
The Annals of Applied Statistics
2019, Vol. 13, No. 4, 2509–2538
https://doi.org/10.1214/19-AOAS1291
© Institute of Mathematical Statistics, 2019

A SIMPLE, CONSISTENT ESTIMATOR OF SNP HERITABILITY
FROM GENOME-WIDE ASSOCIATION STUDIES1

BY ARMIN SCHWARTZMAN∗, ANDREW J. SCHORK†, RONG ZABLOCKI∗ AND

WESLEY K. THOMPSON∗,†

University of California, San Diego∗ and Institute of Biological Psychiatry†

Analysis of genome-wide association studies (GWAS) is characterized
by a large number of univariate regressions where a quantitative trait is re-
gressed on hundreds of thousands to millions of single-nucleotide polymor-
phism (SNP) allele counts, one at a time. This article proposes an estimator of
the SNP heritability of the trait, defined here as the fraction of the variance of
the trait explained by the SNPs in the study. The proposed GWAS heritability
(GWASH) estimator is easy to compute, highly interpretable and is consistent
as the number of SNPs and the sample size increase. More importantly, it can
be computed from summary statistics typically reported in GWAS, not requir-
ing access to the original data. The estimator takes full account of the linkage
disequilibrium (LD) or correlation between the SNPs in the study through
moments of the LD matrix, estimable from auxiliary datasets. Unlike other
proposed estimators in the literature, we establish the theoretical properties
of the GWASH estimator and obtain analytical estimates of the precision, al-
lowing for power and sample size calculations for SNP heritability estimates
and forming a firm foundation for future methodological development.

1. Introduction. Genome-wide association studies (GWAS) attempt to de-
scribe an observed trait or phenotype, typically assuming a polygenic additive lin-
ear model, in terms of a large number of single-nucleotide polymorphisms (SNPs),
each captured by the number of copies of a reference allele (0, 1 or 2). The sam-
ple size in typical GWAS may be in the order of tens to hundreds of thousands,
while the number of SNPs may be 10 to 100 times as large, in the order of mil-
lions. Since the number of SNP predictors is larger than the sample size, the linear
model is underdetermined, and it is impossible to estimate the coefficients simul-
taneously without additional assumptions. Low-dimensional summaries, however,
are estimable. In particular, in this paper we focus on the SNP heritability (Yang
et al. (2010)), defined as the proportion of variance of the outcome explained by
the measured SNPs.

While heritability has traditionally been assessed via familial studies, the con-
cept and estimation of SNP heritability have recently become of great interest in
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the field (e.g., Yang et al. (2010) has been cited more than 2800 times to date). This
is because GWAS for most human traits have not yet discovered loci accounting
for a majority of heritability estimated via familial studies. The invention of the
SNP-heritability concept was critical for explaining why this might be – because,
for many traits, most of the variance is distributed across very many loci with
small effects that GWAS have not yet been powered to fully discover. With this
insight there has been a rejuvenated interest in pursuing larger GWAS and also
in the possibility of effective genome-wide predictions. SNP heritability is thus
an extremely important parameter that quantifies the proportion of the observed
outcome that can be predicted from common SNPs and so defines the amount of
information available in the GWAS. It has been a critical parameter in motivating
the continued application of GWAS and the utility of GWAS data for predictions
(Visscher et al. (2017)).

In addition to estimating the heritability of phenotypes based on additive effects
of assayed SNPs, the prototypical GWAS analysis also aims to identify individu-
ally important genetic loci. This is typically done by regressing the outcome vari-
able on each SNP, one at a time, selecting only the most stringently significant
SNPs (p < 5 × 10−8) as discoveries. Thousands of studies have been performed
and tens of thousands of candidate causal variants have been cataloged for all vari-
ety of trait and disease (MacArthur et al. (2017), www.ebi.ac.uk/gwas/). In part due
to funding institution data sharing mandates, to increase transparency and to fuel
post hoc and secondary analysis of GWAS results (Pasaniuc and Price (2017)), per
SNP univariate regression statistics (beta coefficients, t-statistics, p-values, stan-
dard errors, etc.) are now regularly published along with GWAS articles. While
privacy concerns often prevent the sharing of subject level genotypes and phe-
notypes, these summary statistics are readily available for hundreds of individual
GWAS studies (e.g., www.ebi.ac.uk/gwas/downloads/summary-statistics).

It is of practical interest, therefore, to develop an estimator of SNP heritability
that can provide accurate estimates using only summary statistics from GWAS.
Computational efficiency is another desired property given the large size of the
data. And, as with any estimation procedure, interpretability is also desired in or-
der to gain further insights into the data. For example, we wish to understand how
SNP heritability estimates are affected by the correlation between the predictor
genomic markers, called linkage disequilibrium (LD) in the context of GWAS. Fi-
nally, it is crucial that the theoretical properties of a SNP heritability estimator from
GWAS summary statistics are well understood to understand the conditions under
which the performance of the estimator is likely to be adequate and to facilitate
development of extensions to SNP heritability estimates.

In this paper we propose an estimator called GWAS heritability (GWASH) esti-
mator. The estimator is based on the variance-fraction estimator in Dicker (2014)
and is astonishingly simple. For a GWAS with m predictors and n independent
subjects, the estimator is

ĥ2
GWASH = m

nμ̂2

(
s2 − 1

)
,
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where s2 is the empirical variance of the GWAS t-statistics (up to a small trans-
formation) and μ̂2 is an estimate of the second spectral moment of the LD matrix,
capturing the effect of LD in a single number.

The GWASH estimator is not only easy to remember and compute as a simple
formula. It also has an interpretation as being proportional to the excess empirical
variance of the univariate t-statistics with respect to the complete null hypothesis
of independence between the outcome and the predictors in which case the the
empirical variance is about 1. The empirical variance s2 is in itself an intuitive
quantity that summarizes the strength of the relationship between the predictors
and the outcome and has been used as a simple measure of enrichment in GWAS
contexts (Schork et al. (2013)). Thus, the proposed estimator has the nice prop-
erty that it increases linearly with enrichment where the proportionality constant
depends on LD.

Moreover, the formula dictates that LD affects the estimation of SNP heritability
as a scaling factor, yielding a definition of the effective number of SNPs involved.
Computing the factor μ̂2 to find the effective number of predictors is the only rel-

atively difficult part of the estimation. The factor μ̂2 estimates μ2 = tr(�̃
2
)/m,

where �̃ is the correlation matrix of the predictors, the LD matrix. As a first ap-
proximation, the patterns of correlations among SNPs can be taken as a feature
of a given population and estimated from publicly available data resources such
as the 1000 genomes project (1KGP) (The 1000 Genomes Project Consortium
(2015), http://www.internationalgenome.org/). This approach has been reasonable
when the reference sample plausibly represents the same population as the GWAS
sample in contexts, including imputation (Li et al. (2009)), heritability estimation
(e.g., Bulik-Sullivan et al. (2015)), functional fine-mapping (e.g., Spain and Barrett
(2015)) and various post hoc burden tests (e.g., de Leeuw et al. (2015)). One of the
key contributions of this work is that we propose an efficient way of calculating
the factor μ̂2 so that the entire LD matrix need not be computed.

As an alternative method Linkage Disequilibrium Score (LDSC) regression
(Bulik-Sullivan et al. (2015)) has become the most popular approach for estimat-
ing SNP heritability from summary statistics. LDSC estimates SNP heritability by
regressing squared per-NP univariate regression scores (t or Wald statistics) on cor-
responding “LD Scores,” defined as estimates of the sum of squared correlations
for a given SNP and all others. While an effective and computationally efficient ap-
proach, LDSC was not motivated by a well-specified generative model and relies
on a number of heuristics, including binning LD scores, censoring outlying val-
ues and empirical approximations to standard errors. These features are difficult to
consider analytically and limit assessment of theoretical properties, opportunities
for further methodological development and use in power analyses.

