast cancer research, there is no
annotated pathway specifically for this histologic subtype. The pathways identi-
fied by MOG provides proof-of-principle, as the top identified pathway termed
“Endometrial Cancer” not only includes E-cadherin (CDH1), but also contains
PI3K and Akt, two kinases that are activated as a result of loss of CDH1 (Ciriello
et al. (2015), Teo et al. (2018)). And finally, there are a couple of genes such as
APC, TCF7/TCF7L (Ravindranath and Cadigan (2016)) and LEF1 (Santiago et al.
(2017)) that all belong to the Wnt signaling pathway, highlighting a unique role for
this pathway as we (Sikora et al. (2016)) and others (Turashvili et al. (2007), van
Hengel et al. (1999)) have previously shown. Another top pathway identified is
related to “Amoebiasis”, and it includes many genes known to play diverse roles in
movement and motility of cells, such as serpins, laminins and extracellular move-
ment, which we hypothesize is likely related to the different behavior of ILC cells,
as a result of loss CDH1, and decreased cell-cell attachment, a phenotype that we
have recently described in great detail (Tasdemir et al. (2018)).

6. Conclusion and discussion. In modern small-n-large-p applications, ef-
fective variable selection has become an increasingly important component in sta-
tistical methodologies. Models that incorporate prior structural knowledge of vari-
ables (e.g., group lasso and fused lasso) can improve variable selection, prediction
accuracy and model interpretation. In this paper, we consider a hierarchical over-
lapping group structure that is commonly seen in the “multi-level omics features
⇒ genes ⇒ pathways” scenario in genomic applications. Our proposed Bayesian
indicator variable selection model has several innovations and advantages for the
targeted problem. First, the Bayesian hierarchical model and indicator variable se-
lection model allow for natural incorporation of hierarchical group structure with
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TABLE 4
Top pathways/features and prediction results in breast cancer ILC/IDC application. Results are from fivefold cross-validation

Bayesian modelc Top pathway from PIS PIS Top 3 selected features by FIS AUC1
a (SD) AUC2

b (SD)

MOG Endometrial cancer 0.064 CDH1-mRNA, LAMA3-mRNA, 0.941 (0.008) 0.949 (0.014)
CDH1-methyl

SOG Viral myocarditis 0.044 CDH1-mRNA, MAP3K1-mRNA, 0.911 (0.010) 0.950 (0.012)
SHROOM1-mRNA

Penalized Top pathway by Fisher’s exact
regression Fisher’s exact test test p-val – AUC (SD)

Lasso Thyroid hormone synthesis 0.008 – 0.956 (0.009)
GL Notch signaling 0.593 – 0.953 (0.011)
SGL Endometrial cancer 0.017 – 0.901 (0.011)
TGL AMPK signaling 0.005 – 0.955 (0.010)

aPlug-in β̂ (posterior median).
bModel averaging.
cComputation not affordable with 123 pathways in BSGS-SS and HSVS models.
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fast MCMC sampling. Second, we explicitly model group-specific proportions of
nonzero β values (i.e., π(0)

k ) for different sparsity levels in selected groups. Thirdly,
our Bayesian approach easily allows for a latent decomposition assumption to in-
corporate overlapping groups. Fourth, the proposed model can be extended to more
than two layers of overlapping group structure. The result gives clear interpreta-
tion of which features, genes and pathways contribute to the prediction. Finally,
the posterior distribution from MCMC samples provides easy post hoc inferences,
such as characterization of variability and BFDR control of feature selection. Us-
ing four simulation settings and two breast cancer examples, we demonstrated su-
perior performance of the proposed method for hierarchical overlapping group
(MOG) structure in terms of variable selection, prediction accuracy and model
interpretation.

Our proposed model has several limitations to be improved in the future. First,
as noted in the paper, the MCMC mixing rate in the indicator model can be unsta-
ble, leading to slow convergence. Although our current simulation and application
can be implemented adequately, we expect worse performance when p increases
or the data signal becomes weaker. A modification to spike-and-slab prior with a
small-variance Gaussian spike might alleviate the computing difficulty. Second, in
SOG/MOG, feature sparsity varies by gene groups. To better allow for heterogene-
ity among multi-omics platforms, a more sophisticated sparsity modeling may be
needed to allow for different levels of sparsity in different platforms. Specifically,
taking MOG as an example, we can design feature sparsity prior through a probit
function: γ

(0)
jkl ∼ Bern(�(μ

(0)
kl /Rj + μm)), where �(·) is the CDF of the standard

normal distribution, μ
(0)
kl is the feature selection strength of gene k in pathway

l, and μm is the feature selection strength of multi-omics platform m. Since this
implementation may bring computational challenges and significantly slow down
computing time, we did not implement it in this paper to allow for practical omics
applications, but we consider this as a future extension. As large data sets with
complex prior information structure continue to accumulate in data science, we
expect to encounter the hierarchical overlapping group structure more often in the
future, and the proposed method can better incorporate prior information to im-
prove statistical learning performance.

An efficient R package “MOG” calling C++ using RcppEigen (Bates and Ed-
delbuettel (2013)) is available at github (https://github.com/lizhu06/MOG). Pro-
cessed data and R code to reproduce result is available at github (https://github.
com/lizhu06/MOG_exp). The computing time for MOG to predict ER+/ER− with
123 pathways is 2.33 hours, and computing time to predict ILC/IDC is 2.26 hours
with 16 CPU cores, 1.4 GHz and 128 GB RAM.
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SUPPLEMENTARY MATERIAL

Supplement to “Bayesian indicator variable selection to incorporate hi-
erarchical overlapping group structure in multi-omics applications” (DOI:
10.1214/19-AOAS1271SUPP; .pdf). We provide MCMC sampling details, proof
of asymptotic properties of SOG and MOG, an additional simulation borrowing
information across groups in SOG and supporting tables for applications.
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