As a real data example Table 1 shows the estimated SNP heritability using
GWASH and LDSC regression from publicly available GWAS summary statistics
for three phenotypes. This analysis used a subset of SNPs of size m = 872,188

http://www.internationalgenome.org/
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TABLE 1
Heritability estimates for three complex traits: IQ (Sniekers et al. (2017)), years of education

(Okbay et al. (2016)) and body mass index (BMI) (Locke et al. (2015)). Estimated SEs are given in
parentheses. The last column is the heritability attributed to SNPs found significant in those studies

Trait n m (total) m (used) GWASH LDSC (int = 1) Attr.

IQ 75,270 12,104,295 872,188 0.21 (0.006) 0.20 (0.008) 0.048
EduYears 328,917 9,444,231 872,188 0.10 (0.002) 0.10 (0.003) 0.01
BMI 233,018 2,554,638 872,188 0.05 (0.002) 0.05 (0.006) 0.027

that was available in all four GWAS, in LDSC regression and in the 1KGP data
to calculate μ̂2 and other auxiliary quantities. Owing to a model where samples
are taken from a single population, LDSC regression was applied here with a fixed
intercept equal to 1. As Table 1 shows, GWASH yields very similar estimates to
LDSC regression, confirming its validity in real data, but also produces smaller
standard errors. More details about this table are given in Section 7.

In addition to its simplicity and interpretability, the main strength of the
GWASH estimator is its solid theoretical foundation. Following Dicker (2014),
we show that the GWASH estimator is consistent as m and n increase to a limiting
fixed ratio which could be greater than 1. We also provide a formula for estimat-
ing the asymptotic standard error (SE). For ease of comparison both analytically
and in small scale simulations, we consider a stylized version of LDSC regression
(intercept = 1) without binning, bootstrap and other elements. We find that both
estimators are, in fact, asymptotically equivalent, suggesting avenues to further
improve the theoretical foundation for both methods.

We wish to emphasize that accurately computing SNP heritability is of very
substantial interest within the field of genetics, as evidenced by the large numbers
of publications that use current approaches. To date, this literature has focused
on a simple random effects model where a Gaussian distribution was proposed
for genetic effects. Closer scrutiny as to the scale at which the single Gaussian
was specified (w.r.t. standardized genotypes in Yang et al. (2010)) revealed im-
plicit assumptions surrounding dependencies between allele frequency and effect
sizes. This has resulted in a hotly contested debate about which set of assumptions
provides in the most robust estimates of SNP heritability (see, e.g., Speed et al.
(2017)). Emerging from this has been a series of post hoc methods which split ge-
netic markers into different bins, estimating heritability per bin and summing, each
attempting to counter challenges about specific alternate models (see, as examples,
Gazal et al. (2017), Yang et al. (2015)). Part of the problem with development of
novel approaches is the lack of a well-grounded theoretical framework, wherein
assumptions and limitations are rigorously specified.

The current paper thus has a critically important aim with regards to the state of
the field in SNP-heritability estimation, introducing a principled theoretical frame-
work with well-specified assumptions and consistency properties. This should
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have the beneficial impact of clarifying the debate and spurring development of
models with desirable theoretical properties.

In the rest of the paper, we derive the GWASH estimator, show its asymp-
totic properties, evaluate its performance in nonasymptotic settings via simulations
comparing with LDSC regression and provide further details on the data analysis.
We conclude with a discussion of how the GWASH asymptotic SE formula may
be used to perform power analysis in prospective GWAS.

2. GWAS.

2.1. The classic polygenic linear model. Suppose that a continuous outcome
variable or phenotype is measured together with a panel of genotype markers at
m loci for each of n independent subjects. Let yi and �xi = (xi1, . . . , xim) denote
the outcome and genomic panel for subject i = 1, . . . , n. According to the classic
polygenic model (Fisher (1918), Lynch and Walsh (1998)), the outcome is gener-
ated according to the linear model

(1) yi = �xiβ + εi, i = 1, . . . , n,

where the error terms εi are independent with mean 0 and variance σ 2. This model
may also be written in matrix form as

(2) y = Xβ + ε,

where y = (y1, . . . , yn)
T, β = (β1, . . . , βm)T, ε = (ε1, . . . , εn)

T and X is the re-
gression matrix with rows �xi , i = 1, . . . , n. It is also useful to write the regression
matrix in terms of its columns as X = (x1, . . . ,xm).

True to the sampling scheme, we shall consider the genomic panels �xi to be
randomly drawn from the population together with the associated phenotypes. Let
� = Cov(�xi ) denote the m × m covariance matrix between genomic markers in
the underlying population. The corresponding correlation matrix, which we shall
denote �̃ = Cor(�xi ), is the so-called LD matrix and contains the marginal correla-
tions between SNP counts. The entries of this matrix tend to decay away from the
diagonal, and we shall exploit this structure in our calculations below.

For simplicity our model does not explicitly include other fixed covariates (e.g.,
age, gender, ethnicity factors, etc.), but rather we shall assume that a regression
model has adjusted for these other covariates. The interpretation of the coefficients
and the SNP heritability shall be conditional on having accounted for those other
covariates and is the same as if those covariates had been included in the full
model.

Similarly, rather than including an intercept term, we may equivalently assume
that the vector y and the columns x1, . . . ,xm of X have been centered by sub-
tracting the vector average, so that 1Ty = 0 and 1Txj = 0 for j = 1, . . . ,m. A nice
consequence of centering is that, for the centered data, E(y) = 0 and E(X) = 0,
where the expectation is taken with respect to the population distribution. Hence,
the model (1) or (2) have no intercept term.
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2.2. SNP heritability. The SNP heritability h2 is defined as the variance ex-
plained by the predictors in model (2). Specifically, model (1) has the variance
decomposition

(3) Var(yi |β) = E
(
βT�xTi �xiβ|β) + E

(
ε2
i

) = βT�β + σ 2,

since E(�xi ) = 0. Let τ 2 = βT�β . The SNP heritability is the quantity (Falconer
and Mackay (1996), Lynch and Walsh (1998))

(4) h2 = τ 2

τ 2 + σ 2 .

Note that in this model the vector β is fixed and arbitrary with no prespecified
distribution. The model places no restrictions on the distribution of model coeffi-
cients as long as they yield the proper SNP heritability. Thus, as opposed to other
methods such as Bulik-Sullivan et al. (2015), Yang et al. (2010), Zhou, Carbonetto
and Stephens (2013), no distributional assumptions are required on β in order to
estimate SNP heritability, an important point given recent debate in the literature
(Speed et al. (2017)).

2.3. GWAS univariate regressions. In GWAS the vector of SNP effects β is
estimated by univariate regression coefficients. Since y and the columns xj are
assumed centered, there is no need to fit an intercept term, and the slope parameters
βj for each SNP j = 1, . . . ,m are estimated via

(5) β̂j = (
xTj xj

)−1
xTj y = ‖xj‖−2xTj y.

The univariate regression estimates are typically converted into t-scores by divid-
ing by an estimate of SE at each SNP. For each j = 1, . . . ,m, the residual variance
is

(6) σ̂ 2
j = 1

n − 2
‖y − xj β̂j‖2,

yielding the t-score

(7) tj = β̂j√
σ̂ 2

j (xTj xj )−1
= ‖xj‖β̂j

σ̂j

.

The goal is to produce an estimator of SNP heritability that relies on the above
so-called summary statistics β̂j , σ̂ 2

j and tj , j = 1, . . . ,m. We describe the SNP
heritability estimator in general in Section 3 and return to the summary statistics
in Section 5.1.
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3. The Dicker estimator. To better describe the derivation of the GWASH
estimator, we first discuss the estimator proposed by Dicker (2014). Addressing the
high-dimensional case where m is greater than n and separate from the GWASSH
problem, Dicker (2014) proposes an estimator of the fraction of variance explained
by X in model (2) when the vector of coefficients β is fixed. While not called
heritability there, this fraction is the same as the SNP heritability defined in (4).
Since ordinary least squares methods fail when m > n, Dicker’s estimator is based
instead on a clever use of the method of moments. Dicker proposes two forms of
the estimator depending on whether the covariance matrix �, typically unknown,
is estimable or not.

3.1. The Dicker estimator for estimable covariance. An estimable covariance
matrix � presumes the existence of a norm-consistent positive definite estima-
tor �̂, despite the dimension m being larger than the sample size n. Examples
of estimable covariance matrices are a diagonal �, so that the columns of X are
uncorrelated but have different variances, or matrices, where the correlation struc-
ture is captured by a fixed number of parameters, such as autoregressive (AR) and
exchangeable correlation models.

Written in our notation, the Dicker estimator of h2 for estimable covariance
(Dicker (2014), Section 4.1), can be simplified to

(8) ĥ2
I = m

n

(‖�̂−1/2
XTy‖2

m‖y‖2 − 1
)

(see the Supplementary Material (Schwartzman et al. (2019))), where n is replaced
by n − 1, owing to the centering of y and the columns of X (Dicker (2014), Sec-
tion 1). This estimator requires a consistent estimator �̂ of the covariance matrix
�, which is not available without further assumptions. The sample covariance ma-
trix

(9) S = 1

n − 1
XTX,

whose entries are the sample covariances of the columns of X, is an unbiased
estimator of �, satisfying E(S) = �. It is, however, not norm consistent in general
if the dimension m is larger than the sample size n.

Assuming that the true correlation is nonzero only close to the diagonal, as is
the case with human population genetics, consistent estimators may be obtained,
for example, by banding the sample covariance matrix (Bickel and Levina (2008),
Cai, Zhang and Zhou (2010)). Even so, the estimator (8) requires computation of

the inverse square root �̂
−1/2

. This is computationally taxing for the typical large
matrix size m in GWAS in the order of magnitude of a million. Dicker’s estimator
for unestimable covariance avoids this problem.
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3.2. The Dicker estimator for unestimable covariance. When a model for �

is not sufficiently specified to be estimable, Dicker (2014) offers another form of
the estimator that replaces estimation of � by estimation of its first few moments.
Written in our notation, the Dicker estimator of h2 for unestimable covariance
(Dicker (2014), Section 4.2) can be simplified to

(10) ĥ2
II = mm̂2

1

nm̂2

( ‖XTy‖2

mm̂1‖y‖2 − 1
)

(see the Supplementary Material), where

(11) m̂1 = 1

m
tr(S), m̂2 = 1

m
tr

(
S2) − m

n − 1
m̂2

1

and S is the sample covariance matrix (9).
Proposition 2 of Dicker (2014) states that if the entries of X and ε are Gaussian

and � is not too far from the identity matrix (technical details omitted here), then
ĥ2

II satisfies a CLT and is approximately Gaussian with mean h2 and variance

(12)
ψ2

II

n
= 2

n

(
mm2

1

nm2
+ 2

m1m3

m2
2

h2 − h4
)
,

for large m and n such that m/n is bounded, where

(13) m1 = 1

m
tr(�), m2 = 1

m
tr

(
�2)

, m3 = 1

m
tr

(
�3)

.

By the commutative property of the trace, it can be shown that the quantities in
(13) correspond to the first, second and third moments of the eigenvalues of �. In
that sense they can be called spectral moments.

An estimate of SE for ĥ2
II can be obtained as the square root of (12) by plugging

in the estimate of h2 and those of m1 and m2 given by (11). As an estimate of m3,
Dicker (Dicker (2014), Remark 12) suggests

(14) m̂3 = 1

m
tr

(
S3) − 3m

n − 1
m̂1m̂2 − m2

(n − 1)2 m̂3
1.

4. The GWASH estimator. In GWAS, it is feasible to implement Dicker’s es-
timator (10) if the entire dataset composed of X and y is available. However, often
only GWAS summary statistics are avaiable. The GWASH estimator is essentially
a modification of the Dicker estimator where the columns of X are standardized.
This standardization allows writing the estimator in terms of the correlation scores
defined next which easily translate into summary statistics.
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4.1. Correlation scores. Let ỹ = √
n − 1y/‖y‖ be the standardized vector

y so that ‖ỹ‖2/(n − 1) = 1. Similarly, let X̃ = (x̃1, . . . , x̃m) be the result of
standardizing the matrix X by columns, so that the standardized columns x̃j =√

n − 1xj /‖xj‖ satisfy ‖x̃j‖2/(n−1) = 1, for j = 1, . . . ,m. Because of the orig-
inal centering, 1Tỹ = 0 and 1Tx̃j = 0.

The main idea of the GWASH estimator is to replace X and y in (10) by their
standardized versions X̃ and ỹ. Because (10) depends on the summary statistic
‖XTy‖2 to become ‖X̃T

ỹ‖2, it is convenient here to define what we call the cor-
relation scores

(15) uj = 1√
n − 1

x̃Tj ỹ = √
n − 1

xTj y

‖xj‖‖y‖ , j = 1, . . . ,m,

or in vector form, u = X̃
T
ỹ/

√
n − 1.

The score uj is equal to
√

n − 1 times the sample correlation between xj and
y. Under the null hypothesis of no heritability (h2 = 0), so that xj and y are
independent, the score (15) is asymptotically normal with mean zero and variance
one. In this sense it plays the role of a z-score.

4.2. The LD matrix. By standardization, we may define the sample covariance
matrix of the columns of X̃,

(16) S̃ = 1

n − 1
X̃
T
X̃.

By definition, this is the sample correlation matrix with ones on the diagonal and
can be referred to as the sample LD matrix.

Let �̃ = Cor(�xi ) be the population correlation matrix corresponding to the co-
variance matrix �. Analogous to (13), we can define the first three spectral mo-
ments of �̃ by

(17) μ1 = 1

m
tr(�̃) = 1, μ2 = 1

m
tr

(
�̃

2)
, μ3 = 1

m
tr

(
�̃

3)
.

These quantities capture the total effect of LD between the genomic markers. If
the genomic markers are independent with �̃ = I , then μ2 = μ3 = 1; otherwise
both moments are greater than 1.

4.3. The GWASH estimator from subject-level data. The GWASH estimator is
defined as a modification of the Dicker estimator where: (1) X and y in (10) are
replaced by their standardized versions X̃ and ỹ; (2) the moment estimators m̂1,
m̂2 and m̂3 in (10), (11) and (14) are replaced by moment estimators μ̂1 = 1, μ̂2
and μ̂3 based on the correlation matrix (16) instead (details on these are given in
Sections 4.4 and 5.3 below).
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Performing the replacements outlined above yields the expression

(18) ĥ2
GWASH = m

nμ̂2

( ‖X̃T
ỹ‖2

m(n − 1)
− 1

)
.

However, this expression can be written succinctly in terms of the correlation
scores. We may now define our estimator.

DEFINITION 1. The GWAS heritability (GWASH) estimator is given by

(19) ĥ2
GWASH = m

nμ̂2

(
s2 − 1

)
,

where s2 is the empirical second moment of the correlation scores,

(20) s2 = 1

m
‖u‖2 = 1

m

m∑
j=1

u2
j ,

and μ̂2 is an estimator of μ2 in (17).

The GWASH estimator depends on the data only through two summary statis-
tics, s2 and μ̂2. Under the null hypothesis of no heritability (h2 = 0), s2 → 1 for
large m by the law of large numbers. Thus, (19) expresses the estimate of SNP
heritability as proportional to the excess variance of the scores with respect to the
null variance 1.

The quantity μ̂2 contains all the necessary information about the correlation
between the predictors. From (17), if the predictors are independent, μ2 = 1. Oth-
erwise, μ2 > 1. This implies that ignoring LD causes overestimation of the SNP
heritability. Taking account of LD is equivalent to using a smaller number of pre-
dictors. In this sense, we may define m̂eff = m/μ̂2 as the estimated effective num-
ber of markers: the higher the LD, that is, the higher the correlation between the
predictors, the lower their effective number.

4.4. Estimation of the LD second spectral moment μ2. From (11) an appro-
priate estimate of μ2 is

(21) μ̂2 = 1

m
tr

(
S̃

2) − m − 1

n − 1
= 1 + 1

m

∑
i �=j

(
S̃2

ij − 1

n − 1

)
.

The expression on the left, in comparison to (11), uses S̃ instead of S and uses
μ̂1 = 1 instead of m̂1. The replacement of m−1 instead of m is more clearly under-

stood in the expression on the right, obtained by replacing tr(S̃
2
) = m + ∑

i �=j S̃2
ij .

Here we can see that μ̂2 is equal to 1 (the value of μ2 under no correlation) plus
1/m times the total squared correlation observed in the sample LD matrix S̃ after
subtracting from each term a bias correction of 1/(n−1). The extra term 1/(n−1)
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is the approximate second moment, for large n, of the empirical correlation S̃ij

when the true underlying correlation �̃ij is zero. It is pervasive in the LD matrix
and we may refer to it as a “correlation floor.”

The following lemma, whose proof is in Section S2 in the Supplementary Ma-
terial, states that μ̂2 is a consistent estimator of μ2.

LEMMA 1. Assume the spectral moments mk = tr(�k)/m, k = 1, . . . ,4, are
bounded as m gets large. Then, as m and n get large such that m/n converges to
a constant (which may be zero),

(22) μ̂2 = μ2 + OP

(
1

n

)
.

4.5. Asymptotic properties of the GWASH estimator. By construction the
GWASH estimator has similar asymptotic properties to the Dicker estimator (10),
namely consistency and asymptotic normality. Theorem 1 below shows this for-
mally and gives the theoretical justification for using the GWASH estimator in
GWAS.

ASSUMPTION 1. Suppose that the assumptions of Proposition 2 of Dicker
(2014) hold, namely:

• The variance components σ 2 and τ 2, as well as the spectral moments mk =
tr(�k)/m, k = 1, . . . ,4, are bounded.

• Let τ 2
k = βT�kβ , �k = ∑k

	=1 |τ 2
	 − τ 2

0 m	|, and suppose �3 = o(1/
√

n).

THEOREM 1. Under Assumption 1, as m and n get large such that m/n con-
verges to a constant (which may be zero), the GWASH estimator (19) satisfies the
CLT

√
n(ĥ2

GWASH − h2)/ψ → N(0,1), where

(23)
ψ2

n
= 2

n

(
m

nμ2
+ 2

μ3

μ2
2

h2 − h4
)
.

Theorem 1 implies consistency of the estimator for large m and n. The proof
is given in Section S3 in the Supplementary Material. Moreover, notice that the
theorem allows for m > n as well as m < n. In particular, the GWASH estimator
may be used to estimate the heritability of a fixed set of m SNPs for increasing n,
as long as model (1) holds.

For large m and n, the GWASH estimator is approximately Gaussian with mean
h2 and variance (23). In this scenario, an estimate of SE for ĥ2 can be obtained as

the plug-in estimate ψ̂/
√

n =
√

ψ̂2/n, where

(24)
ψ̂2

n
= 2

n

(
m

nμ̂2
+ 2

μ̂3

μ̂2
2

ĥ2 − ĥ4
)
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and μ̂3 is an estimator of μ3 (see Section 5.3). The asymptotic normality of ĥ2

allows constructing an approximate two-sided, 95% confidence interval for h2 of
the form ĥ2 ± 1.96ψ̂/

√
n. In addition, the null hypothesis H0 : h2 = 0 may be

tested against the alternative HA : h2 > 0 using the Wald statistic
√

nĥ2/ψ̂ and
declaring it significant at the α level if it exceeds the normal quantile z1−α .

4.6. Aggregation and partition of SNP heritability. The GWASH estimator
(19) can be applied to any set of SNPs, large or small. Here, we show how the her-
itability of several sets of SNPs can be aggregated to estimate the total SNP heri-
tability, or conversely, how the total SNP heritability can be partitioned into SNP
subsets. Suppose we have K subsets of SNPs defined by the index sets J1, . . . ,JK .
The sets may be partially overlapping. Let mk be the number of SNPs in the index
set Jk , k = 1, . . . ,K . Applying (19), the SNP heritability estimate of the set Jk is

(25) ĥ2
GWASH,k = mk

nμ̂2,k

(
s2
k − 1

)
, s2

k = 1

mk

∑
j∈Jk

u2
j ,

where s2
k is the empirical second moment of the correlation scores within the set

Jk . Similar to (21),

(26) μ̂2,k = 1

mk

tr
(
S̃

(k))2 − mk − 1

n − 1
= 1 + 1

mk

∑
i �=j∈Jk

[(
S̃

(k)
ij

)2 − 1

n − 1

]

applies to the submatrix S̃
(k)

including only the indices in Jk . From (25), using
(19) and (20), we obtain the following result.

PROPOSITION 1. The total SNP heritability estimate ĥ2
GWASH of the set J =

J1 ∪ · · · ∪JK can be computed as

(27) ĥ2
GWASH =

K∑
k=1

μ̂2,k

μ̂2
ĥ2

GWASH,k.

Moreover, if the K sets of SNPs are independent,

(28) μ̂2 =
K∑

k=1

mk

m
μ̂2,k + o

(
1

n

)
.

Proposition 1 indicates that the total SNP heritability is a weighted sum of the
contributions of the various subsets where the weights depend on the amount of
LD in each subset relative to the total. Note that this is not a weighted average, as
the weights μ̂2,k/μ̂2 may be smaller or larger than 1. For example, if the sets are
dependent, the total μ̂2 may be larger than the individual values μ̂2,k in each set.
On the other hand, if the amount of LD within each set is larger than between sets,
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the total μ̂2, which is an average over a larger number of SNPs, may be smaller
than the individual values μ̂2,k in each set.

Another way to interpret Proposition 1 is as follows. Recall that μ̂2,k is the
ratio between the number of SNPs mk and the corresponding effective number of
SNPs, measuring SNP redundancy. The weight of each set is the ratio between the
redundancy in the set and the redundancy of all sets put together.

5. Practical aspects in the context of GWAS.

5.1. The GWASH estimator from summary statistics. In publicly available
GWAS results, the original data y and X required to compute the correlation scores
(15) are typically not available. Instead, it is possible to access the t-statistics (7)
from the univariate regressions. The next result shows that the original data is not
necessary, but it is possible to convert the squared t-statistics to squared correlation
scores by a simple formula.

PROPOSITION 2. The square of the correlation scores (15) can be obtained
from the squared t-statistics (7) via

(29) u2
j =

(
n − 1

n − 2

) t2
j

1 + t2
j /(n − 2)

.

The squared correlation scores and the squared t-statistics are very close for
large n, but not exactly. The transformation is needed because the residual variance
(6) typically used in GWAS is a biased estimator of the true noise variance. The
effect of the transformation is to “undo” the division by (6) and turn the t-statistic
into a more appropriate score.

To compute the GWASH estimator (19), s2 can be computed directly from the
u-scores (29). The LD second spectral moment μ̂2 cannot be computed from sum-
mary statistics. However, μ̂2 is a property of the population from which the GWAS
data was sampled. Following others, we make the assumption that the sampled
population has similar properties to those in public datasets such as the 1000
genomes project (1KGP) (The 1000 Genomes Project Consortium (2015)). Un-
der this assumption, μ̂2 can be estimated from any random sample assayed on the
same set of predictors, even if the representative sample is of a different size. For
example, if a representative auxiliary dataset of size ñ is available on the same set
of SNPs, then μ̂2 can be estimated using the methods of Section 4.4 with ñ instead
of n. The same holds for μ̂3 (see Section 5.3).

5.2. Efficient computation of the LD second moment estimator μ̂2. From a
computational point of view, we may take advantage of the fact that, in a randomly
mating population, SNPs appreciably far away within the same chromosome, or
on different chromosomes, should be segregating independently. For independent
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markers i, j , their squared correlation S̃2
ij has mean of about 1/(n − 1) (see equa-

tion (S1)), and so the terms S̃2
ij − 1/(n − 1) in (21) far from the diagonal are small

and can be excluded from the calculation.
In general, suppose that only a set I2 of index pairs (i, j), i �= j , are included

in the calculation of μ̂2. This results in the modified estimator

(30) μ̂2,I2 = 1 + 1

m

∑
(i,j)∈I2

(
S̃2

ij − 1

n − 1

)
= 1 + 1

m

[ ∑
(i,j)∈I2

S̃2
ij − |I2|

n − 1

]
,

where |I2| is the number of elements in the set I2. Note that the bias correction of
1/(n − 1) is applied to only the terms included in the sum.

Specifically, for a single chromosome with mk markers, k = 1, . . . ,K , exclud-
ing all pairs more than q > 0 indices away is equivalent to applying formula (21)

to the restricted matrix S̃
(k)

q with entries

(31)
(
S̃(k)

q

)
ij =

⎧⎪⎪⎨
⎪⎪⎩

1, i = j,

S̃ij , i �= j, (i, j) ∈ I(k)
2 ,

0, i �= j, (i, j) /∈ I(k)
2 ,

where I(k)
2 = {(i, j) : 1 < |i − j | ≤ q} with indices i, j within chromosome k. It

can be shown that |I (k)
q | = q(2mk − q − 1), yielding the formula

(32) μ̂
(k)
2,q = 1

mk

[
tr

(
S̃

(k)

q

)2 − q(2mk − q − 1)

n − 1

]
.

In practice, the restricted matrix (31) can be stored as a sparse matrix and the
trace above computed using the property that for any squared matrix A, tr(A2) =∑

i,j A2
ij .

For a set of K chromosomes with m1 +· · ·+mK = m, the overall estimate μ̂2,q

is calculated, using (28), as the weighted average of the per chromosome estimates
(32), weighted by the number of markers mk in each chromosome. In what follows
we refer to the distance q as correlation bandwidth.

5.3. Estimation of the LD third spectral moment μ3. To compute the variance
(24), we need an estimator of μ3. From (14) an appropriate estimate of μ3 is

(33)

μ̂3 = 1

m
tr

(
S̃

3) − 3
m − 1

n − 1
μ̂2 − (m − 1)(m − 2)

(n − 1)2

= 1

m

[
tr

(
S̃

3) − 3
m(m − 1)

n − 1
μ̂2 − m(m − 1)(m − 2)

(n − 1)2

]
.
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To understand this estimator, we realize that

(34)

tr
(
S̃

3) = tr
(
S̃S̃

2) =
m∑

i,j=1

S̃ij

(
S̃2)

ij =
m∑

i,j,k=1

S̃ij S̃jkS̃ik

= m + ∑
i �=j

S̃2
ij + ∑

i �=k

S̃2
ik + ∑

j �=k

S̃2
jk + ∑

i �=j �=k

S̃ij S̃jkS̃ik,

where we have replaced S̃ii = 1, i = 1, . . . ,m. Thus, the first subtracted term in
(33) makes a bias correction of μ̂2/(n−1) for each of the 3m(m−1) second order
terms in the sum above while the second subtracted term makes a bias correction
of 1/(n − 1)2 for each of the m(m − 1)(m − 2) third order terms. A computation-
ally efficient approximation for μ̂3 is given in Section S4 in the Supplementary
Material.

5.4. Relationship to LDSC regression. The LDSC regression method (Bulik-
Sullivan et al. (2015)) is derived under different modeling assumptions to ours, the
most important being the assumption that the β coefficients are random. In addi-
tion, the corresponding software is written for large GWAS applications and is not
amenable to smaller scale simulations as we do here. To allow direct comparison,
both analytically and in simulations, here we consider a stylized version of LDSC
regression that closely matches the GWASH estimator.

Assuming independent subjects from a single population, the LDSC method is
essentially based on the approximation

(35) E
[
u2

j | 	̂j

] ≈ h2
(

n

m
	̂j − 1

)
+ 1, j = 1, . . . ,m,

written in our notation (see Section S5 in the Supplementary Material), where 	̂j =∑m
k=1 r̃2

jk are the so-called LD-scores and r̃jk are the entries of S̃ = X̃
T
X̃/(n− 1).

The LDSC method estimates h2 by fitting a linear model based on (35) plus obser-
vation noise. Defining u2 = (u2

1, . . . , u
2
m)T and � = ((n/m)	̂1 − 1, . . . , (n/m)	̂m −

1)T, the model (35) reads E(u2) = h2� + 1, leading to the least squares estimator

(36) ĥ2
LD = |�|−2�T

(
u2 − 1

)
,

fitted with a fixed intercept equal to 1.
The GWASH estimator is related to the LDSC regression estimator above in the

following way. In linear regression the fitted line always goes through the average
of the point cloud. Therefore, the average (	̄, u2) = (1T�/m,1Tu2/m) must satisfy
the equation

(37) u2 = ĥ2
LD	̄ + 1.

We show in Section S5 in the Supplementary Material that this implies

(38) ĥ2
LD = u2 − 1

	̄
= ĥ2

GWASH + O

(
1

n

)
.



2524 SCHWARTZMAN, SCHORK, ZABLOCKI AND THOMPSON

In other words, if we consider a scatterplot of u2
j as a function of the LD scores 	̂j ,

LDSC fits the least squares straight line through the distribution, while GWASH
targets the mean of the distribution directly, and the two are asymptotically equiv-
alent. We will see in the simulations and data analysis that both give similar esti-
mates but have different SEs.

6. Finite sample performance. The following simulations evaluate the per-
formance of the GWASH estimator under various finite sample scenarios. To push
the limits of the estimator, we consider an autoregressive (AR) covariance struc-
ture for the predictor matrix X where the AR parameter ρ ranges from 0 to 0.8
and where the variances of the columns of X have a wide spread from 1 to m. We
consider two different distributions for the entries of X:

• The rows of X are i.i.d. multivariate normal with mean 0 and covariance matrix
� = [Diag(�)]1/2�̃(ρ)[Diag(�)]1/2, where Diag(�) = Diag(1,2, . . . ,m) and
�̃(ρ) is the m × m AR correlation matrix with entries �̃ij = ρ|i−j |.

• The rows of X are i.i.d. multivariate binomial, generated using a Gaussian mul-
tivariate copula (Hofert et al. (2014), Kojadinovic et al. (2010)). According to
this method, a multivariate normal vector is generated with the same covariance
matrix � as above and AR parameter ρ∗. The multivariate normal vector is then
transformed to binomial by a quantile transformation with the corresponding
variance. Because of the copula, the correlation between the binomial variables
is not exactly AR, and we use the notation ρ∗ as a reminder of this.

For the vector of coefficients β , we consider two different structures:

• β is a single realization of m i.i.d. N(0,1) variables.
• β is a mixture, containing 90% of 0’s and 10% i.i.d. N(0,1) variables.

Note that β is generated once in each case and then fixed for all simulations. In
all cases, the outcome y is generated according to model (2) with i.i.d. Gaussian
errors. Given β and �, for any desired SNP heritability h2 > 0, the error variance
is set to σ 2 = τ 2(1 − h2)/h2 so that (4) gives SNP heritability h2. For h2 = 0, we
set β = 0.

6.1. Estimation of SNP heritability. Figure 1 shows the estimates of h2 under
the aforementioned combinations. The estimation methods shown are:

• The GWASH estimator (19) using the full sample correlation matrix (q = m−1)
to estimate μ2, as in (21).

• The GWASH estimator (19) using only q off-diagonals of the sample correlation
matrix to estimate μ2, as in (32) (only when ρ > 0).

• The Dicker estimator for unestimable covariance (10).
• The simple LD regression estimator (36).



A SNP HERITABILITY ESTIMATOR FROM GWAS 2525

FIG. 1. Average estimates of h2 (m = 2000, n = 1000, 100 repetitions) and empirical standard de-
viations (bars) for: β normal and X normal (left column); β mixture and X normal (center column);
β mixture and X binomial (right column).
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TABLE 2
Estimates of μ2 and μ3 (m = 1000): values presented are the mean and empirical standard

deviation over 100 repetitions. The symbol ρ∗ represents the AR parameter of the Gaussian copula

μ2 μ̂2 μ̂2,q μ3 μ̂3 μ̂3,q

X AR true Full S̃ Partial S̃ true Full S̃ Partial S̃

normal ρ = 0.8 4.55 4.53 (0.03) 4.50 (0.02)q=11 30.49 30.2 (0.48) 29.1 (0.32)q=11
ρ = 0.4 1.38 1.38 (0.006) 1.38 (0.003)q=5 2.36 2.35 (0.04) 2.35 (0.01)q=5
ρ = 0.2 1.08 1.08 (0.004) 1.08 (0.001)q=3 1.26 1.26 (0.02) 1.26 (0.004)q=3
ρ = 0 1 1.00 (0.004) 1 1.00 (0.01)

binomial ρ∗ = 0.8 2.54 2.55 (0.02) 2.55 (0.02)q=11 10.42 10.48 (0.24) 10.28 (0.18)q=11
ρ∗ = 0.4 1.13 1.13 (0.005) 1.13 (0.003)q=5 1.44 1.44 (0.02) 1.44 (0.009)q=5
ρ∗ = 0.2 1.03 1.03 (0.004) 1.03 (0.001)q=3 1.08 1.08 (0.01) 1.08 (0.003)q=3
ρ∗ = 0 1 1.00 (0.004) 1 1.00 (0.01)

All h2 estimates are hardly distinguishable and close to the true values (grey diago-
nal line) within simulation error. This is precisely the desired behavior, as it shows
that the GWASH estimator can estimate SNP heritability just as well as the Dicker
and LDSC estimators using only summary statistics. Note too that the correlation
bandwidth q has little influence on the results.

6.2. Estimation of spectral moments and SE. To understand the effect of LD
on the spectral moment estimators, estimates of μ2 and μ3 are shown in Table 2
under the different X structures considered above. Both μ̂2 and μ̂3 match their
true values whether the full or partial sample correlation matrix is used in their
estimation. Note that the empirical SE when using the partial S̃ is slightly smaller
than that when using the full S̃.

Finally, Figure 2 compares estimates of SE according to the following meth-
ods:

• Empirical SE of the GWASH estimator (19) using the full sample correlation
matrix (q = m − 1) to estimate μ2.

• Empirical SE of the GWASH estimator (19) using only q off-diagonals of the
sample correlation matrix to estimate μ2 (only when ρ > 0).

• Theoretical asymptotic SE of the GWASH estimator (square root of (24)), using
the full sample correlation matrix (q = m − 1) to estimate μ2 and μ3.

• Theoretical asymptotic SE of the GWASH estimator (square root of (24)), using
only q off-diagonals of the sample correlation matrix to estimate μ2 and μ3.

• Empirical SE of the LDSC regression estimator (36).
• Theoretical SE of the LDSC regression estimator (36) obtained from the linear

model fit.

In all plots the asymptotic SE formula for the GWASH estimator approximates
the empirical SE closely. LDSC regression, however, overestimates or underes-
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FIG. 2. SEs of h2 estimates (m = 2000, n = 1000, 100 repetitions) for: β normal and X normal
(left column); β mixture and X normal (center column); β mixture and X binomial (right column).

timates the corresponding empirical SE, explaining why the estimation of SE in
Bulik-Sullivan et al. (2015) requires computational methods such as jackknife and
bootstrapping to estimate the SE more accurately.
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7. Application to GWAS data. GWASH and LDSC regression (intercept =
1) estimates were obtained for three complex traits (Table 1). To enable compar-
ison between the two approaches, we used a subset of SNPs that was present
in each of the four GWAS, had an LD score that had been precomputed by the
LDSC authors and had genotype data available in the 1KGP data. We also ex-
cluded SNPs with a minor allele frequency less than 0.1% in any of the five 1KGP
European subpopulations as these may be less reliably genotyped or vary more in
frequency among populations, limiting their representativeness. After these exclu-
sions, m = 872,188 SNPs remained for analysis for each GWAS. The SNP heri-
tability was estimated using (27), aggregating by chromosomes. (A more extensive
study using all available SNPs is shown in Section 8.3 below.)

For our estimator, calculation of μ̂2 and μ̂3 requires LD information not pro-
vided with summary statistics. To compute representative values, we used a sam-
ple of the same 1KGP data with a correlation bandwidth of q = 1000, yielding the
values μ̂2 = 16.93 and μ̂3 = 617.35. Further details on data preprocessing, appli-
cation of LDSC regression and calculation of μ̂2 and μ̂3 are given in Section A in
the Supplementary Material.

7.1. Results and interpretation. The estimated values by GWASH and LDSC
regression in Table 1 are very similar. Considering LDSC as the current leading
standard, these results validate the GWASH estimator. However, the SEs for the
GWASH estimator are smaller, owing to its simplicity.

All SNP heritability estimates are significantly greater than zero and signifi-
cantly different from each other. Based on the common set of SNPs analyzed, we
may infer that height has a stronger correlation with these SNPs at the popula-
tion level than IQ, and more so than BMI and Educ. Attain., suggesting that the
latter traits may be more influenced by other genetic factors or the environment.
For all traits the SNP heritability explained by the specific SNPs that were found
as statistically significant in those studies is much lower (Table 1, last column).
The difference suggests that there are many SNP effects on these traits that remain
undiscovered.

7.2. Choice of correlation bandwidth. To evaluate the choice of correlation
bandwidth q , the GWASH estimate was recomputed for a range of values of q up
to 5000 used in the calculation of μ̂2. Figure 3 (left panel) shows that the GWASH
estimate is fairly insensitive to the correlation bandwidth q , the chosen value q =
1000 being a reasonable compromise between accuracy and computation. At this
value of q and larger, the GWASH and LDSC estimates are statistically the same.

7.3. Computation time. Figure 3 (right panel) shows the computation time for
the chromosome with the largest number of SNPs as a function of the correlation
bandwidth q and broken down by the various computation components. Most of
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FIG. 3. Left: Sensitivity of GWASH estimates to the correlation bandwidth q in the calculation
of μ̂2. The LDSC (int =1) estimator is added in gray for reference. Standard errors are indicated
as vertical lines for GWASH and as dashed horizontal lines for LDSC. Right: Computation time of
GWASH for the largest chromosome as a function of the correlation bandwidth q .

the computation time is spent precomputing μ̂2 and μ̂3. As indicated by equa-
tions (32) and (S10), the computation time for μ̂2 grows linearly with q while the
computation time for μ̂3 grows quadratically.

Once μ̂2 and μ̂3 are computed, estimating the SNP heritability is fast. For ex-
ample, for q = 1000 used in the data analysis above, calculation of μ̂2 and μ̂3 took
3.4 min. and 14.5 min., respectively, with the remaining calculation of ĥ2 taking
only 0.07 min. In contrast, calculation of the LDSC estimate took 0.5 min. using
their already precomputed parameters and not assessing its uncertainty. Note that
LDSC requires a list of LD scores that is as long as the number of SNPs, while
GWASH requires only a single number μ̂2. The third moment μ̂3 is needed only to
estimate the standard error of GWASH using formula (24); the accuracy of LDSC
is estimated using a computationally intensive jackknife procedure.

8. Discussion. The key advantages of the GWASH estimator are its simplic-
ity and grounding in statistical theory, both of which can be leveraged to better
understand the empirical properties of SNP heritability estimates, as well as serv-
ing as a basis for future methods development. We now discuss several practical
implications of the GWASH estimator for GWAS analysis and understanding of
genetic inheritance.

8.1. Estimation of SE. A nice property of the GWASH estimator, inherited
from the Dicker estimator and not available with other currently used estimators, is
that the precision (23) of the estimator is known theoretically based on the number
of SNPs m, the sample size n, the second and third spectral moments μ2 and μ3 of
the LD matrix and the true SNP heritability h2. The first two quantities are known
from the study while the second two can be estimated from a public resource (e.g.,



2530 SCHWARTZMAN, SCHORK, ZABLOCKI AND THOMPSON

FIG. 4. The SE of the GWASH estimator as a function of n and h2, for m = 872,188, μ2 = 16.93
and μ3 = 617.35. The red curve indicates the pairs (n,h2) for which h2 = 1.645 SE; values of n to
the right of the curve allow detection of a nonzero SNP heritability at the 5% level.

1KGP). The true SNP heritability is unknown. In this paper we have substituted
for h2 an estimate from the study itself.

To assess the sensitivity of the SE to the value of h2, Figure 4 shows the SE
(square root of (24)) as a function of the sample size n and the true SNP heritabil-
ity h2 using the values m = 872,188, μ2 = 16.93 and μ3 = 617.35 from the data
analysis. The plot shows that the SE is almost insensitive to the value of h2, in-
creasing only slightly as h2 increases for any fixed n. As a consequence, a slightly
conservative but more stable estimate of the SE can be obtained by simply using
the worst-case value h2 = 1 instead of the estimated value ĥ2.

8.2. Sample size and power calculations for prospective GWAS. Relation (23)
can be used in a prospective study to determine the number of subjects required to
estimate SNP heritability according to a desired accuracy. Given any fixed set of
m SNPs, the values of μ2 and μ3 may be estimated from a public resource (e.g.,
1KGP) and then the SE can be designed as a function of n and the targeted h2. For
the values of m, μ2 and μ3 in the data analysis, Figure 4 shows that the SE can be
quite large for small n, but it drops as n increases.

From a design point of view, the sample size n can be chosen to achieve a
desired SE. For example, for a SNP heritability of h2 = 0.5, an SE of 0.05 is
achieved with n = 7234 (red circle in Figure 4). The SE can also help design
studies with the goal of detecting a SNP heritability that is significantly greater
than zero. As mentioned at the end of Section 4.5, a one-sided Wald test will be
significant at the 5% level if the estimate of h2 is greater than 1.645 SEs. In Fig-
ure 4 this corresponds to choosing n to the right of the red curve. For example,
to detect a SNP heritability of h2 = 0.8, the minimal sample size is n = 673; to
detect a SNP heritability of h2 = 0.2, the minimal sample size is n = 2699 (red
triangles).
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FIG. 5. Dependence of GWASH estimates on the number of SNPs included in the estimation, for
three traits: IQ (top line), EduYears (middle line) and BMI (bottom line).

8.3. How many SNPs are needed to estimate SNP heritability? In the data
analysis above we chose to use the same SNP set for all datasets to have the same
basis of comparison with LDSC in terms of the LD content, captured by μ2 and μ3.
Different SNPs sets may represent different portions of the total genetic variance
and give discrepant results. To demonstrate that GWASH behaves as expected, we
estimated the SNP heritability from different random subsets of the total SNP set
available for each GWAS. Figure 5 shows that the estimates of h2 rise sharply until
around 1,000,000 SNPs and then begin to asymptote. In the most extreme example,
increasing the SNP size more than seven times for EduYears from 1,000,000 to
7,500,000 results in a negligible increase in SNP heritability. Interestingly, these
results suggest that little information is gained by increasing the number of SNPs
beyond about 2,000,000.

We note here that producing Figure 5 required changing the correlation band-
width from the previous analysis. The q = 1000 SNP correlation bandwidth was
tuned to the original SNP set of 872,188 SNPs. In this analysis a new value of
q would have to be tuned for every new SNP set. To facilitate the multiple com-
putations in Figure 5, we instead used genetic distance to band the LD matrix,
estimating all correlations within 1 centimorgan. The value of μ̂2 was then cal-
culated using (30), the value of I2 obtained by explicitly counting the number of
estimated paired correlations. The required computations for calculating μ̂3 were
prohibitive for the large SNP sets, so we omit standard errors in Figure 5.

8.4. Precomputation of μ̂2. The value of μ2 depends on the specific collec-
tion of SNPs used in a GWAS. However, it seems to be highly predictable once
certain features of the SNP set are fixed. Figure 6 shows the estimate μ̂2 of random
subsets of SNPs for various imputation panels (HM2, hapmap2; HM3, hapmap3;
HRC, haplotype reference consortium; KGP, thousand genomes project), genetic
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FIG. 6. Values of μ̂2 (increasing lines, left scale) and (μ̂2 − 1)/m (nearly constant lines, right
scale) for random SNP subsets of size m for various imputation panels, genetic ancestry populations
and MAF thresholds.

ancestry populations (AFR, African; EAS, East Asian; EUR, European) and mi-
nor allele frequency (MAF) thresholds, as a function of the size m of post-MAF
thresholded subset of the imputation panel SNPs. Details are given in Section 8.7.
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TABLE 3
Values of the constant r2 (×10−6) for each of the 36 super-collections in Figure 6

African East Asian European

MAF > 0.05 0.01 0.001 0.05 0.01 0.001 0.05 0.01 0.001

HM2 11.2 9.64 9.46 23.7 20.6 19.6 23.0 19.6 19.0
HM3 9.50 8.53 8.02 20.1 17.6 16.2 19.1 16.9 15.5
HRC 9.97 5.53 3.48 23.1 15.5 10.5 22.3 14.2 6.99
KGP 10.1 5.73 2.56 23.4 15.8 6.92 22.6 14.6 7.24

Interestingly, random subselections of different sized SNP sets from a given
super-collection results a linear increase in μ̂2 such that (μ̂2 − 1)/m converges to
a constant. From (21) this constant is the limit

r2 = lim
m→∞

μ̂2 − 1

m
= lim

m→∞
1

m2

∑
i �=j

(
S̃2

ij − 1

n − 1

)
,

which is the average squared correlation above the correlation floor per SNP pair.
This relationship allows one to calculate an approximate μ̂2 as

μ̂2 ≈ 1 + mr2

for any GWAS that can be considered as studying a random collection of SNPs
from a reference set as described above. Values of r2 for each of the 36 super-
collections described above is given in Table 3.

8.5. Fixed effects vs. random effects. In this paper the vector of coefficients β
was treated as fixed and arbitrary, allowing for the greatest flexibility in the model.
LDSC regression assumes instead the SNP effects to be random. If the entries of
β are drawn independently from a distribution with mean 0 and variance ς2 then,
from (3),

Var(yi) = E
[
Var(yi |β)

] + Var
[
E(yi |β)

] = E
[
βT�β + σ 2] + Var

[
E(�xi )β

]
= tr

[
�E

(
ββT

)] + σ 2 = ς2 tr(�) + σ 2.

Thus, as opposed to (4), the SNP heritability estimated by LDSC regession is the
quantity h2 = ς2 tr(�)/[ς2 tr(�) + σ 2]. In Bulik-Sullivan et al. (2015), it is as-
sumed that the phenotype and genomic markers have variance 1 so that Var(yi) = 1
and � has ones on the diagonal. Thus tr(�) = m and a desired SNP heritability of
h2 is achieved by setting ς2 = h2/m and σ 2 = 1 − h2.

The two models have different interpretations. The fixed-effects model assumes
that the effect of each SNP is consistent across samples within a population, while
in the random-effects model the SNP effects may change across samples. The
fixed-effects model is more consistent with the original formulations of heritability
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(Falconer and Mackay (1996), Lynch and Walsh (1998)). It is interesting that both
LDSC and GWASH reach the same estimates, even though they have been derived
from different data models.

8.6. Epistasis. Epistasis refers to the contribution of interaction between
SNPs in model (1) (Hill, Goddard and Visscher (2008)). In principle, epistasis
can be incorporated simply by adding columns to the X matrix that contain all the
desired interaction terms between SNPs and then proceeding as prescribed by the
estimator. This can be done for a limited number of interaction terms but consider-
ing all m(m−1)/2 interactions in addition to the m main effects is computationally
intractable, as this would lead to an LD matrix of size m(m + 1)/2 × m(m + 1)/2
(e.g., take m ∼ 106).

There is also some debate in the genetics literature surrounding the practical
evidence for a large epistatic component. To date, only a small amount of variance
was explained by these higher order effects (Hemani et al. (2014a), Hill, Goddard
and Visscher (2008)) and this was challenged as potentially erroneous (Hemani
et al. (2014b), Wood et al. (2014)). There are in fact theoretical grounds as to why
interactions may not explain a large portion of variance in most complex traits
(Hill, Goddard and Visscher (2008)). Nonetheless, it remains an interesting topic
and one which could be pursued in future studies.

8.7. Connections to enrichment. Schork et al. (2013) used the quantity s2 − 1
as a measure of enrichment to compare different functional classes of SNPs. Being
proportional to this quantity, the GWASH estimator can be viewed as a correction
that accounts for the LD between SNPs through the factor μ2. Hence, the GWASH
estimator may be used in a similar way to partition SNP heritability among differ-
ent functional classes of SNPs and help narrow down the most important SNPs
involved in genetic inheritance of complex traits. This extension of GWASH is left
for future work.

APPENDIX: DATA PROCESSING

Preprocessing of GWAS summary statistics. Summary statistics from the three
GWAS studies listed in Table 4 were downloaded from the authors’ cited public
repositories. For each study we kept the SNP name, effect allele (A1), noneffect
allele (A2), per SNP sample size (n), association p-value (p) and corresponding
test statistic (t). Where per SNP sample sizes were not available (Edu. Attain.), we
used the sample size reported in the paper for each SNP. Where test statistics were
not reported (BMI, Edu. Attain), we converted two-tailed p-values to z-scores via
the inverse of the normal CDF, maintaining the sign from the regression coeffi-
cients.
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TABLE 4
Reference information on the three GWAS studies used in this paper

Trait Ref. Data source (website)

IQ Sniekers et al. (2017) https://ctg.cncr.nl/documents/p1651/sumstats.txt.gz
EduYears Okbay et al. (2016) http://ssgac.org/documents/SSGAC_Rietveld2013.zip
BMI Locke et al. (2015) http://portals.broadinstitute.org/collaboration/giant/images/

1/15/SNP_gwas_mc_merge_nogc.tbl.uniq.gz

Application of LDSC regression. To perform LDSC regression for each of the
four GWAS studies, we downloaded all necessary software and reference data
from the authors repository (https://github.com/bulik/ldsc). Both GWASH and
LDSC require information about the LD among SNPs that is not typically made
available alongside summary statistics. The LDSC authors address this by provid-
ing precomputed LD scores estimated from a subset of representative individuals’
genotypes, available as part of the 1KGP data. We used these precomputed values
and their recommended protocols as faithfully as possible, following their provided
tutorial.

Estimation of μ2 and μ3 from the 1KGP data. A sample of 503 individuals of
European ancestry were used to compute representative values of μ̂2 and μ̂3.
Genome-wide genotypes are available for these individuals through the 1KGP
data, phase 36 (http://www.internationalgenome.org/).

To compute the LD matrix, we used the statistical genetic software package
plink2 (Chang et al. (2015)) which provides fast routines for manipulating
large genotype data sets. Restriction to the correlation bandwidth q = 1000 was
achieved using the plink2 commands -r and -ld-window 1000, which re-
turns correlations up to only 1000 rows off the diagonal, for each chromosome in
parallel. Similar commands were used for other values of q . To compute pairwise
LD within 1 centimorgan for Figure 5, we used the plink2 commands -r and
-ld-window-cm 1. Matrix calculations for μ̂2 and μ̂3, as described in Sec-
tions 4.4 and S4 in the Supplementary Material, were performed in an R routine
using sparse matrix operations in the package matrix.

Precomputation of μ̂2 in Figure 6. To study the predictability of μ̂2 shown
in Figure 6, we estimated LD among different collections of SNPs, in differ-
ent collections of individuals, using individual genotype data released as part
of the 1KG project. First, we collected lists of SNPs available in four of the
most common imputation reference panels: HapMap2 (version 22; HM2; YRI
2,852,185 SNPs; JPT+CHB 2,416,664 SNPs; CEU 2,543,888 SNPs), HapMap3
(release 2; HM3; 1,387,467 SNPs), the Haplotype Reference Consortium (ver-
sion 1.1; HRC; 40,405,530 SNPs) and the 1000 Genome Project (version
5a; KGP; 81,271,745 SNPs). For HapMap studies SNP lists were obtained

https://ctg.cncr.nl/documents/p1651/sumstats.txt.gz
http://ssgac.org/documents/SSGAC_Rietveld2013.zip
http://portals.broadinstitute.org/collaboration/giant/images/1/15/SNP_gwas_mc_merge_nogc.tbl.uniq.gz
http://portals.broadinstitute.org/collaboration/giant/images/1/15/SNP_gwas_mc_merge_nogc.tbl.uniq.gz
https://github.com/bulik/ldsc
http://www.internationalgenome.org/
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from preprocessed data made available for imputations on the IMPUTE web-
site (http://mathgen.stats.ox.ac.uk/impute/impute_v1.haplotypes.html), where for
HRC and KGP, SNP lists were taken from original data sources.

Next, for each of the four imputation panels, we extracted the genotypes of
subjects in three different ancestry groups (AFR, African, n = 661; EAS, East
Asian, n = 504; EUR, European, n = 503) at the overlapping SNPs. From each
of the twelve resulting ancestry-specific imputation panel genotype sets, we cre-
ated three subsets including only genotypes above selected minor allele frequen-
cies (MAF > 0.05, > 0.01, > 0.001). This resulted in 36 collections of geno-
types meant to represent the potentially unique patterns of LD that could arise
when choosing SNP subsets based on an imputation panel or minor allele fre-
quency threshold for GWAS in samples from different genetic ancestries. For
each of the 36 KGP data subsets, we calculated μ̂2 for differently sized ran-
dom subsets of SNPs (m = 10,000, 25,000, 50,000, 100,000, 500,000, 1,000,000,
1,500,000, 2,000,000, 2,500,000, 5,000,000 and the complete set, if it was less
than 5,000,000), repeating each sampling five times.

SUPPLEMENTARY MATERIAL

A simple, consistent estimator of SNP heritability from genome-wide asso-
ciation studies (DOI: 10.1214/19-AOAS1291SUPPA; .pdf). Derivations, proofs
and efficient computations.

Software (DOI: 10.1214/19-AOAS1291SUPPB; .zip). R code implementing
the GWASH estimator and the numerical simulations above may be found in
https://github.com/rongw16/GWASH.
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